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Scalable Detection of Frequent Substrings by
Grammar-Based Compression
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SUMMARY A scalable pattern discovery by compression is proposed.
A string is representable by a context-free grammar deriving the string de-
terministically. In this framework of grammar-based compression, the aim
of the algorithm is to output as small a grammar as possible. Beyond that,
the optimization problem is approximately solvable. In such approximation
algorithms, the compressor based on edit-sensitive parsing (ESP) is espe-
cially suitable for detecting maximal common substrings as well as long
frequent substrings. Based on ESP, we design a linear time algorithm to
find all frequent patterns in a string approximately and prove several lower
bounds to guarantee the length of extracted patterns. We also examine
the performance of our algorithm by experiments in biological sequences
and other compressible real world texts. Compared to other practical algo-
rithms, our algorithm is faster and more scalable with large and repetitive
strings.
key words: pattern discovery, grammar-based compression, edit-sensitive
parsing

1. Introduction

This paper tackle the problem of finding all frequent sub-
strings in the input string, which requires square time for in-
put length by a trivial algorithm, where we call a pattern is
frequent if it appears in the string at least twice. We propose
a rapid approximation algorithm based on grammar-based
compression where a small context-free grammar (CFG) is
required to represent an input string uniquely. The prelimi-
nary results were partially presented in [1] and this paper is
its extended version.

We first outline the framework of grammar-based com-
pression and recent work related to our study. Any CFG
G is assumed to be admissible [2], i.e., G derives just one
string w and a derivation tree for w is unique. Here, the
set of production rules of G is regarded as a compression
of w. For instance, a string w = abab · · · ab = (ab)16 is repre-
sented by an admissible CFG with D = {S 0 → S 1S 1, S 1 →
S 2S 2, S 2 → S 3S 3, S 3 → S 4S 4, S 4 → ab}, which is the
set of production rules. Because we can assume that any
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production rule is of the form A → BC for some two sym-
bols B and C, the set D is equivalent to the decodable se-
quence S 1S 1S 2S 2S 3S 3S 4S 4ab, which is shorter than the
original string w. Such a data structure to access D is called
dictionary.

For a string w of length u, finding a smallest CFG is
NP-hard; it is also known that this problem is hard to ap-
proximate within a constant factor [3]. A good news is that
several compression algorithms have been proposed to guar-
antee O(log u)-approximation ratio to the optimum com-
pression [4]–[6], and this bound is indeed considered to be
tight because of the relationship with the difficult optimiza-
tion problem mentioned in [3].

Data compression is closely related to string compari-
son and clustering. Li et al. [7] and Cilibrasi and Vitanyi [8]
introduced clustering by compression based on normalized
compression distance (NCD). Using the grammar-based
compression, NCD briefly expresses that two strings w1, w2

are considered to be similar if the difference of D1 for w1

and D2 for w2 is sufficiently small with respect to a reason-
able compression algorithm. Although this measure is com-
putable by several practical compressors, there seems to be
a trade-off between the accuracy of clustering and the con-
sumption of memory due to the claim that two occurrences
of the same substring α in xαyαz should be replaced by the
same variable A, which is associated with the production
rule A → α. This claim is intended to prevent the number
of production rules, i.e., the size of CFG, from increasing,
and such variables A are expected to encode a frequent pat-
tern. Indexing like suffix tree and similar techniques [9],
[10] makes it possible to replace most occurrences of the
same substring by the same variable. Such methods, how-
ever, require Ω(u) work space, so it is impractical with giga-
bytes of strings because of a large constant factor hidden in
Ω(u).

To develop a practical pattern detection algorithm
based on grammar-based compression, we focus on the
technique of edit-sensitive parsing (ESP) [11] proposed to
approximate a variant of edit distance where a moving
operation for any substring with unit cost is permitted.
For instance, xyz is transformed to yxz by a single op-
eration for any strings x, y, z. The edit distance with
move problem is NP-hard, and the distance was proved
to be O(log u)-approximable [12]. Moreover, the harder
problem, edit distance matching with move, also proved
to be almost O(log u)-approximable by the embedding of
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the string into L1 vector space using ESP [11]. The most
important characteristic of ESP in measuring the similar-
ity of strings is roughly explained as follows: an ESP of
a string w is a derivation tree for w, which is represented
by a dictionary D. Let us consider any two strings w1, w2

to be compared. An algorithm computes D1, D2 for w1,
w2 respectively. We assume that all variables are appropri-
ate, i.e., A→ α, B→ α ∈ D1 ∪ D2 implies A = B. The dis-
tance of w1, w2 is then approximable by the number of vari-
ables appearing in exactly one of D1 and D2 computed by
ESP. Conversely, any variable in D1 ∩ D2 encodes a com-
mon substring in w1 and w2. Because ESP minimizes the
difference of D1 and D2 approximately, a practical algo-
rithm for grammar-based compression is expected to find
sufficiently long common substrings as frequent variables in
D1 ∩D2. ESP was diverted to a space-efficient compression
algorithm [13] within a good approximation ratio, which is,
however, not implemented. We thus modify this compres-
sion algorithm to fit our problem of detecting long common
substrings, and we show a lower bound to guarantee the
length of the extracted pattern.

ESP has a potentially compact representation because
it is essentially equal to a binary tree. Moreover, if w is
compressible, the number of different variables in D is sig-
nificantly smaller than the length of w. Thus, compared to
other data structures (e.g., suffix tree), grammar-based com-
pression is suitable for our approximation problem. The
modified algorithm requires two passes: the first compresses
input w and generates D for w; the second locates the posi-
tions of any substring encoded by a frequent variable in D.

We summarize our contribution in this paper. As men-
tioned above, our algorithm outputs an approximation for
the occurrences of all maximal frequent substrings. We
prove an exact lower bound of the length of such frequent
substrings extracted by the algorithm with respect to a rea-
sonable condition. Moreover, as an extension, we prove an-
other lower bound for the general case. The efficiency is also
shown by experiments. The proposed algorithm outputs all
frequent variables generated in ESP with the occurrence po-
sitions and the encoded string lengths. We implement this
algorithm and examine its performance for detecting fre-
quent substrings in biological strings and large documents
in real world data. Our algorithm is also compared to two
detection algorithms: one is SACHICA proposed in [14]
and the other is Suffix Array with LCP proposed in [15].
SACHICA is an approximation algorithm, and Suffix Array
is an exact algorithm for this problem. We confirm that our
algorithm is significantly faster with long strings as well as
compressible strings. This scalability is an advantage of our
method over other algorithms [14], [15].

2. Preliminaries

The set of all strings over an alphabet Σ is denoted by Σ∗.
The length of a string w ∈ Σ∗ is denoted by |w|. A string ak

with k ≥ 2 and a symbol a is called a repetition of a, and
a+ is its abbreviation when the length is omissible. More

generally, αk is also called repetition of a string α (|α| ≥ 1).
For a string S , S [i] and S [i, j] denote the i-th symbol of S
and the substring from S [i] to S [ j], respectively. The
expression log∗n, the inverse Ackermann function α3(n),
indicates the maximum number of logarithms satisfying
log log · · · log n ≥ 1. For instance, log∗n ≤ 5 for any
n ≤ 265536. We treat log∗n as a constant for any n.

We assume that any context-free grammar G is admis-
sible, i.e., G derives just one string. For a production rule
X → γ, symbol X is called variable. The set of variables and
production rules are denoted by V and D. We also assume
that any variable is appropriate, i.e., for any α ∈ (Σ ∪ V)∗,
at most one X → α ∈ D exists. The string derived by D
from a string S ∈ (Σ∪V)∗ is denoted by S (D). For example,
when S = aYY and D = {X → bc,Y → Xa}, we obtain
S (D) = abcabca. If G derives a string w, the derivation is
represented by a rooted ordered tree. The size of G is the
total length of strings on the right hand sides of all produc-
tion rules, and is denoted by |G|.

For a derivation tree T and a node x in T , let L(x) de-
note the label of x. If v1, . . . , vk are the children of x, the
concatenation L(v1) · · · L(vk) called the block of x. If x, y are
nodes in T and the subtrees on x, y are adjacent in this order,
the x, y are called to be adjacent. Similarly, x1, . . . , xk are
called to be adjacent if each xi, xi+1 are adjacent. Then, the
concatenation of blocks of xis is called a metablock. We
next outline edit-sensitive parsing (ESP) [11]. By this, all
metablocks are categorized into three types as follows.

Throughout this paper, n denotes |Σ ∪ V | for a current
set V of variables, where initially V = ∅ and clearly n ≤ |S |
for any input string S ∈ Σ∗. The string S is uniquely par-
titioned to w1a+1 w2a+2 · · ·wka+k wk+1 by maximal repetitions,
where each ai is a symbol and wi is a string containing no
repetitions. Each a+i is called Type1 metablock, wi is called
Type2 metablock if |wi| ≥ log∗n, and any other short wi is
called Type3 metablock, where if |wi| = 1, this is attached
to a+i−1 or a+i , with preference a+i−1 when both are possible.
Thus, any metablock is longer than or equal to two symbols.

Let S be a metablock and D be a current dictionary
starting with D = ∅. We set ESP(S ,D) = (S ′,D ∪ D′) for
S ′(D′) = S and S ′ described as follows:

1. When S is Type1 or Type3 of length k ≥ 2,

(a) If k is even, let S ′ = t1t2 · · · tk/2, and make ti →
S [2i − 1, 2i] ∈ D′.

(b) If k is odd, let S ′ = t1t2 · · · t(k−3)/2 t, and make
ti → S [2i − 1, 2i] ∈ D′ and t → S [k − 2, k] ∈ D′
where t0 denotes the empty string for k = 3.

2. When S is Type2,

(c) for the partitioned S = s1s2 · · · sk (2 ≤ |si| ≤ 3) by
alphabet reduction, let S ′ = t1t2 · · · tk, and make
ti → si ∈ D′.

3. For any case in the above, all blocks are replaced by ap-
propriate variables, i.e., all occurrences of a same sub-
string are replaced by a same variable.
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Fig. 1 Parsing for Type1 metablock: Line (1) is an original Type1
metablock S = a9 with its blocks. Line (2) is the resulting string XXXY,
and the production rules X→ aa and Y→ aaa. Any Type3 string is parsed
analogously.

Fig. 2 Parsing for Type2 metablock: Line (1) is an original Type2
metablock ‘adeghecadeg’ with its blocks by alphabet reduction, where the
definition is omitted in this paper. Line (2) is the resulting string XYZWY,
and the production rules X→ ad, Y→ eg, etc.

Cases (a) and (b) denote a typical left aligned parsing.
For example, in case S = a6, S ′ = x3 and x → a2 ∈ D′, and
in case S = a9, S ′ = x3y and x → a2, y → aaa ∈ D′. In
Case (c), we omit the description of alphabet reduction [11]
because the details are unnecessary in this paper.

Case (b) is illustrated in Fig. 1 for a Type1 string, and
the parsing manner in Case (a) is obtained by ignoring the
last three symbols in Case (b). Parsing for Type3 is analo-
gous. Case (c) for Type2 is illustrated in Fig. 2.

Finally, we define ESP for the general case of S ∈
(Σ ∪ V)∗ that is partitioned to S 1S 2 · · · S k by k metablocks;
ESP(S ,D) = (S ′,D ∪ D′) = (S ′1 · · · S ′k,D ∪ D′), where D′
and each S ′i satisfying S ′i (D

′) = S i are defined in the above.
Iteration of ESP is defined by ESPi(S ,D) =

ESPi−1(ESP(S ,D)). In particular, ESP∗(S ,D) denotes the it-
erations of ESP until |S | = 1. The final dictionary represents
a rooted ordered binary tree deriving S , which is denoted by
ET (S ). We refer to several characteristics of ESP, which are
the bases of our study.

Lemma 1: (Cormode and Muthukrishnan [11]) ET (S ) can
be computed in time O(u log∗u) time for u = |S |, and the
height of ET (S ) is O(log u).

Lemma 2: (Cormode and Muthukrishnan [11]) Let S be
Type2 partitioned into S = s1s2 · · · sk by alphabet reduc-
tion. If Sα is Type2 and its partition is of Sα = t1t2 · · · tn,
we have ti = si for all 1 ≤ i ≤ k − 5. If αS is Type2 and
its partition is of αS = t′1t′2 · · · t′m, we have t′m− j = sk− j for all
0 ≤ j ≤ k − log∗|S | − 5.

3. Approximation of Pattern Detection

We first define the approximation problem of pattern detec-
tion by grammar-based compression.

Definition 1: Let D be a set of production rules whose
derivation tree is T deriving S ∈ Σ∗. A substring P of S
is said to be approximated by a node label A in T within
δ = |A(D)|

|α| iff for each occurrence S [i, j] = P, there exists
a node v of T with L(v) = A deriving S [i + k, j − �] = P′

such that P = xP′y for some k = |x| and � = |y|.
We show that any substring P of S is approximated

by a variable in D generated by ESP within a sufficiently
large δ depending on |P| and offset positions k, � are fixed for
each P. For T = ET (S ), an internal node label is a variable
and a leaf label is an alphabet symbol. For a node v in T ,
let yield(v) denote the substring of S derived from L(v). We
call that a node v in T derives S [n,m] if yield(v) = S [n,m].
Using this notation, we define a measure for a maximal
common subtree in T = ET (S ). A node label A in T is
called a core of P if the condition is satisfied for some fixed
k, � ≥ 0: when S [n,m] = P, there exists a node v in T
such that L(v) = A and v derives S [n + k,m − �]. Intuitively,
a core is a necessary condition for an occurrence of P. Note
that at least one core exists for any P because we can take
any P[i] as a core. The length of core A means the length
of string derived from A. We show that for any substring P
in S , ET (S ) has a maximal core that approximates any oc-
currence of P within a sufficiently large δ. The following
lemma guarantees a lower bound of δ with a restriction.

Lemma 3: Assuming S contains no repetition longer than
log∗n, there exists a constant δ ≥ 1

24(log∗n+10) such that for
any occurrence of substring P in S , the length of maximal
core of P is longer than δ|P|.
proof. Taking any substring P of S , P is uniquely divided
into P = αβγ for the first metablock α, the last metablock γ,
and the concatenation β of all other metablocks. When α is
Type1, by the assumption, |α| ≤ log∗n. When α is Type3,
|α| is also at most log∗n. When γ is also Type1 or 3, any
occurrence of β inside P = αβγ is transformed to the same
string β′.

When α/γ is Type2, let α = α1 · · ·α� partitioned by
alphabet reduction for some αi (2 ≤ |αi| ≤ 3), and let
γ = γ1 · · · γr similarly. By Lemma 2 and the definition of
ESP, for any xzy such that |x| ≥ log∗n + 5 and |y| ≥ 5, any
occurrence of z inside xzy is transformed to the same string
z′ by a single iteration of ESP. By this characteristic, for
i = min(log∗n + 5, �) and j = min(5, r), any occurrence
of αi · · ·α�βγ1 · · · γ j inside αβγ is transformed to the same
string β′.

In all cases, we can conclude that for any occurrence
of P, a substring β of P satisfying P = αβγ and |α|, |γ| ≤
log∗n + 5 is transformed to the same string. Moreover, this
analysis holds on the resulting string β recursively, since the
input string contains no repetition sk of a string s ∈ Σ∗ for
some k > log∗n and |s| ≥ 1.

When ESPk(S ,D) is completed for some k, the re-
sulting same string becomes a variable X. We estimate
the length of encoded string by X. At each (S ′,D′) =
ESPi(S ,D), we note that any variable in S ′ encodes a string
of length at least 2i because T = ET (S ) is a balanced 2-3
tree. Thus, as the above k, we can choose any integer k
satisfying

(2 log∗n + 10)(1 + 3 + · · · + 3k−1) < (log∗n + 10) 3k+1

≤ |P|,
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that is,

k =

⌊
log3

|P|
6(log∗n + 10)

⌋
≥ log

|P|
24(log∗n + 10)

.

Any variable generated in k-th iteration of ESP derives
a string of length at least 2k. We can, therefore, take

a δ ≥ 1
24(log∗n + 10)

such that a variable X generated in

ESPk(S ,D) satisfies |D(X)| ≥ δ|P|. Q.E.D.

Generally, we can obtain the following bound for core
length.

Lemma 4: For any occurrence of substring P in S , the
length of maximal core of P is longer than |P|

2 log2 |P| .

proof. Let |P| =m and P= αβγ for the first metablock α and
the last metablock γ. For an input string S , let ESP(S ,D) =
(S 1,D ∪ D1). By the definition of edit-sensitive parsing,
P occurs in S iff S 1[�1, r1](D1) = β, S 1[�1 − k1, �1 − 1](D1)
contains α as its suffix, and S 1[r1 + 1, r1 + k′1](D1) con-
tains γ as its prefix for some �1, r1, k1, k′1. Let p1 = α, s1 = γ,
and S 1[�1, r1] = β′. By iterating the above parsing until
|β′| = 1, we obtain a sequence p1, p2, . . . , ph, sh, . . . , s2, s1

of strings consisting of cores of P and h ≤ log m.
If pi (or si) is a repetition Xk for some X ∈ Σ ∪ V and

k ≥ 2. By a single iteration of the left aligned parsing, pi is
transformed into X�k/21 X if k is odd. Thus, in worst case,
pi is transformed into p̄i = X�X�−1 · · · X1X such that |p̄i| =
�+1≤ log |pi| ≤ log m. If pi is not repetition, |pi| ≤ log∗n+5≤
log m, since log∗n is regarded as a constant. We suppose
any pi is a repetition and pi is transformed into p̄i such that
|p̄i| ≤ log m in worst case.

Thus, the sequence p̄1, p̄2, . . . , p̄h, s̄h, . . . , s̄2, s̄1 satis-
fies that any symbol in p̄i and s̄i is a core of P and |p̄i|, |s̄i| ≤
log m. Since the total length of strings encoded by all p̄i

and s̄i is m, by the pigeonhole principle, at least one sym-
bol in the sequence encodes a substring S ′ of P such that

|S ′| ≥ m

2 log2 m
. Q.E.D.

For our pattern detection problem, we assume that any
pattern has a sufficiently large core in T = ET (S ). We
show in the next section, however, that such restriction is
reasonable by experiments with large strings. We propose
two algorithms summarized as follows: the first algorithm
make dic(S ,D) in Fig. 3 computes ESP∗(S ,D) as well as the
hash function H to store the length of encoded string by any
variable in D. Decoding D with H, the second algorithm
locate pat in Fig. 4 records the position of any node v such
that the variable L(v) is frequent, i.e., L(v) appears in T at
least twice where the position of v is the integer n such that
yield(v) = S [n,m].

Lemma 5: The time and space complexity of the algo-
rithm make dic(S ,D) is O(u) and O(n) for u = |S | and
n = |D|, respectively.

proof. The time bound is directly derived from Lemma 1.

Fig. 3 Dictionary construction algorithm.

Fig. 4 Substring location algorithm.

In ESP, random access is not required for the input string.
Thus, the space complexity depends on D, H, and the re-
verse function of D to access the variable Z from a given
digram XY associated with Z → XY . The sizes of D and H
are both O(n). Using the Karp-Miller-Rosenberge labeling
algorithm [16], we can refer to the variable Z from a string γ
with Z → γ ∈ D in O(1) time with linear space†. Q.E.D.

Any ET (S ) is a 2-3 tree where any internal node and its
children correspond to either Z → XiXj or Z → XiXjXk. We
can simulate ET (S ) by a labeled binary tree introducing an
intermediate variable Y to represent Z → XiY and Y → XjXk

instead of Z → XiXjXk. Thus, we adopt this binary tree rep-
resentation as ET (S ). Additionally, we define some notation
for the binary tree. The parent, left child, and right child
of v are denoted by parent(v), left(v), and right(v), respec-
tively. An edge connecting (v, left(v)) is called a left edge,
and a right edge is analogous. Node v is called a left ances-
tor of x if v is an ancestor of x satisfying that the path from v
to x contains at least one right edge. These notions are illus-
trated in Fig. 5. Next we analyze algorithm locate pat(S ,D)
in Fig. 4.

Lemma 6: The time and space complexity of the algo-
rithm locate pat(S ,D) is O(u) and O(n) for u = |S | and
n = |D|, respectively.

†Practically, we use a hash function to access the reverse dic-
tionary.
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Fig. 5 Relation of nodes and their positions in binary tree.

proof. The times to compute ESP(S ,D) and find all fre-
quent variables are both O(u). Because the lowest left ances-
tor v′ of any v is unique, we can compute the position of v
from v′ and left(v′) in O(1). Thus, the time complexity of
locate pat(S ,D) is O(u). On the other hand, this algorithm
requires random access to only D, H and the bit sequence to
indicate at most n frequent variables. Therefore, the space
complexity is O(n). Q.E.D.

Theorem 1: The algorithm locate pat(S ,D) finds all oc-
currences of core whose length is at least δ|P| in O(u) time
and O(n) space where u = |S |, n = |D|, δ ≥ 1

24(log∗n+10) if

S contains no repetition longer than log∗n and δ ≥ 1
2 log2 |P|

otherwise.

Since T = ET (S ) is balanced by Lemma 1, given two
nodes v, v′ in T with the same label, we can compute
a maximal common substring S [k, �] = S [k′, �′] = P in
O(log u + m) time such that S [k, �] contains yield(v) and
S [k′, �′] contains yield(v′) where u = |S | and m = |P|. The
next section examines the performance of our algorithm and
estimates the length δ|P| for real world data.

4. Computational Experiments

We implemented our algorithm and compared its perfor-
mance with the practical algorithm SACHICA3.4† proposed
in [14] based on radix sort as well as SA (suffix array) with
LCP†† (Longest Common Prefix) [15] to extract all pattern
occurrences.

The environment of experiment is OS: CentOS 5.5
(64-bit), CPU: Intel Xeon E5504 2.0 GHz (Quad)×2, Mem-
ory: 144 GB RAM, and Compiler: gcc 4.1.2.

As benchmark data, we obtained highly repetitive
strings from repetitive corpus (Real)†††, which consists of
DNA sequences (i.e., E Coli, Para, Cere, influenza), source
codes (i.e., coreutils, kernel), and natural language texts
(i.e., einstein.de, einstein.en, world leaders). From these,
as natural language texts, we selected einstein.en (200 MB)
with 139 different characters consisting of Wikipedia ar-
ticles about Albert Einstein, and world leaders (40 MB)
with 89 different characters consisting of CIA World
Leaders from January 2003 to December 2009. We
also selected E Coli (100 MB) as DNA sequence with
15 different characters. Additionally, we obtain the rice

Fig. 6 Ratio between the length of extracted patterns and original pat-
terns in text.

Fig. 7 Comparison of detected patterns in einstein.en (L = 100).

chromosome 1†††† (40 MB) as a DNA sequence, which is
expected to have long frequent substrings. For DNA se-
quences, all occurrences of unknown character ‘N’, which
is a wildcard for any of ‘A, C, G, T’, were deleted as
preprocessing.

We start with the evaluation of extracted pattern in as-
pect of the length. In Fig. 6, the X-axis is the length of
pattern occurring in text, and the Y-axis is the ratio of the
length of extracted pattern corresponding to the pattern oc-
currence. A pattern is randomly selected as S [i, j] for the
input string S . The result shows 1000 times iteration for
each specified length. For any types of benchmark text, our
algorithm extracts sufficiently long substring of any pattern
(approximately, the ratio is from 8% to 15%). This strength-
ens our theoretical results.

Next, we report the performance of our algorithm com-
pared with SACHICA and SA. The parameter L denotes
the minimum length of detected patterns. Fig. 7 shows the
scatter diagram for einstein.en (200 MB). The X-axis is

†http://research.nii.ac.jp/ uno/code/sachica.html
††http://homepage3.nifty.com/wpage/
†††http://pizzachili.dcc.uchile.cl/repcorpus.html
††††http://rgp.dna.affrc.go.jp/E/IRGSP/Build5/build5.html
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Fig. 8 Comparison of time/space consumption in einstein.en.

Fig. 9 Comparison of detected patterns in world leaders (L = 100).

the length of detected patterns by three algorithms, and the
Y-axis is the number of detected patterns, where both axes
use log-scales. We note that only SA is the exact algorithm,
and other two are approximation algorithms. We should
also note that SACHICA can find similar patterns with any
Hamming distance, which is not yet computable by our al-
gorithm, which is one of our important future works.

Figure 8 shows the time and space consumption. The
length given to SACHICA is set to L = 10, 50, 100, 300 and
the Hamming distance is set to zero. In Fig. 8, only the case
L = 10, 300 are shown for readability and the mark L = ∗
in SA denotes that the space consumption of SA does not
depend on L, since the indexes of all suffixes are stored in
memory.

There is a trade-off between the quality of solution and
the consumption of resource. By this result, it is hard to ex-

Fig. 10 Comparison of time/space consumption in world leaders. The
results for L = 10, 50 are not shown because SACHICA did not terminate
within the time scale.

Fig. 11 Comparison of detected patterns in E Coli (L = 100).

ecute SA for huge texts, and so is in SACHICA depending
on the parameter to indicate the minimum length of detected
patterns. However, our algorithm performs well on all pa-
rameters. In particular, we can confirm that the performance
of our algorithm is weaker than SACHICA in short patterns,
and is stronger in very long patterns.

In order to exemplify the characteristics, we display
the results for other types of text in Fig. 9 and Fig. 10 for
world leaders, in Fig. 11 and Fig. 12 for E Coli, and in
Fig. 13 and Fig. 14 for rice chromosome 1. These demon-
strate the scatter diagram and the time and space consump-
tion, respectively, and we conclude that our algorithm works
well on input texts of varied alphabet sizes.
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Fig. 12 Comparison of time/space consumption in E Coli.

Fig. 13 Comparison of detected patterns in rice chromosome 1 (L = 10).

Fig. 14 Comparison of time/space consumption in rice chromosome 1.

5. Conclusion and Future Work

We proposed a linear time algorithm for frequent pattern
discovery in the preliminary paper [1], based on grammar-
based compression and edit-sensitive parsing. In this pa-
per we extended our result in both theoretical and practi-
cal aspects. Originally, ESP was intended to solve an in-
tractable variant of the edit distance problem between two
strings. A weak point of our method is that many pat-
terns are likely ignored because our algorithm counts only
the occurrences of patterns that are specifically named by
variables in the derivation tree. In compensation for the
shortage of detected patterns, our algorithm abstracts input
strings in linear time by the length of the lower bound for
detected patterns. Experiments show that this characteris-
tic is especially-pronounced in large and compressible texts,
which are expected to contain long frequent patterns. Thus,
with more work, our method will make it possible to detect
plagiarism from large document collections and interesting
patterns from biological sequences using a novel technique
in [17]. An important future work is to improve our method
to handle the stream data, which is partially developed by an
online compression algorithm for grammar-based compres-
sion in [18] we recently proposed.
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