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Exact Algorithms for Annotated Edge Dominating Set in Graphs
with Degree Bounded by 3

Mingyu XIAO† and Hiroshi NAGAMOCHI††a), Members

SUMMARY Given a graph G = (V, E) together with a nonnegative in-
teger requirement on vertices r : V → Z+, the annotated edge dominating
set problem is to find a minimum set M ⊆ E such that, each edge in E −M
is adjacent to some edge in M, and M contains at least r(v) edges incident
on each vertex v ∈ V . The annotated edge dominating set problem is a
natural extension of the classical edge dominating set problem, in which
the requirement on vertices is zero. The edge dominating set problem is
an important graph problem and has been extensively studied. It is well
known that the problem is NP-hard, even when the graph is restricted to a
planar or bipartite graph with maximum degree 3. In this paper, we show
that the annotated edge dominating set problem in graphs with maximum
degree 3 can be solved in O∗(1.2721n) time and polynomial space, where
n is the number of vertices in the graph. We also show that there is an
O∗(2.2306k)-time polynomial-space algorithm to decide whether a graph
with maximum degree 3 has an annotated edge dominating set of size k or
not.
key words: edge dominating sets, exact algorithms, cubic graphs

1. Introduction

Since we do not know whether P = NP or not, cur-
rently the best we can exactly solve NP-complete problems
is super-polynomial time algorithms. Although to exactly
solve some NP-complete problems we can adopt exhaus-
tive search algorithms, the forbiddingly large running time
of the search algorithms makes them impractical even on
instances of fairly small size. People wonder whether we
can design algorithms that are significantly faster than triv-
ial exhaustive search, though they are still not polynomial-
time. Research on exponential-time algorithms for some
natural and basic problems, such as independent set [9],
[20], coloring [1], exact satisfiability [3] and so on, has a
long history. Recently, some other basic graph problems,
such as dominating set [8], edge dominating set [19] and
feedback set [17], also have drawn much attention in this
line of research. Furthermore, to get more understanding
of the structural properties of NP-complete problems, peo-
ple also have interests in exactly solving problems in sparse
and low-degree graphs. The independent set problem in
degree-3 graphs can be solved in O∗(1.0854n) time [4], the
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k-vertex cover problem in degree-3 graphs can be solved
in O∗(1.1616k) time [22], and TSP in cubic graphs can be
solved in O∗(1.251n) time [12]. More fresh results on prob-
lems in sparse and low-degree graphs can be found in the
literature [5], [10], [18], [21], [26]. To a certain extent, some
graph problems in low-degree graphs are the bottleneck
of improving the algorithms for the problems in general
graphs. Motivated by those, in this paper, we study the
classic edge dominating set problem and an extension of it
in graphs with degree bounded by 3 and present some im-
proved algorithms for them. Except exact algorithms, we
also study parameterized algorithms for our problems. In
parameterized algorithms, we first pick up a parameter of the
problem (the parameter can be the size of the solution, num-
ber of the vertices of the input graph, treewidth of the input
graph, and so on), and try to design algorithms such that the
exponential part of the running time depends on only the pa-
rameter (but not the whole input size). We can regard param-
eterized algorithms as a kind of exact algorithms. Parame-
terized algorithms for some basic graph problems, includ-
ing the edge dominating set problem, have been extensively
studied recently. For more details about parameterized al-
gorithms, the readers can refer to recent monographs [13].
In this paper, we will take k, the size of the solution to the
edge dominating set problem, as the parameter to study the
parameterized algorithms.

The edge dominating set problem is a basic prob-
lem introduced in Garey and Johnson’s work [11] on NP-
completeness. Yannakakis and Gavril [28] proved that the
edge dominating set problem is NP-hard even in planar
or bipartite graphs of maximum degree 3. Randerath and
Schiermeyer [15] designed the first nontrivial exact algo-
rithm for the minimum edge dominating set problem, which
runs in O∗(1.4423m) time, where m is the number of edges
in the graph. Later Raman et al. [14] improved the result to
O∗(1.4423n). Fomin et al. [7] claimed an O∗(1.4082n)-time
algorithm by considering the treewidth of the graphs. Rooij
and Bodlaender [19] got an O∗(1.3226n)-time algorithm by
using the ‘measure and conquer’ method, which was further
improved to O∗(1.3160n) [24]. In terms of parameterized
algorithms with parameter k being the size of the solution,
there are also a long list of contributions to the upper bound
of the running time. Let us quote the O∗(2.6181k)-time al-
gorithm by Fernau [6], the O∗(2.4181k)-time algorithm by
Fomin et al. [7], the O∗(2.3819k)-time algorithm by Binkele-
Raible and Fernau [2], and finally the O∗(2.3147k)-time al-
gorithm by Xiao et al. [27]. Most of these algorithms are
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based on the idea of enumerating vertex covers.
In this paper, we study the annotated edge dominating

set problem in graphs of maximum degree 3 and present fast
exact and parameterized algorithms for it. Our exact algo-
rithm is the first effective algorithm that are not based on
enumeration of minimal vertex covers and the algorithm is
analyzed by measuring the number of degree-3 vertices in-
stead of the number of vertices or edges. We also show that
the exact algorithm can be used to derive a fast parameter-
ized algorithm for our parameterized problem. In an initial
version of this paper [23], we claimed the results on the edge
dominating set problem. In the full version of this paper,
we extend the results to the annotated edge dominating set
problem.

The rest of the paper is organized as follows: Sect. 2
gives the basic definitions and our notation system. Sec-
tion 3 gives some reduction rules which will be used as pre-
processes to simplify input graphs. Section 4 gives our exact
algorithm for the annotated edge dominating set problem in
degree-3 graphs. Section 5 designs an algorithm for the pa-
rameterized version of this problem. Finally Sect. 6 makes
the conclusion.

2. Preliminaries

Let G = (V, E) be a graph with n = |V | vertices and m = |E|
edges. A graph is called a degree-3 graph if any vertex in the
graph is of degree ≤ 3. We may use p to denote the number
of degree-3 vertices in a degree-3 graph. Let G[V ′] be the
subgraph induced by a subset V ′ ⊆ V , V(G) be the vertex set
of graph G, and E(v) be the set of edges incident on vertex
v. A subset S ⊆ E dominates an edge e ∈ E − S if it con-
tains an edge adjacent to e, and is called an edge dominating
set of the graph if it dominates every edge in E − S . The
edge dominating set problem is to find an edge dominating
set of minimum size. In the annotated edge dominating set
problem, a pair (G, r) of a graph G and a nonnegative inte-
ger requirement of vertices r : V → Z+ is given (where Z+
is the set of nonnegative integers), and we are asked to find
a minimum edge dominating set M such that for each vertex
v ∈ V , |M ∩ E(v)| ≥ r(v). An instance I = (G, r) of the
annotated edge dominating set problem is simply denoted
by G when the requirement of vertices is clear. The origi-
nal edge dominating set problem is the special case of the
annotated edge dominating set problem where the weight of
vertices is always zero. For a vertex v, let N(v) denote the
neighbor set of v, i.e., the set of vertices adjacent to v, and
N2(v) denote the set of vertices with distance exactly 2 from
v. Let d(v) = |N(v)| denote the degree of a vertex v, and
N[v] = N(v) ∪ {v} denote the closed neighbor set of v.

For an integer i ≥ 0, a path of length i (or an (i)-path)
is an ordered list v1v2 · · · vi+1 of distinct i vertices such that
there is an edge between v j and v j+1 for all 1 ≤ j ≤ i. A
path v1v2 · · · vi+1 in G is called an inner path, if v2, v3, . . . , vi

are degree-2 vertices of G and v1 and vi+1 are vertices of
degree ≥ 2. In addition, if v1 and vi are vertices of degree
≥ 3, we also call such an inner path a maximal inner path.

We say that a maximal inner path v1v2 · · · vi+1 is incident
on v1 (or vi+1). For a subset X ⊆ V(G) of vertices, the set
E(X,V(G)−X) of edges with one endpoint in X and the other
one in V(G) − X is called an i-edge cut of X in G, where
i = |E(X,V(G) − X)| is the number of edges in E(X,V(G) −
X). Note that we can find all 1-edge cuts and 2-edge cuts in
polynomial time. In a degree-3 graph, a 1-edge cut (resp.,
2-edge cut) E(X,V(G) − X) of vertex set X is good if the
induced graph G[X] contains at most 11 (resp., 7) degree-3
vertices.

Annotating a vertex v means that we set r(v) :=
max{1, r(v)}. Note that annotation is the only operation in
the paper that increases the requirement of a vertex. It only
increases the requirement from 0 to 1, and never increases
the requirement to any number greater than 1.

We will use a modified O notation that suppresses all
polynomially bounded factors. For two functions f and g,
we write f (n) = O∗(g(n)) if f (n) = g(n)nO(1).

In this paper, we design algorithms for the annotated
edge dominating set problem in graphs with degree bounded
by 3. Our algorithms are based on the branch-and-reduce
paradigm. We first apply reduction rules to reduce the size
of the input. Let I be any instance of our problem and I′

be the instance obtained by applying a reduction rule. If a
solution to I can be constructed in polynomial time from
a solution to I′, we say this reduction rule is correct. We
may find a partial solution directly by using correct reduc-
tion rules. When none of our reduction rules can be applied,
we will apply some branching rules to search solutions by
including some edges into the solution or excluding some
edges from the solution. In each branch, we will delete some
edges or vertices from the graph and get a new problem in-
stance in a graph with a smaller measure (the measure can be
the number of vertices, edges or others). Then a computa-
tion process of such an algorithm is represented by a search
tree T . At each node of T , the current instance is branched
into several small instances. Let C(p) denote the worst size
of the search tree T of an algorithm applied to an instance
with measure p. Assume that the algorithm branches on a
graph G with measure p at a node in T into t graphs Gi with
measure pi (i = 1, 2, . . . , t). Then for the branch, we get the
recurrence relation C(p) ≤ ∑t

i=1 C(pi). Solving the recur-
rence, we get C(p) = O(αp), where α is the largest root of
the equation f (x) = 0 for the function f (x) = 1 −∑t

i=1 x−pi .
We need to analyze the ‘worst’ node in the search tree to
prove an upper bound of the size of T .

In some steps of our algorithm, we may include some
edges into the solution. We show how to handle an instance
I = (G = (V, E), r) of the annotated edge dominating set
problem with a prescribed edge e that is required to be in-
cluded in the edge dominating set. We call such an edge
forced. Let F be a set of forced edges. In fact, such an
additional requirement can be eliminated by modifying the
instance. Note that just deleting edges in F from G does not
give a correct new instance of our problem since the edges
E − F adjacent to F are already dominated by F. A new
instance I′ = (G′, r′) of the annotated edge dominating set
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problem is constructed as follows:

Including prescribed edges
For a set F ⊆ E of forces edges, let E0 ⊆ E − F be the
set of edges e such that (i) e is adjacent to an edge in F;
(ii) r(v) ≤ |F ∩ E(v)| for each endpoint v of e. Remove
F ∪ E0 from G deleting any vertices of degree-0, and set
r′(v) := max{0, r(v) − |F ∩ E(v)|} for each vertex v to obtain
a new instance I′ = (G′ = (V, E − F − E0), r′).

Lemma 1: Let I = (G, r) be an instance of the annotated
edge dominating set problem and F ⊆ E be a prescribed
set of edges. Let I′ = (G′, r′) be the new instance obtained
by the above rule. A minimum annotated edge dominating
set of I that contains F as a subset can be constructed in
polynomial time from a solution to I′.

Proof: We call an annotated edge dominating set M of
I a feasible solution if it satisfies the constraint F ⊆ M.
Let M′ be a minimum annotated edge dominating set of
I′ = (G′, r′). We first show that the set M′ ∪ F is a feasible
solution to I = (G, r). By definition of r′, M′ ∪ F satisfies
the requirement r in I. Assume that M′ ∪ F does not domi-
nate some edge uv ∈ E − F −M′. Since M′ ∪ F satisfies the
requirement r, it holds r(u) = r(v) = 0, and hence uv ∈ E0

or uv ∈ E − F − E0. In the former case, uv is dominated by
F, and in the latter, uv is dominated by M′, a contradiction.
Therefore, M′ ∪ F is an annotated edge dominating set of I.

We next show that M′ ∪ F is a minimum feasible so-
lution among all feasible solutions to I. For this, it suffices
to prove that there is a minimum feasible solution which
contains no edge in E0. Let M be a minimum feasible so-
lution such that |M ∩ E0| is minimized among all feasible
solutions. By definition, F dominates all edges in E0 and F
is contained in M. Let M contain an edge uv ∈ E0, where
r′(u) = r′(v) = 0 by definition. Then uv must be adjacent to
an edge e ∈ E − F − E0, since otherwise M − {uv} would be
a smaller feasible solution to I. In this case, M ∪ {e} − {uv}
is an annotated edge dominating set in I, contradicting the
minimality of |M∩E0|. Therefore, I has a minimum feasible
solution M such that M ∩ E0 = ∅, as required. �

In what follows, when we include a set F of edges into
a solution, we assume that a new instance I′ = (G′, r′) from
I = (G, r) is constructed in the above way unless explicitly
stated.

3. Reduction Rules

Reduction rules are frequently used as preprocesses to re-
duce the input size. We can apply the rules to transform an
instance I to an equivalent instance I′ with smaller measure
in polynomial time, i.e., a solution to I can be constructed
in polynomial time from a solution to I′, and vice versa.
In fact, here we only consider one direction: to guarantee
a solution to I can be derived from a solution to I′. Since
reduction rules are applied to reduce data for instances, we
introduce them before presenting our algorithm.

We first observe the correctness of the following two

simple rules for vertices v with r(v) ≥ d(v).

Rule 1: Overly required vertices
If there is a vertex v such that r(v) > d(v), the instance has
no solution.

Rule 2: Fully required vertices
A vertex v is fully required, if r(v) = d(v). If there is a fully
required vertex, then we include the set F of all edges in-
cident on every fully required vertex into the solution and
reduce the graph according to the removal of F (note that
no new fully required vertex will be generated).

Next, we assume that in the graph Rule 1 and Rule 2
have been applied and then for each vertex v in the graph,
we have that r(v) < d(v).

To deal with some types of vertices with no require-
ment, we have the following reduction rule, where we as-
sume that the graph has no component of a path (which
component can be solved directly).

Rule 3: Folding some special vertices with no require-
ment
Let v be a vertex with r(v) = 0.
Case 1. d(v) = 1: Remove v from the graph, annotating the
unique neighbor u of v;
Case 2. d(v) = 2 and the two neighbors u,w ∈ N(v) are
adjacent: Remove v from the graph and annotate u and w;
and
Case 3. 2 ≤ d(v) ≤ 3 and r(u) ≥ 1 for all neighbors
u ∈ N(v): Remove v from the graph without changing r(u)
for each u ∈ N(v).

Lemma 2: Rule 3 is correct.

Proof: Case 1. It is easy to see that there is a solution S
which does not contain edge vu. We annotate the neighbor
u of v so that at least one edge incident on u is selected into
the solution.

Case 2. If vu or vw is in a solution S , we can simply
replace it with uw in S to get another solution, because u and
w are not fully required. Then we can assume that vu, vw �
S and u,w ∈ V(S ). Therefore, we can delete v increasing
the requirement of each of u and w to 1 if it is 0 to find such
a solution S .

Case 3. Note that each neighbor u of v is not fully
required. If vu is in the solution S , then E(u) − S � ∅ (oth-
erwise S − {vu} would be a smaller solution) and we can
simply replace vu with an edge in E(u) − S to get another
solution. Therefore we can assume that N(v) ∩ S = ∅, and
we can delete v without losing a solution. �

We introduce a reduction to some kinds of inner paths
abcde of length 4. Since b, c and d are degree-2 vertices,
the requirements on them can only be 1 or 0. We get the
following reduction rules that depend on the requirements
on b, c and d (see Fig. 1 for the illustration).

Rule 4: Folding inner paths of length 4
Let abcde be an inner path in a graph.
Case 1. r(c) = 0 and r(b) + r(d) ≤ 1: Contract {a, b, c, d}
into the single vertex a deleting any self-loops and multiple
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Fig. 1 Illustration of reduction Rule 5.

edges without changing r(a);
Case 2. r(b) = 1 (resp., r(d) = 1) and the requirements
on the other two vertices are 0: Contract {b, c, d, e} (resp.,
{a, b, c, d, }) into the single vertex e (resp., a) deleting any
self-loops and multiple edges, and annotate e (resp., anno-
tate a); and
Case 3. r(b) = r(c) = r(d) = 1: Contract {b, c, d} into the
single vertex b with r(b) = 1 deleting any self-loops.

Lemma 3: Rule 4 is correct.

Proof: Let G be the original graph and G′ the graph after
applying the reduction rule on inner path P = abcde. We
prove that G has an annotated edge dominating set S of size
k if and only if G′ has an annotated edge dominating set S ′

of size k − 1 and the two solutions can be derived from each
other easily. Let S denote a solution in each of Cases 1-3
such that |S ∩ E(P)| is minimized.

First, we consider Cases 1 and 2 (r(b) = 1 is assumed
in Case 2 without loss of generality). (i) Only if part: Since
r(c) = 0 and r(b) + r(d) ≤ 1, we see that S ∩ E(P) = {bc}
or {cd} when |S ∩ E(P)| = 1; and S ∩ E(P) = {ab, de} when
|S ∩ E(P)| ≥ 2 (since otherwise we can replace S ∩ E(P)
with {ab, de} to obtain another solution). Note that e ∈ V(S )
always hold when bc ∈ S . Then in the former, S ′ = S −{bc}
is an annotated edge dominating set of size k−1 in G′, while
S ′ = (S − {ab, de}) ∪ {ae} will be a solution of size k − 1 to
G′ in the latter.

(ii) If part: For an annotated edge dominating set S ′ of
size k − 1 in G′, we consider three cases: ae ∈ S ′; ae � S ′

and e ∈ V(S ′); and {a, e} ∩ V(S ′) = {a}: If ae ∈ S ′, then
S = (S ′ − {ae}) ∪ {ab, de} is an annotated edge dominating
set of size k for G. ae � S ′ and e ∈ V(S ′) If ae � S ′

and e ∈ V(S ′), then S = S ′ ∪ {bc} is an edge dominating
set of size k for G. For the third case, S = S ′ ∪ {cd} is
an edge dominating set of size k for G in Case 1, whereas
S = S ′ ∪ {bc} is an edge dominating set of size k for G in

Case 2 (note that r(e) ≥ 1 in Case 2).
Next, we consider Case 3. (i) Only if part: For an an-

notated edge dominating set S of size k in G, consider two
cases: ab ∈ S and bc ∈ S . If ab ∈ S , we can assume that
cd ∈ S . Then S ′ = S −{cd} is an annotated edge dominating
set of size k − 1 for G′. Next if bc ∈ S , we can assume that
de ∈ S . In this case, S ′ = (S −{bc, de})∪{be} is an annotated
edge dominating set of size k − 1 for G′.

(ii) If part: For an annotated edge dominating set S ′ of
size k−1 in G′, we consider two cases: ab ∈ S ′; and be ∈ S ′.
If ab ∈ S ′, then S = S ′ ∪ {cd} is an edge dominating set of
size k for G. If be ∈ S ′, then S = (S ′ − {be}) ∪ {bc, de} is an
edge dominating set of size k for G. �

Note that the case of r(b) = r(d) = 1 and r(c) = 0
cannot occur for an inner path abcde by Rule 3 being applied
to c. We also note that Rule 4 cannot be used to reduce all
inner paths of length 4, because these cases do not cover all
cases. As shown in the next lemma, we can use Rule 4 to
reduce all inner paths of length ≥ 6.

Lemma 4: In a graph after applying Reduction Rules 1 to
4, there is no inner path of length ≥ 6 and any inner path of
length 4 or 5 satisfies one of the follows:
(i) inner path abcde of length 4 such that r(a) = r(b) = 0
and r(c) = r(d) = 1 (or r(d) = r(e) = 0 and r(b) = r(c) = 1);
(ii) inner path abcde of length 4 such that r(c) = 1 and r(a) =
r(b) = r(d) = r(e) = 0; and
(iii) inner path abcde f of length 5 such that r(c) = r(d) = 1
and r(a) = r(b) = r(e) = r( f ) = 0.

Proof: It is easy to see that any inner path of length 4 other
than (i) and (ii) can be reduced by Reduction Rule 3 or 4.
Let abcde f be an inner path of length 5. Since its inner
paths abcde and bcde f of length 4 satisfy (i) or (ii), only
the case of (iii) is a possible configuration. If there is an
inner path u1u2 · · · ui+1 of length i ≥ 6, then its inner paths
u1u2 · · · u5 and u2u3 · · · u6 of length 5 need to satisfy (iii),
which is impossible. �

Next, we show that when the graph has a 1-edge cut,
we can deal with the graph in an easy way. We observe the
following properties of 1-edge cuts.

Lemma 5: Let aa′ be a 1-edge cut of a set X in instance I =
(G, r), where a ∈ X and a′ ∈ V(G) − X. Assume that r(a) =
2. Let I2 = (G[X], r) be the annotated edge dominating set
instance on the induced graph G[X], and I1 = (G[X], r′) be
the annotated edge dominating set instance on the induced
graph G[X] with r′(a) = 1 and r′(v) = r(v) for v ∈ X − {a}.
Let F1 and F2 denote solutions to I1 and I2, respectively. If
|F1| = |F2| (resp., |F1| < |F2|), then there is a solution M to I
such that F2 ⊆ M (resp., F1 ⊆ M).

Proof: Let EX = E(G[X]), and M be a solution to I. Clearly
it holds |M ∩ EX | ≥ |F1|, since d(a) = 3 and r(a) = 2 (we
always assume that Rules 1-2 can not be applied any more).
Hence if |F1| = |F2|, then we can replace M ∩ EX with F2 in
M to obtain another solution to I. Let |F1| < |F2|. Then we
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can replace M ∩ (EX ∪ {aa′}) with F1 ∪ {aa′} in M to obtain
another solution to I (even if aa′ � M). �

Lemma 6: Let aa′ be a 1-edge cut of a set X in instance
I = (G, r), where a ∈ X and a′ ∈ V(G) − X. Assume that
r(a) = 1. Let X0 = X − {a}, I1 = (G[X], r) be the annotated
edge dominating set instance on the induced graph G[X],
and I0 = (G[X0], r) be the annotated edge dominating set
instance on the induced graph G[X0]. Let F0 and F1 denote
solutions to I0 and I1, respectively. If |F0| = |F1| (resp.,
|F0| < |F1|), then there is a solution M to I such that F1 ⊆ M
(resp., F0 ⊆ M).

Proof: Let EX = E(G[X]), and M be a solution to I. Clearly
it holds |M ∩ EX | ≥ |F0|, since X0 ⊆ X. Hence if |F0| =
|F1|, then we can replace M ∩ EX with F1 in M to obtain
another solution to I. Let |F0| < |F1|. Then we can replace
M ∩ (EX ∪ {aa′}) with F0 ∪ {aa′} in M to obtain another
solution to I (even if aa′ � M). �

Lemma 7: Let aa′ be a 1-edge cut of a set X in instance
I = (G, r), where a ∈ X and a′ ∈ V(G) − X. Assume that
r(a) = 0. Let X0 = X − {a}, I0 = (G[X0], r) be the an-
notated edge dominating set instance on the induced graph
G[X0] and I′0 = (G[X0], r′) be the annotated edge dominat-
ing set instance obtained from I0 by annotating all vertices
in X0∩N(a). Let I1 = (G[X], r1) be the annotated edge dom-
inating set instance on the induced graph G[X] obtained by
annotating a in the instance (G[X], r). Let F0, F′0 and F1

denote solutions to I0, I′0 and I1, respectively. If |F0| = |F1|,
then there is a solution M to I such that F1 ⊆ M. Otherwise
(|F0| < |F1|) if |F′0| > |F0| (resp., |F′0| = |F0|), then there is a
solution M to I such that F0 ⊆ M (resp., F′0 ⊆ M).

Proof: Let EX = E(G[X]), and M be a solution to I. Clearly
it holds |M ∩ EX | ≥ |F0|, since X0 ⊆ X. Hence if |F0| =
|F1|, then we can replace M ∩ EX with F1 to obtain another
solution to I. Let |F1| ≥ |F0| + 1. If M contains |F0| + 1 (or
more) edges from EX , then we can replace these M∩EX with
F0 ∪ {aa′} to get another solution. Assume that M contains
exactly |F0| edges from EX . If M contains edge aa′, then we
can replace M∩EX with F0 to get another solution. Suppose
that aa′ � M. Then we see that M contains no edge between
a and X0, since otherwise M would contain |F1| > |F0| edges
from EX . Then M ∩ EX does not contain any edge between
a and X0, but dominates all of these edges. This implies that
|F′0| = |M ∩ EX | = |F0|. Hence we can replace M ∩ EX with
F′0 to get another solution. �

The above three lemmas tell us that when the graph
has a 1-edge cut we can use a divide-and-conquer method
to solve the problem. In our algorithms, we only use this
method to reduce good 1-edge cuts, where the induced graph
G[X] contains at most 11 degree-3 vertices. After applying
Reduction Rule 4, any component G′ containing only a con-
stant number of degree-3 vertices can have a constant num-
ber of vertices (since after applying Reduction Rule 4, all
maximal inner paths are of length at most 5 by Lemma 4).
Therefore, the instances I0, I′0, I1 and I2 in the above three

lemmas can be solved in polynomial time. We can reduce
the graph to a small instance in polynomial time according
to the above three lemmas, if the graph contains a good 1-
edge cut. Note that a component with a vertex of maximum
degree 3 contains a good 1-edge cut if there is a maximal
inner path u1u2 . . . ui+1 of length i ≥ 2 (but i ≤ 5) such that
u1 is equal to ui+1.

Rule 5: Dealing with good 1-edge cuts
If there is a good 1-edge cut, reduce the graph according to
Lemmas 5 to 7.

Note that after applying Rule 5 on a good 1-edge cut
of X, we further apply reduction rules to reduce any re-
sulting degree-1 vertices, which removes all vertices in X
completely from the graph. For convenience, we will call a
graph a reduced graph if none of Rules 1 to 5 can be applied.

4. The Exact Algorithm

To effectively analyze our algorithm, we may require that
when applying some branching rules the graph does not con-
tain any good i-edge cuts with i ≤ 2. Rule 5 can reduce good
1-edge cuts. For good 2-edge cuts, a similar reduction rule
could become very complicated. Then we use an effective
branching rule to branch on good 2-edge cuts before apply-
ing other branching rules, if this kind of local structures ex-
ists.

The main steps of our recursive algorithm are pre-
sented in Fig. 2. Explanation of each branching operation
in Steps 3-8 will be given in the subsequent subsections.
During an execution of our algorithm, a subset E′ of edges
which are decided to be included in an annotated edge dom-
inating set is maintained and we will use S ∗ to denote a min-
imum annotated edge dominating set in the input graph that

Fig. 2 Algorithm PEDS (G, r).
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contains all the edges in E′ if such kind of annotated edge
dominating sets exist.

In Step 2, any component with at most 12 degree-3 ver-
tices has a constant number of vertices, since the length of
any maximal inner path is at most 5 by Lemma 4.

To analyze the running time of our algorithm, we de-
rive an upper bound on the size of the search tree for com-
putations of our algorithm. Traditionally, we may use the
number of vertices or edges in the graph to measure the
size. Some recent references [16], [21] used the number of
degree-3 vertices as the measure to analyze the running time
for the independent set and vertex cover problems in degree-
3 graphs. We will also use this technique to analyze our al-
gorithm and get the improved running time bound. Recall
that we use p to denote the number of degree-3 vertices in
the graph. Note that the annotated edge dominating prob-
lem with p = 0 can be solved in polynomial time easily.
After applying Reduction Rules 1-5 in Step 1, the number
of degree-3 vertices in the graph will not increase. We will
guarantee that the number of degree-3 vertices will decrease
in each of Step 3 to 8. Then the algorithm always success-
fully halts.

To show the correctness of the algorithm and derive a
small bound on the size of the search tree generated by the
algorithm, we need a careful analysis for Step 3 to 8. Each
of these steps branches on the current instance to generate
several new subinstances such that a solution to the current
instance can be obtained from solutions to the subinstances.
Each subinstance is obtained by deleting a degree-3 vertex
or an inner path from the current instance. We examine how
many degree-3 vertices will disappear in each subinstance to
build an effective recurrence. The following three lemmas
are important for counting the number of degree-3 vertices
in our analysis.

Lemma 8: Let G be a connected graph with maximum de-
gree 3, and Vi be the set of degree-i vertices in G. Assume
that |V3| ≥ |V1|. Then after iteratively applying Reduction
Rules 2-3 to G until no degree-1 vertex is left, the number
of degree-3 vertices decreases by at least |V1|.

Proof: Let G′ be the resulting graph after iteratively apply-
ing Reduction Rules 2-3 until there is no degree-1 vertex.
Let V ′ = V(G′) and V ′′ = V − V ′ be the set of deleted ver-
tices, where it holds V1 ⊆ V ′′ since no degree-1 vertex is
left. Assume V ′ � ∅ (otherwise we have V3 ⊆ V ′′ and the
lemma obviously holds because |V3| ≥ |V1|). Let Y be the
set of vertices in V ′ which are adjacent to V ′′ in G. Since
every vertex in G′ is of degree 2 or 3, no two vertices in
V ′′ are adjacent to the same vertex in Y in G. Hence every
vertex in Y is of degree 3 in G but of degree 2 in G′. It
suffices to prove that G has at least |V1| − |Y | degree-3 ver-
tices in V ′′. To prove that, we first construct a new graph G∗

from G by deleting all edges in G[V ′] and vertices in V ′ −Y .
Then the vertices in Y are all degree-1 vertices in G∗ and the
number c of components in G∗ is at most |Y |, since G is con-
nected. Note that any tree with bounded degree 3 contains
at least L − 2 degree-3 vertices if it has L degree-1 vertices.

Hence a maximal spanning forest T of G∗ contains at least
(|V1| + |Y |) − 2 − 2(|Y | − 1) = |V1| − |Y | degree-3 vertices,
since |V1| + |Y | is the number of degree-1 vertices in G∗ and
two trees can be joined into a tree introducing at most two
new degree-3 vertices. Therefore, after removing V − V ′ by
Reduction Rules 2-3, the number of degree-3 vertices de-
creases by at least |Y | + (|V1| − |Y |) = |V1|. �

Lemma 9: Let G be a connected graph with maximum de-
gree 3 and minimum degree 2 which has no good 1-edge
cut. Assume that G contains at least 4 degree-3 vertices.
Then after deleting a degree-3 vertex v from G and itera-
tively applying reduction rules, the resulting reduced graph
has at least 4 less degree-3 vertices than G has.

Proof: Let G′ be the graph obtained from G by deleting v
from G. If G′ has no degree-1 vertex, then all neighbors
of v are of degree-3 and this implies the lemma. Let G′

have a component H containing exactly j ∈ {1, 2, 3} degree-
1 vertices. For j = 3, graph H is a connected graph G′ with
at least 4− 1 = 3 degree-3 vertices by assumption on G. For
j = 1, graph H must contain at least one degree-3 vertex in
it. For j = 2, if H contain at most one degree-3 vertex in it,
then this means that H is a path and G would have a good
1-cut of X = V(H)∪ {v} in G, a contradiction. In any case H
contains at least j degree-3 vertices, and Lemma 9 follows
from Lemma 8. �

Lemma 10: Let G be a connected graph with maximum
degree 3 and minimum degree 2 which has no good 1-edge
cut and has at least 12 degree-3 vertices. Assume that G has
a set Z ⊆ V(G) containing q ≤ 8 degree-3 vertices such that
the induced graph G[Z] is a connected graph and any edge
between Z and V(G)−Z is incident on two different vertices
in Z. Let t ∈ {2, 3, 4} be the number of edges between Z and
V(G) − Z, and assume that G has no good 2-edge cut when
t = 4. If we remove the vertices in Z from G and continue to
apply reduction rules to the resulting graph until a reduced
graph G∗ is obtained, then G∗ has at least q+ t less degree-3
vertices than G has.

Proof: We can reduce q degree-3 vertices from Z. Let
u1, u2 ∈ Z be the two vertices such that each edge between
Z and V(G) − Z is incident on either u1 or u2. Let G′ be the
resulting graph after deleting Z from G. Note that if u1 and
u2 are adjacent on a same vertex w not in Z, then d(w) = 3
in G (otherwise G would have a good 1-edge cut of Z ∪ {w}
or a good 2-edge cut when t = 4) and we regard that one
of u1w and u2w reduces the degree-3 vertex u, and the other
corresponds to the resulting degree-1 vertex w in G′. By
Lemma 8, it suffices to show that, for each component H of
G′, if H contains j degree-1 vertices then it contains at least
j vertices whose degree is 3 in G′.

Case 1. H contains four degree-1 vertices: Then G′ has
only one component and the component H = G′ contains at
least 12 − t ≥ 8 degree-3 vertices (G contains at least 12
degree-3 vertices).

Case 2. H contains exactly three degree-1 vertices: If
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G′ has only one component and the component H = G′

contains at least 12 − t ≥ 8 degree-3 vertices. Otherwise
G′ has exactly two components H and H′, since there are
at most 4 edges between Z and V(G) − Z. If H contains at
most 2 degree-3 vertices, then G[Z∪V(H)] contains at most
8+1+2 = 11 degree-3 vertices (at most one degree-1 vertex
in H can be a degree-3 vertex in G[Z ∪ V(H)]) and the edge
between H′ and Z would a good 1-cut of Z ∪ V(H).

Case 3. H contains exactly two degree-1 vertices, say
w1 and w2: Assume that H contains at most one degree-3
vertex to derive a contradiction. Then the set of two edges
between {w1,w2} and V(H) − {w1,w2} is a good 2-edge cut
of V(H) − {w1,w2} in G, and t ≤ 3 by the assumption of
G. Since G has at least 12 degree-3 vertices, G′ has another
component H′. By t ≤ 3, there is only one edge between
H′ and Z, and this edge is a good 1-edge cut of Z ∪ V(H)
since Z ∪ V(H) contains at most q + 1 ≤ 8 + 1 = 9 degree-3
vertices, a contradiction.

Case 4. H contains only one degree-1 vertex: Then H
must contain a vertex of degree greater than 2. �

Lemma 11: Let G be reduced graph after Step 4 (having
no good 1- or 2-edge cut) and Pi = v1v2 · · · vi+1 an inner
path of length i ≥ 1 in it. Let G′ be the component con-
taining the inner path Pi and q ∈ {0, 1, 2} be the number
of degree-3 vertices in {v1, vi+1}. If we remove the vertices
Z = {v1, . . . , vi+1} in Pi from G and continue to apply reduc-
tion rules to the resulting graph until a reduced graph G∗ is
obtained, then G∗ has at least 2 + 2q less degree-3 vertices
than G has.

Proof: When i ≥ 2, vertices v1 and vi+1 are not adjacent to
each other, otherwise G would have a good 1- or 2-edge cut
of Z. Then there are t = 2+q edges between Z and V(G)−Z.
The lemma follows from Lemma 10. �

Now we are ready to describe the branching opera-
tions in Fig. 2 and their analysis. We assume that the reduc-
tion rules are applied automatically after execution of any
branching operation.

4.1 Branching on Requirement-2 Vertices (Step 3)

In this step, the graph G is a reduced graph. Then any vertex
with requirement 2 is a degree-3 vertex. Let a be a vertex
with requirement 2 in Step 3. Let G′ be the component of G
containing a and N(a) = {b, c, d} be the set of neighbors of
a. Our algorithm will branch on an edge incident on a, say
ab, into two branches by excluding ab from the solution or
including it into the solution.

In the first branch which excludes ab from the solution,
the two edges ac and ad must be included into the solution
due to r(a) = 2. Then we will delete degree-3 vertex a from
the graph according to our reduction rules. By Lemma 9,
this reduces at least 4 degree-3 vertices in this branch.

In the second branch which includes ab into the solu-
tion, we will delete ab from the graph and update the re-
quirement on a and b. If b is also a degree-3 vertex, we

can reduce two degree-3 vertices a and b. Otherwise b is a
degree-2 vertex, we will reduce only one degree-3 vertex a
and get a degree-1 vertex after deleting ab. By Lemma 8,
totally we still can reduce at least two degree-3 vertices in
this branch after applying reduction rules.

Let C(p) be the worst size of the search tree when the
graph has at most p degree-3 vertices. Then we get the fol-
lowing recurrence for the above branching operation:

C(p) ≤ C(p − 4) +C(p − 2), (1)

which solves to C(p) = O(1.2721p).
After Step 3, the graph will never contain a vertex with

requirement ≥ 2, since the requirement of each vertex will
not increase to 2 in our algorithm. In Steps 4-8, if there is a
branch of including a single edge e = uv into the solution,
then we see that such a solution does not need to contain any
edge adjacent to the edge e, and we remove not only edge
e but also the both endpoints u and v. Most of the analysis
below is based on this property.

4.2 Branching on Good 2-Edge Cuts (Step 4)

Let E′ = {x1y1, x2y2} be a good 2-edge cut of X in graph G,
where x1, x2 ∈ X are degree-3 vertices and y1, y2 ∈ V(G)−X.
Let P = z1z2 · · · y1x1 denote the maximal inner path con-
taining edge x1y1, where z1 = y1 and z2 = x1 (when P is
of length 1) or z2 = y1 (when P is of length 2). Note that
z1 � x2 (otherwise X and V(P) would induce a component
with at most 7 degree-3 vertices). Recall that S ∗ stands for
an optimal solution that contains the current solution. We
branch on the graph into three branches according to the
following cases: z1 � V(S ∗); z1z2 ∈ S ∗; and z1 ∈ V(S ∗)
but z1z2 � S ∗. We claim that each of the first and second
branches reduces the number p of degree-3 vertices by at
least 6 while the third reduces p by at least 4.

For the first branch (z1 � V(S ∗)), we delete z1 from the
graph, apply Reduction Rule 4 to reduce good 1-edge cut
x2y2 in the remaining graph, and apply other reduction rules
to further reduce the graph. Note that Z = V(P) ∪ X will be
removed from the graph. Let q be the number of degree-3
vertices in Z, where 3 ≤ q ≤ 8, since z1, x1, x2 ∈ Z and E′

is a good 2-edge cut. Now there are t = 3 edges between Z
and V(G) − Z. By Lemma 10, we can reduce p by at least
q + t ≥ 6 in this branch.

For the second branch (z1z2 ∈ S ∗), we will delete the
z1z2 together with all edges adjacent to it from the graph, ap-
ply Reduction Rule 4 to reduce good 1-edge cut x2y2 in the
remaining graph, and apply other reduction rules to further
reduce the graph. This also removes Z = V(P) ∪ X from
the graph. According to the analysis for the first branch, we
know that we can also reduce p by at least 6 in this branch.

For the third branch (z1 ∈ V(S ∗) but z1z2 � S ∗), we
annotate z1, delete edge z1z2, and apply Reduction Rule 4 to
reduce good 1-edge cut x2y2 and other reduction rules. In
this branch, we will delete Z = V(P) ∪ X − {z1} from the
graph. Since Z contains q ≥ 2 degree-3 vertices and there
are t = 2 edges z1z2 and x2y2 between Z and V(G) − Z. By
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Lemma 10, in the third branch, we can reduce p by at least
4. Therefore we can branch on a good 2-edge cut with the
following recurrence

C(p) ≤ 2C(p − 6) +C(p − 4), (2)

which solves to C(p) = O(1.2335p).
After Step 4, the graph has no good 1- or 2-edge cuts

and Lemma 11 can be used.

4.3 Branching on Maximal Inner Paths of Length 3
(Step 5)

Assume that the algorithm selects a maximal inner path
abcd of length 3 in Step 5. We distinguish three cases ac-
cording to the requirements of b and c.

If r(b) = r(c) = 0, we branch into three branches by
including each of ab, bc and cd into the solution. Note that
in the branch where bc is included into the solution, we can
assume that a, d � V(S ∗) (for this case r(a) = r(d) = 0),
because if a ∈ V(S ∗) (or d ∈ V(S ∗)) we can replace bc with
cd (or replace bc with ab) in S ∗ to get another solution that
does not contain bc. Then in this branch, we annotate all
neighbors of a and d, delete {a, b, c, d} from the graph, and
include bc into the solution. Totally we can reduce p by at
least 2 + 2q = 6 by applying Lemma 11 to abcd with q = 2.
In the other two branches, we include F = {ab} (resp., cd)
into the solution, and can reduce p by at least 2 + 2q = 4 by
applying Lemma 11 to F with q = 1. We get

C(p) ≤ C(p − 6) + 2C(p − 4), (3)

which solves to C(p) = O(1.2721p).
If r(b) + r(c) = 1, say r(b) = 1 and r(c) = 0 without

loss of generality, then we branch by including either ab or
bc into the solution. Note that in the branch where bc is
included into the solution, we can assume that d � V(S ∗)
(for this case r(d) = 0), because if d ∈ V(S ∗) we can re-
place bc with ab in S ∗ to get another solution that does not
contain bc. Then in this branch, we annotate all neighbors
of d, delete {b, c, d} from the graph, and include bc into the
solution. Totally we can reduce p by at least 4 by applying
Lemma 11 to bcd with q = 1. In the other branch where
ab is included into the solution, we will delete all edges ad-
jacent to ab from the graph and reduce p by at least 4 by
applying Lemma 11 to ab with q = 1. Then we get the
following recurrence

C(p) ≤ 2C(p − 4), (4)

which solves to C(p) = O(1.1893p).
If r(b) = r(c) = 1, we branch by including bc into the

solution or excluding it from the solution. In the first branch,
we will delete {b, c} from the graph, and reduce p by 2 by
applying Lemma 11 to bc with q = 0. In the second branch,
then ab and cd will be included into the solution. We will
delete all edges incident on {a, b, c, d} from the graph and
reduce p by at least 6 by applying Lemma 11 to abcd with
q = 2. We get

C(p) ≤ C(p − 6) +C(p − 2), (5)

which solves to C(p) = O(1.2107p).

4.4 Branching on Maximal Inner Paths of Length ≥ 4
(Step 6)

Lemma 4 shows that there are only three kinds of maximal
inner paths of length ≥ 4 after Step 2. For the three cases,
we have a same branch rule. We use the same notation in
Lemma 4 to denote the path. Let abcde (or abcde f ) be the
path selected in Step 6, where r(a) = r(b) = 0 and r(c) = 1
hold in the three cases (i)-(iii) in Lemma 4. We branch into
two branches according to the two cases: a � V(S ∗); and
a ∈ V(S ∗). If a � V(S ∗), we can simply include bc into the
solution. Then we annotate all neighbors of a, delete {a, b, c}
from the graph, and reduce p by 4 by applying Lemma 11
to abc with q = 1. Otherwise a ∈ V(S ∗) and we simply in-
clude cd into the solution. Then we can delete {c, d} from the
graph, annotate a, and reduce p by 2 by applying Lemma 11
to cd with q = 0. Therefore, we can branch on a maximal
inner path with length ≥ 4 with recurrence (1).

4.5 Branching on Maximal Inner Paths of Length 2
(Step 7)

In Step 7, the algorithm will branch on a maximal inner path
of length 2. If the graph has a maximal inner path abc of
length 2 such that r(b) = 1, then our algorithm branches on it
by including either ab or bc into the solution. We will delete
{a, b} (or {b, c}) from the graph. By applying Lemma 11 to
ab (or bc) with q = 1, we can reduce at least 4 degree-3
vertices in each branch. We get a recurrence as (4).

Next, we assume that the graph only contains maximal
inner paths abc of length 2 such that r(b) = 0. We call
such maximal inner paths bad 2-paths. We distinguish the
following three cases.

Case 1. There is a degree-3 vertex a such that only
one bad 2-path is incident on a, say abb′: The other two
neighbors c and d of a (except b) are degree-3 vertices. We
branch into four branches by either including each of ac, ad
and ab into the solution or excluding all the three edges from
the solution. When F = {ac} (resp., ad) is deleted, we can
reduce p by 6 by applying Lemma 11 to F with q = 2. For
the branch of including ab into the solution, we can assume
that b′ � V(S ∗), otherwise we can replace ab with ac or ad to
get another solution. Then we can also remove b′ from the
graph and annotate its neighbors. Totally, we will remove
maximal inner path abb′ from the graph and can reduce p by
at least 6 by applying Lemma 11 on abb′ with q = 2. For the
branch of excluding all the three edges from the solution, we
will include bb′ into the solution. Then we will also remove
abb′ from the graph and can reduce p by at least 6 in this
branch. We get the recurrence

C(p) ≤ 4C(p − 6), (6)

which solves to C(p) = O(1.2600p).
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Case 2. There is a degree-3 vertex a such that exactly
two bad 2-paths are incident on a, say abb′ and acc′: The
third neighbor d of a is a degree-3 vertex. For this case,
we branch into four branches according to the four cases:
a � V(S ∗); b′ � V(S ∗); c′ � V(S ∗); and a, b′, c′ ∈ V(S ∗).
We look at the first branch (a � V(S ∗)). We will delete a
and annotate all neighbors of a. Then we will include bb′

into the solution by applying reduction rules. Totally, we
can remove inner path abb′ and reduce p by at least 6 by
applying Lemma 11 on abb′ with q = 2. Analogously we
can reduce p by at least 6 in the second and third branches.
For the last branch, we simply include ad into the solution
(note that r(b) = r(c) = 0 means that if ab or ac is in the
solution with a, b′, c′ ∈ V(S ∗) then we can replace it with
ad to get another solution) and annotate b′ and c′. In this
branch, we can reduce p by at least 6 by applying Lemma 11
on ad with q = 2. Therefore, we can get a recurrence as (6).

Case 3. There is no degree-3 vertex of Case 1 or Case
2: Now for every degree-3 vertex there are three bad 2-paths
incident on it, and each edge in the graph is on a bad 2-path.
We will arbitrarily select a bad 2-path abb′ and branch on it
into three branches according to the three cases: a � V(S ∗);
b′ � V(S ∗); and a, b′ ∈ V(S ∗). Next, we analyze how many
degree-3 vertices we can reduce in each branch. Assume
that three bad 2-paths abb′, acc′ and add′ are incident on a,
where b′, c′ and d′ are three different degree-3 vertices, since
there is no good 1- or 2-edge cut. Let N2 = N2(b′)∪N2(c′)∪
N2(d′)−{a, b′, c′, d′}. If |N2| = 0, then the component would
contain only 4 degree-3 vertices. If |N2| = 1, then G would
have a good 1-edge cut. If |N2| = 2, then G would have a
good 2-edge cut. Therefore |N2| ≥ 3. We look at the branch
corresponding to a � V(S ∗). In this branch, bb′, cc′ and
dd′ will be selected into the solution and deleted from the
graph. In the remaining graph, all vertices in N(b′)∪N(c′)∪
N(d′) − {b, c, d} become degree-1 vertices. After applying
reduction rules, all degree-3 vertices in N2 will be reduced.
Totally, we can reduce at least 7 degree-3 vertices, which are
N2∪{a, b′, c′, d′}. By the same analysis, we know that in the
branch corresponding to b′ � V(S ∗), we can reduce p by at
least 7. In the branch corresponding to a, b′ ∈ V(S ∗), where
ab, bb′ � S ∗ can be assumed, we delete b from the graph,
annotate a and b′, and reduce p by 2. Therefore, we get the
recurrence

C(p) ≤ 2C(p − 7) +C(p − 2), (7)

which solves to C(p) = O(1.2685p).

4.6 Branching on 3-Regular Graphs (Step 8)

Assume that the graph is a 3-regular graph in Step 8, where
the requirement of each vertex is either 1 or 0. We consider
two cases: whether there is a vertex with requirement 1 or
not. If all the vertices are of requirement 0, we arbitrarily
select a vertex a (assume that b, c, d are the three neighbors
of a), and branch into four branches by either including each
of ab, ac and ad into the solution or excluding all the three
edges from the solution. When F = {ab} (resp., ac and ad)

is included into the solution, we can reduce p by at least 6
by applying Lemma 11 to the inner path F with q = 2.

When none of the three edges is included into the so-
lution, we can delete a from the graph and annotate {b, c, d}.
By Lemma 9, we will reduce 4 degree-3 vertices. We con-
sider the remaining graph G′ after the fourth branch, which
contains exactly three degree-2 vertices, each of which has
requirement 1. If there is a good 1-edge cut in G′, then we
use Reduction Rule 5 to reduce it decreasing p by at least 2,
and we will get a recurrence as (6). Next, we assume that G′

contains no good 1-edge cut. We can find a degree-2 vertex
v that is adjacent to two degree-3 vertices u and w (if the
three degree-2 vertices are in a maximal inner path of length
4 in G′, we apply Case 3 of Reduction Rule 4 to get a new
degree-2 vertex v that is not adjacent to any other degree-2
vertices). Our algorithm will branch on uvw by including
either uv or vw into the solution (not that r(v) = 1). In the
branch of including uv in the solution, we remove {u, v} from
the graph, and we know that p is reduced by at least 4 just
by removing the degree-3 vertex u by Lemma 9. In the other
branch of including vw in the solution, we can also reduce
p by at least 4. Then we can get the same recurrence (4).
Combining all together, for this case we can get the follow-
ing recurrence

C(p) ≤ 3C(p − 6) + 2C(p − 8), (8)

which solves to C(p) = O(1.2721p).
If the graph has a vertex a with r(a) = 1 (b, c, d being

the three neighbors of a), we only need to branch into three
branches by including each of ab, ac and ad into the solution
and get a better recurrence

C(p) ≤ 3C(p − 6), (9)

which solves to C(p) = O(1.2010p).

4.7 The Result

It is easy to see that (1) is one of the worst cases among all
the cases, we get

Theorem 12: The annotated edge dominating set prob-
lem in graphs with maximum degree 3 can be solved in
O∗(1.2721p) time and polynomial space, where p ≤ n is
the number of degree-3 vertices in the graph.

5. The Parameterized Algorithm

We show that our exact algorithm presented in Sect. 4 can be
used to get a fast algorithm for the parameterized version of
the annotated edge dominating set problem, in which we are
asked to decide whether an annotated edge dominating set
instance in a degree-3 graph has a solution of size at most k
or not. The following property for edge dominating sets is
crucial for our algorithm.

Lemma 13: Let G be a graph with maximum degree 3. If
G has p degree-3 vertices, then for any edge dominating set
S , it holds |S | ≥ 3

10 p.
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Proof: Let V(S ) be the vertex set of an edge dominating
set S , where |V(S )| ≤ 2|S | holds. Let p′ be the number of
degree-3 vertices in V(S ), and m′ be the number of edges
with one endpoint in V(S ) and the other in V − V(S ). We
claim that 3(p− p′) ≤ m′ ≤ 3p′+2(|V(S )| − p′)−2|S | holds.
There are at least p − p′ degree-3 vertices in V − V(S ), and
V−V(S ) is an independent set. Then we have 3(p−p′) ≤ m′.
In V(S ), there are |V(S )| − p′ vertices of degree ≤ 2. Then
we have m′ ≤ 3p′ + 2(|V(S )| − p′) − 2|S |, as claimed. From
the claim 3(p − p′) ≤ 3p′ + 2(|V(S )| − p′) − 2|S |, we obtain
3p ≤ 4p′ + 2|V(S )| − 2|S | ≤ 10|S |, implying the lemma. �

Note that in Lemma 13, the edge dominating set is not
required to be an annotated edge dominating set and the size
of any annotated edge dominating set is not less then the
size of a minimum edge dominate set. Based on Lemma 13,
we can solve the parameterized version problem in degree-3
graphs in the following way: We first count the number p of
degree-3 vertices in the input graph. If k < 3

10 p, we report
that the graph has no (annotated) edge dominating set of size
k. Otherwise we use our exact algorithm in Sect. 4 to find an
minimum annotated edge dominating set in O∗(1.2721p) =
O∗(1.2721

10
3 k) = O∗(2.2306k) time. Then we get

Theorem 14: There is an O∗(2.2306k)-time and polynomial-
space that decides whether a graph with maximum degree 3
has an annotated edge dominating set of size k or not.

6. Concluding Remarks

In this paper, we have presented an O∗(1.2721n)-time al-
gorithm for the annotated edge dominating set problem in
degree-3 graphs, which is the fastest exact algorithm even
for the edge dominating set problem in degree-3 graphs.
Based on a kernelization result, the exact algorithm can also
be used to get an O∗(2.2306k)-time parameterized algorithm
for the problem. Note that, recently, we have designed a pa-
rameterized algorithm for the edge dominating set problem
in degree-3 graphs by using different techniques [25]. To-
gether with our algorithms, we have presented some data re-
duction rules for the (annotated) edge dominating set prob-
lem, which can be used to reduce the input size of the graph.
The annotated edge dominating set problem is a natural ex-
tension of the classical edge dominating set problem. It
will be interesting to further study this problem in general
graphs.

Many branch-and-search algorithms for graph prob-
lems have good performance when the graph has some high-
degree vertices. So fast algorithms for the problems in low-
degree graphs may directly lead to improvements on the al-
gorithms for the problems in general graphs. This situation
holds for independent set, vertex cover, edge dominating set
and some other basic problems in graphs. It would be inter-
esting to know whether there are faster algorithms for some
basic graph problems when the graph is restricted to a low-
degree graph.
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Köln, Cologne, Germany, 2005.

[16] I. Razgon, “A faster solving of the maximum independent set prob-
lem for graphs with maximal degree 3,” H. Broersma, S.S. Dantchev,
and S. Szeider, eds., ACiD, vol.7, pp.131–142, Texts in Algorith-
mics., King’s College, London, 2006.

[17] I. Razgon, “Exact computation of maximum induced forest,” L.
Arge and R. Freivalds, eds., SWAT. LNCS 5018, Springer, pp.160–
171, 2006.

[18] I. Razgon, “Faster computation of maximum independent set and
parameterized vertex cover for graphs with maximum degree 3,” J.
Discrete Algorithms, vol.7, no.2, pp.191–212, 2009.

[19] J.M. Rooij and H.L. Bodlaender, “Exact algorithms for edge domi-
nation,” M. Grohe and R. Niedermeier, eds., IWPEC, LNCS 5018,



418
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

Springer, pp.214–225, 2008.
[20] R. Tarjan and A. Trojanowski, “Finding a maximum independent

set,” SIAM J. Comput., vol.6, no.3, pp.537–546, 1977.
[21] M. Xiao, “A simple and fast algorithm for maximum independent set

in 3-degree graphs,” Md.S. Rahman and S. Fujita, eds., WALCOM
2010, LNCS 5942, Springer, pp.281–292, 2010.

[22] M. Xiao, “A note on vertex cover in graphs with maximum degree
3,” M.T. Thai, S. Sahni, eds., COCOON, LNCS 6196, Springer,
pp.150–159, 2010.

[23] M. Xiao, “Exact and parameterized algorithms for edge dominating
set in 3-degree graphs,” W. Wu and O. Daescu, eds., COCOA (2),
LNCS 6509, Springer, pp.387–400, 2010.

[24] M. Xiao and H. Nagamochi, “A Refined exact algorithm for edge
dominating set,” M. Agrawal, S.B. Cooper, and A. Li, eds., TAMC
2012, LNCS 7287, Springer, pp.360–372, 2012.

[25] M. Xiao and H. Nagamochi, “Parameterized edge dominating set in
graphs with degree bounded by 3,” Theor. Comput. Sci., 2012.

[26] M. Xiao, and H. Nagamochi, “Further improvement on maximum
independent set in degree-4 graphs,” W. Wang, X. Zhu, and D.-Z.
Du, eds., COCOA, LNCS 6831, Springer, pp.163–178, 2011.

[27] M. Xiao, T. Kloks, and S-H. Poon, “New parameterized algorithms
for the edge dominating set problem,” Theor. Comput. Sci., 2012.

[28] M. Yannakakis and F. Gavril, “Edge dominating sets in graphs,”
SIAM J. Appl. Math., vol.38, no.3, pp.364–372, 1980.

Mingyu Xiao was born on December 30,
1979. He received his Ph.D. from the Chinese
University of Hong Kong in 2008. He is an
associate professor in the School of Computer
Science and Engineering, University of Elec-
tronic Science and Technology of China. His
research interests include graph algorithms, op-
timization, parameterized complexity and so on.

Hiroshi Nagamochi was born in Tokyo, on
January 1, 1960. He received the B.A., M.E. and
D.E. degrees from Kyoto University, in 1983,
in 1985 and in 1988, respectively. He is a Pro-
fessor in the Department of Applied Mathemat-
ics and Physics, Graduate School of Informatics,
Kyoto University. His research interests include
network flow problems and graph connectivity
problems. Dr. Nagamochi is a member of the
Operations Research Society of Japan, the In-
formation Processing Society, and the Japan So-

ciety for Industrial and Applied Mathematics.


