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On the Length-Decreasing Self-Reducibility and the Many-One-Like
Reducibilities for Partial Multivalued Functions

Ji-Won HUH†∗, Nonmember, Shuji ISOBE†a), Member,
Eisuke KOIZUMI†b), Nonmember, and Hiroki SHIZUYA†c), Member

SUMMARY In this paper, we investigate a relationship between the
length-decreasing self-reducibility and the many-one-like reducibilities for
partial multivalued functions. We show that if any parsimonious (many-
one or metric many-one) complete function for NPMV (or NPMVg) is
length-decreasing self-reducible, then any function in NPMV (or NPMVg)
has a polynomial-time computable refinement. This result implies that
there exists an NPMV (or NPMVg)-complete function which is not length-
decreasing self-reducible unless P = NP.
key words: partial multivalued function, length-decreasing self-reduction,
many-one-like reduction

1. Introduction

Many computational problems are formulated as functional
problems. Such a problem typically asks, for a given in-
stance x, to find a witness of the membership in some spec-
ified language. Functions induced by these problems above
form a class of partial multivalued functions which are
computed by nondeterministic Turing transducers. These
functions and associated complexity classes have widely
been studied in the computational complexity theory. In
this paper, we are interested in the notion of the self-
reducibility [10] of a function, and investigate the property
for some classes of partial multivalued functions.

Intuitively, a language A is said to be self-reducible if,
for any string x, the membership of x in A reduces to the
membership, in A, of several strings smaller than x with re-
spect to some specified partial order. The self-reducibility
of (multivalued) functions is similarly defined. The notion
of self-reducibilities has played an important role in separa-
tions and characterizations of classes of languages [3], [5],
[8], [9] and counting functions [4], [11]. Therefore, one can
naturally expect that self-reducibilities contribute to the de-
velopment of the computational complexity theory of partial
multivalued functions. In this paper, we concentrate on the
length-decreasing self-reducibility [1], [4], one of the self-
reducibilities.

In the length-decreasing self-reduction, one can query
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the oracle only about strings which are shorter than the input
string. Faliszewski and Ogihara [4] pointed out that many
concrete complete languages are length-decreasing self-
reducible. For example, the NP-complete language SAT is
length-decreasing self-reducible: For a non-trivial Boolean
formula φ = φ(x1, . . . , xn), φ is satisfiable if and only if
at least one of the two shorter formulas φ(0, x2, . . . , xn) or
φ(1, x2, . . . , xn) is satisfiable. Similarly, the #P-complete
function #SAT and the PSPACE-complete language QBF
are also length-decreasing self-reducible [4].

Faliszewski and Ogihara [4] considered whether any
complete language for NP (or PSPACE) is length-
decreasing self-reducible, and showed that this is unlikely.
More precisely, they proved that P = NP (or P = PSPACE)
if this statement holds ([4, Corollary 3.4]). It was also
proved that a similar result follows for classes #P, SpanP
and GapP of counting functions ([4, Corollary 3.8]).

In this paper, we show that their results mentioned
above still hold even when each class is replaced with
the class NPMV or NPMVg of partial multivalued func-
tions computed by polynomial-time nondeterministic Tur-
ing transducers (Theorem 1 and Corollary 4). Our result
means that there exists an NPMV (or NPMVg)-complete
function which is not length-decreasing self-reducible un-
less P = NP (Corollary 5).

We note that a witness function of many concrete NP-
complete languages is NPMVg-complete: Let sat be a wit-
ness function of SAT, that is, for each φ ∈ SAT, sat out-
puts a satisfying assignment x of φ which witnesses that
φ ∈ SAT. Then sat is NPMVg-complete (see Sect. 3 and
[12]). We consider the following two hypotheses: (i) A
witness function of any NP-complete language would be
NPMVg-complete. (ii) If a witness function of a language L
is length-decreasing self-reducible, then L would be length-
decreasing self-reducible. Our results immediately follow
from Corollary 3.4 of [4] if both (i) and (ii) hold. However,
it is not known whether these hypotheses hold. Hence, our
results seem not to be trivial even though our results and
proofs look similar to those of [4] (see also Sect. 3).

This paper is organized as follows: In Sect. 2, we give
some definitions and notations. In Sects. 3–5, we state our
results, and give their proofs. Concluding remarks are given
in Sect. 6.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



466
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

2. Preliminaries

Let Σ = {0, 1}, and let Σ∗ be the set of all strings over Σ of
finite length. For x ∈ Σ∗, |x| denotes the length of x.

A (partial multivalued) function f : X → Y from a
subset X of Σ∗ to a subset Y of Σ∗ maps each string x ∈ X
into one or more strings in Y . We write f (x) �→ y when a
string x corresponds to a string y via f . The set X is called
the domain of f , and is denoted by dom f . In particular, f
is called a total function if dom f = Σ∗. The graph of f is
defined by

graph f = {(x, y) ∈Σ∗ × Σ∗
| x ∈ dom f and f (x) �→ y}.

For each string x ∈ dom f , we set

set- f (x) = {y ∈ Σ∗ | f (x) �→ y}.
A function f is said to be single-valued if set- f (x) is a sin-
gleton set for each x ∈ dom f . When f is single-valued, we
write f (x) = y or y = f (x) instead of f (x) �→ y. A function g
is called a refinement of a function f when dom g = dom f
and graph g ⊆ graph f hold. Let FC and FC′ be two classes
of functions. For a function f , we write f ∈c FC if there
exists a function g ∈ FC such that g is a refinement of f . If
f ∈c FC′ holds for any f ∈ FC, then we write FC ⊆c FC′.

We note that a function can also be defined by a (bi-
nary) relation on Σ∗. We use this notion in this paper. Let
R ⊆ Σ∗ × Σ∗ be a relation on Σ∗. Then we can define a
function f as follows: Set

dom f = {x ∈ Σ∗ | ∃y ∈ Σ∗ [(x, y) ∈ R]} ,
and for x ∈ dom f , define f (x) �→ y so that (x, y) ∈ R. The
function f is called the function associated with the relation
R. By the definition, we see graph f = R and

set- f (x) = {y ∈ Σ∗ | (x, y) ∈ R}
for any x ∈ dom f .

In this paper, we use nondeterministic Turing transduc-
ers which equip an input tape and an output tape in order to
compute functions. We assume that each Turing transducer
has a special tape symbol ⊥ which is not contained in Σ. For
a Turing transducer M, we write M(x) �→ y if there exists
a computation in M such that M outputs the string y on the
input string x. We now define a computation of functions by
Turing transducers.

Definition 2.1: A Turing transducer M computes a func-
tion f if for any pair (x, y) ∈ Σ∗ × Σ∗, M(x) �→ y if and only
if f (x) �→ y.

Let M be a Turing transducer which computes a func-
tion f . It follows from this definition that there exists a
computation in M such that M outputs a string y ∈ Σ∗ with
(x, y) ∈ graph f for any x ∈ dom f . This means that M non-
deterministically recognizes the language dom f . Note that

M may output ⊥ even if x ∈ dom f , although the special
tape symbol ⊥ is not contained in Σ. On the other hand, M
always outputs ⊥ whenever x � dom f .

We briefly refer to some complexity classes of func-
tions [7]. NPMV is the set of all functions which can be com-
puted by a nondeterministic polynomial-time Turing trans-
ducer. NPMVg is the set of functions f ∈ NPMV such that
graph f ∈ P. PF is the set of all functions which can be
computed by a polynomial-time deterministic Turing trans-
ducer.

We state Turing transducers with oracles, called oracle
Turing transducers. We assume that any oracle is a single-
valued function. An oracle Turing transducer contains an
oracle query tape, an oracle answer tape and an oracle call
state. Let g be a single-valued function, and let M be an
oracle Turing transducer with the oracle g. When a string w
is written on the oracle query tape and M enters the oracle
call state, M works as follows:

• If w ∈ dom g, then the string g(w) is written on the
oracle answer tape, and
• if w � dom g, then ⊥ is written on the oracle answer

tape.

We shall assume, without loss of generality, that M never
makes the same query as before, that is, all the queries are
distinct.

We are now ready to define the reducibilities between
functions.

Definition 2.2 ([7]): A function f is polynomial-time Tur-
ing (≤p

T-) reducible to a function g, denoted by f ≤p
T g, if

there exists a polynomial-time deterministic oracle Turing
transducer M such that for any single-valued refinement g′
of g, M[g′], the transducer M with the oracle g′, computes a
single-valued refinement of f .

We next define many-one-like reducibilities. Intu-
itively, one can make only one query to the oracle in many-
one-like reductions. The definitions for total single-valued
functions, including counting functions, are stated in [4].
In this paper, we formulate the partial multivalued function
version of many-one-like reducibilities.

Definition 2.3 (cf. [6, Definition 2]): A function f is met-
ric many-one (≤p

met-) reducible to a function g, denoted by
f ≤p

met g, if there exist two functions ψ, ϕ ∈ PF such that the
following conditions hold for any x ∈ Σ∗:

(i) if x ∈ dom f , then ψ(x) ∈ dom g and ϕ(x, y) ∈ set- f (x)
follows for any y ∈ set-g(ψ(x)), and

(ii) if x � dom f , then (x, y) � domϕ holds for any y ∈
set-g(ψ(x)).

f is strongly metric many-one (≤p
smet-) reducible to g, de-

noted by f ≤p
smet g, if f ≤p

met g and the condition (iii) below
holds:

(iii) for any (x, z) ∈ graph f , there exists y ∈ set-g(ψ(x))
such that z = ϕ(x, y).
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We note the following two facts before defining other
many-one-like reducibilities:

• When f ≤p
smet g, any string z ∈ set- f (x) can be ob-

tained through some string y with g(ψ(x)) �→ y. On
the other hand, when f ≤p

met g, there may exist a string
z ∈ set- f (x) which cannot be obtained through the ora-
cle g.
• The condition (ii) is redundant when f is a total func-

tion, and the condition (iii) immediately follows from
the condition (i) when f is single-valued. Namely,
when f is single-valued, f ≤p

met g implies f ≤p
smet g.

Definition 2.4: A function f is many-one (≤p
m-) reducible

to a function g, denoted by f ≤p
m g, if there exist two func-

tions ψ, ϕ ∈ PF such that the following conditions hold for
any x ∈ Σ∗:

(i) if x ∈ dom f , then ψ(x) ∈ dom g and ϕ(y) ∈ set- f (x)
follows for any y ∈ set-g(ψ(x)), and

(ii) if x � dom f , then y � domϕ holds for any y ∈
set-g(ψ(x)).

f is strongly many-one (≤p
sm-) reducible to g, denoted by

f ≤p
sm g, if f ≤p

m g and the condition (iii) below holds:

(iii) for any (x, z) ∈ graph f , there exists y ∈ set-g(ψ(x))
such that z = ϕ(y).

Definition 2.5 (cf. [2, Definition 1]): A function f is par-
simoniously (≤p

par-) reducible to a function g, denoted by
f ≤p

par g, if there exists a function ψ ∈ PF such that the
following conditions hold for any x ∈ Σ∗:

(i) if x ∈ dom f , then ψ(x) ∈ dom g and set-g(ψ(x)) ⊆
set- f (x) follow, and

(ii) if x � dom f , then ψ(x) � dom g holds.

f is strongly parsimoniously (≤p
spar-) reducible to g, denoted

by f ≤p
spar g, if f ≤p

par g and the condition (iii) below holds:

(iii) set-g(ψ(x)) = set- f (x).

We call the reducibilities defined in Definitions 2.3
through 2.5 the many-one-like reducibilities. Note that, in
[2], the term “many-one reducibility” is used to denote the
strongly parsimonious reducibility defined above.

By definitions of the Turing reducibility and the many-
one-like reducibilities, we have the following proposition:

Proposition 2.6: Let f and g be functions.

• f ≤p
par g =⇒ f ≤p

m g =⇒ f ≤p
met g =⇒ f ≤p

T g.
• f ≤p

spar g =⇒ f ≤p
sm g =⇒ f ≤p

smet g.

A function f is ≤p
spar-hard for a class FC of functions

if g ≤p
spar f holds for any function g ∈ FC. A function f

is ≤p
spar-complete for FC if f ∈ FC and f is ≤p

spar-hard for
FC. These notions are also defined for other reducibilities.

At the end of this section, we define the length-
decreasing self-reducibility of functions. The language ver-
sion of the length-decreasing self-reducibility is similarly
defined.

Definition 2.7: A function f is (polynomial-time) length-
decreasing self-reducible if there exists a polynomial-time
deterministic oracle Turing transducer M such that, for any
single-valued refinement f ′ of f , M[ f ′] computes a single-
valued refinement of f , where, on any input x ∈ Σ∗, M
queries the oracle f ′ only about strings y ∈ Σ∗ with |y| < |x|.

3. Main Result

Let FC denote one of NPMV and NPMVg in the rest of this
paper. We now state our main theorem, which is an exten-
sion, to FC, of Corollaries 3.4 and 3.8 of [4].

Theorem 1: Assume that FC has some ≤p
spar-complete

function. If all ≤p
spar-complete functions for FC are length-

decreasing self-reducible, then FC ⊆c PF holds.

One needs to assume the existence of ≤p
spar-complete

functions in this theorem since it is not known whether such
functions in fact exist.

The following lemma, which is an extension of Theo-
rem 3.7 of [4], plays an important role in order to prove the
theorem:

Lemma 2: For any f1 ∈ FC, there exists a function f2
which satisfies the following properties:

(i) f1 ≤p
spar f2, f2 ≤p

spar f1, and
(ii) if f2 is length-decreasing self-reducible, then f2 ∈c PF.

We also use the closure property of the class FC under
the ≤p

spar-reducibility, as stated in the following proposition:

Proposition 3: The class FC is closed under ≤p
spar-

reducibility, that is, if f ≤p
spar g and g ∈ FC, then f ∈ FC

follows.

We prove Lemma 2 and Proposition 3 in Sects. 4 and 5,
respectively.

Proof of Theorem 1. Let f1 be an arbitrary ≤p
spar-complete

function for FC. Then, there exists a function f2 which sat-
isfies the condition (i) of Lemma 2. Proposition 3 implies
that f2 ∈ FC, and we see that f2 is also ≤p

spar-complete for
FC. By the assumption and the condition (ii) of Lemma
2, we have f2 ∈c PF. Since f2 is ≤p

spar-complete for FC,
each function in FC also has a single-valued refinement
contained in PF. �

Theorem 1 still holds if we replace ≤p
spar with ≤p

sm or
≤p

smet.

Corollary 4: Let ≤ denote one of ≤p
sm and ≤p

smet. If all
≤-complete functions for FC are length-decreasing self-
reducible, then FC ⊆c PF holds.

We note that one does not have to assume the existence
of ≤-complete functions in this corollary: Let sat be a wit-
ness function of SAT, that is, for each φ ∈ SAT, sat outputs a
satisfying assignment x of φ which witnesses that φ ∈ SAT.
Then sat is ≤-complete for FC (see the proof of [12, Theo-
rem 13]).
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Proof of Corollary 4. Let f1 be a ≤-complete function for
FC. Since f1 ∈ FC, there exists a function f2 specified
by Lemma 2. We have f2 ≤p

spar f1 by the condition (i) of
the lemma. (Note that f2 ≤p

spar f1 follows although ≤ is not
≤p

spar.) Since f1 ∈ FC and f2 ≤p
spar f1, we have f2 ∈ FC

by Proposition 3. Further, it follows from f1 ≤p
spar f2 and

Proposition 2.6 that f1 ≤ f2 holds. Hence, we see that f2 is
≤-complete for FC. By the assumption and the condition
(ii) of Lemma 2, we have f2 ∈c PF. Since f2 is ≤-complete
for FC, each function in FC also has a single-valued refine-
ment contained in PF. �

Since it is shown, in [12], that P = NP holds if and
only if FC ⊆c PF, we have the following corollary:

Corollary 5: If all strongly parsimonious (many-one or
metric many-one) complete functions for FC are length-
decreasing self-reducible, then P = NP.

We summarize the relationships between our result and
the result of Faliszewski and Ogihara [4]. Let ≤ denote one
of ≤p

spar, ≤p
sm and ≤p

smet. We now consider the following four
statements:

(i) If a function f is length-decreasing self-reducible, then
dom f is length-decreasing self-reducible.

(ii) For a function f , if dom f is length-decreasing self-
reducible, then f is length-decreasing self-reducible.

(iii) A witness function of any NP-complete language is ≤-
complete for NPMVg.

(iv) Any ≤-complete function for NPMVg is formed as a
witness function of some NP-complete language.

As stated in Introduction, our results follow from Corollary
3.4 of [4] if the statements (i) and (iii) hold. Conversely,
the corollary follows from our results if the statements (ii)
and (iv) hold. However, it is not known whether these four
statements hold. Although our results and proofs are similar
to those of [4], our results do not imply those of [4], and
their results do not imply our results, either.

Remark : The statement (iii) says that for any NP-
complete language L and any language A ∈ NP, there ex-
ists a “witness-preserving” reduction ψ from A to L in a way
that, using the reduction ψ, one can easily extract a string y
witnessing the membership x ∈ A from a string w witness-
ing the membership ψ(x) ∈ L. Many concrete NP-complete
languages, including SAT, have such a “witness-preserving”
property. However, it is still open whether any NP-complete
language has the property.

In general, the complexity of computing a function can
be much harder than that of recognizing its domain. There-
fore, for any functions f and g, the reduction dom f ≤ dom g
of domains does not necessarily imply the reduction f ≤ g
of functions and vice versa when ≤ is one of ≤p

spar, ≤p
sm and

≤p
smet.

4. Proof of Lemma 2

We now return to Lemma 2. Our proof is not a simple ap-

plication of the proof of Theorem 3.7 of [4] since the func-
tion constructed in it is a total single-valued function. Our
construction of the function f2 is motivated by the proof of
Theorem 3.3 of [4].

We first define a function ρ : N ∪ {0} → N by

ρ(n) = min
{
22i | i ≥ 0, 22i

> n
}
.

We have ρ(0) = ρ(1) = 2 and ρ(|x|)1/2 ≤ |x| < ρ(|x|)
for |x| ≥ 2. This implies that ρ(|x|) ≤ |x|2 + 2 for any
x ∈ Σ∗. In addition, we can compute ρ(|x|) by at most
i = O(log log |x|) times successively calculating such as
2, 22, (22)2, . . . , (22i−1

)2. Hence, ρ(|x|) can be computed in
time polynomial in |x|.

Let f1 ∈ FC. We define a subset X2 of Σ∗ and a relation
R2 on Σ∗ as follows:

X2 = {x10m | x ∈ dom f1, 1 + |x| + m = ρ(|x|)}
and

R2 = {(y, z) | y = x10m ∈ X2, z ∈ set- f1(x)} .
Let f2 denote the function associated with the relation R2.
Note that dom f2 = X2. We prove that f2 satisfies the prop-
erties (i) and (ii) of Lemma 2.

We show that the property (i) holds. Define a function
ψ as follows: The domain domψ is Σ∗, and for each x ∈
domψ, ψ(x) is defined by ψ(x) �→ x10m, where m = ρ(|x|) −
1 − |x|. Since ρ(|x|) is computable in time polynomial in |x|,
ψ ∈ PF follows. By the definitions of X2 and ψ, we see that
x ∈ dom f1 if and only if ψ(x) ∈ dom f2. Let x ∈ dom f1.
Noting that ψ(x) ∈ X2, we have

z ∈ set- f1(x)⇐⇒ (ψ(x), z) ∈ R2 = graph f2
⇐⇒ z ∈ set- f2(ψ(x)).

This implies that f1 ≤p
spar f2.

On the other hand, set

X′2 = {y | y = x10m, m = ρ(|x|) − |x| − 1} , (1)

and define a function ψ′ as follows: The domain domψ′
is the set X′2, and for each y = x10m ∈ domψ′, ψ′(y) is
defined by ψ′(y) �→ x. We note that the following facts hold:
dom f2 = X2 ⊆ X′2, X′2 ∈ P and ψ′ ∈ PF. If y = x10m ∈
dom f2, then we have ψ′(y) = x ∈ dom f1. Assume that
y � dom f2. If y � X′2, then ψ′(y) � dom f1 immediately
follows since y � domψ′. When y = x10m ∈ X′2 \ dom f2,
we have ψ′(y) = x � dom f1 by the definition of dom f2. Let
y = x10m ∈ dom f2. Then we see

z ∈ set- f2(y)⇐⇒ (y, z) ∈ graph f2 = R2

⇐⇒ z ∈ set- f1(x) = set- f1(ψ′(y)),

proving f2 ≤p
spar f1.

We show that f2 satisfies the condition (ii). The proof
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is based on those of Theorem 3.3 of [4]. Assume that f2 is
length-decreasing self-reducible. There exists a polynomial-
time deterministic oracle Turing transducer M which satis-
fies the following properties:

(M-1) M[ f ′2] computes a single-valued refinement of f2 for
any single-valued refinement f ′2 of f2, and

(M-2) on any input x, M queries the oracle only about strings
which are shorter than x.

Since the set X′2 defined by (1) is in P, without loss of gen-
erality, we may assume that M works as follows:

(M-3) On an input x ∈ Σ∗, M first checks whether x is an
element of X′2. If so, then M works on the input x.
Otherwise, M outputs ⊥, and halts.

(M-4) When a string z is written on the oracle query tape, M
checks that z ∈ X′2. If so, then M enters the oracle call
state. Otherwise, considering that ⊥ is written on the
oracle answer tape, M continues to work.

We construct a deterministic Turing transducer M′ as fol-
lows:

(1) M′ takes as an input x.
(2) Simulate M on the input x.
(3) If M calls the oracle with a query w, then simulate M

on the input w by a recursive call in order to obtain the
answer of the oracle.

(4) If the simulation of M on the input x is completed with
an output y, then output y, and halt.

Let p(n) and P(n) denote the running times of M and
M′ on any input of the length n, respectively. By the defini-
tion of M, p(n) is a polynomial in n. In order to prove the
property (ii) of Lemma 2, it is sufficient to show the follow-
ing statements:

(S-1) M′ computes a single-valued refinement of f2, and
(S-2) P(n) is a polynomial in n.

We set

D1 = {x | |x| � 22i
for any i ≥ 0}

and

D2 = Σ
∗ \ D1 = {x | |x| = 22i

for some i ≥ 0}.
By the definition of f2, we have dom f2 ∩ D1 = ∅ and
dom f2 ⊆ D2.

When x ∈ D1, by the property (M-3), M outputs ⊥ in
Step (2), and hence, M′ outputs ⊥ and halts in Step (4). This
implies that the statement (S-1) holds for any element in D1.
In addition, we see that P(|x|) is at most p(|x|) when x ∈ D1.

We prove the statement (S-1) by induction on i when
x ∈ D2. When |x| = 2 = 220

, M does not query the oracle
by the properties (M-2) and (M-4). So the statement follows
from the construction of M′.

Set |x| = 22i
, and inductively assume that the state-

ment follows when an input string x′ satisfies |x′| = 22t
for

t = 0, . . . , i − 1. When M calls the oracle with a query z

in Step (3), z is of the form |z| = 22t
for some t < i by

the properties (M-2) and (M-4). Comparing Step (3) with
the construction of M′, by the induction hypothesis, we see
that M′ can obtain an element of set- f2(z) or ⊥ in Step (3).
Hence, M′ outputs an element of set- f2(x) or ⊥ in Step (4),
and the statement (S-1) follows.

We prove the statement (S-2). When x ∈ D1, we have
already shown that P(|x|) is at most p(|x|). Assume that |x| =
22i

. Then M makes at most p(22i
) queries in Step (2). Since

the length of each query is at most 22i−1
, for each query, M′

can make the answer of the oracle in time at most P(22i−1
) in

Step (3). Hence we have

P(22i
) = p(22i

)P(22i−1
)

= · · · = p(22i
)p(22i−1

) · · · p(220
).

Set d = deg p + 1. Then there exist integers i0 and C such
that the following conditions hold:

• p(n) < nd for any n > 22i0 , and
• p(n) ≤ C for any n ≤ 22i0 .

If i ≤ i0 and n = 22i
, then we have

P(n) ≤
i∏

j=0

p(22 j
) ≤

i0∏

j=0

p(22 j
) = Ci0+1.

Assume i > i0 and n = 22i
. Noting that 22i−k

= (22i
)1/2k

=

n1/2k
, we have

P(n) ≤
i0∏

j=0

p(22 j
)

i∏

j=i0+1

p(22 j
)

≤ Ci0+1
i−i0+1∏

j=0

p(n1/2 j
)

≤ Ci0+1
i−i0+1∏

j=0

nd/2 j ≤ Ci0+1
∞∏

j=0

nd/2 j

= Ci0+1n
∑∞

j=0 d/2 j
= Ci0+1n2d.

Hence, we see that P(n) ≤ Ci0+1n2d for any n, proving the
statement (S-2).

5. Proof of Proposition 3

We first show that NPMV is closed under ≤p
spar-reducibility.

For functions f and g, we assume that f ≤p
spar g and

g ∈ NPMV. Then there exists a function ψ ∈ PF which
satisfies the conditions stated in Definition 2.5. Let Mg be a
polynomial-time nondeterministic Turing transducer which
computes g. Using Mg, we construct a Turing transducer
Mf as follows: on any input x,

(1) Compute ψ(x).
(2) Simulate Mg on the input ψ(x).
(3) If Mg halts with an output y, then output y and halt.

Otherwise, output ⊥ and halt.
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It follows from the definitions of ψ and Mg that Mf is a
polynomial-time nondeterministic Turing transducer. As-
sume that Mf (x) �→ y. Then there exists a computation
in Mg such that Mg(ψ(x)) �→ y by the construction of Mf .
Since f ≤p

spar g, we have y ∈ set-g(ψ(x)) = set- f (x). On the
other hand, let y be any element of set- f (x). Since f ≤p

spar g,
we have y ∈ set- f (x) = set-g(ψ(x)). So there exists a com-
putation in Mg such that Mg(ψ(x)) �→ y, which implies that
Mf (x) �→ y. Hence, Mf computes f , and f ∈ NPMV fol-
lows.

We next show that NPMVg is closed under ≤p
spar-

reducibility. For functions f and g, we assume that f ≤p
spar g

and g ∈ NPMVg. Since we have already seen f ∈ NPMV by
the argument above, it suffices to prove only graph f ∈ P.
Since f ≤p

spar g, set- f (x) = set-g(ψ(x)) holds for any
x ∈ dom f . Hence, we have

(x, y) ∈ graph f

⇐⇒ x ∈ dom f and y ∈ set- f (x)

⇐⇒ ψ(x) ∈ dom g and y ∈ set-g(ψ(x))

⇐⇒ (ψ(x), y) ∈ graph g.

Noting that ψ ∈ PF, we see that the language graph f
is many-one reducible to the language graph g. Since
graph g ∈ P, we have graph f ∈ P. This completes the
proof.

Remark : One can similarly show that NPMV is closed un-
der ≤p

sm and ≤p
smet-reducibilities. However, it is not known

whether NPMVg is closed under these two reducibilities:
Assume that f ≤p

sm g and g ∈ NPMVg, and let ψ, ϕ ∈ PF
be functions which satisfy the conditions (i) and (ii) of Def-
inition 2.4. We have

(x, z) ∈ graph f

⇐⇒ ψ(x) ∈ dom g and z = ϕ(y)

for some y ∈ set-g(ψ(x)) (2)

⇐⇒ (ψ(x), y) ∈ graph g.

In order to prove that graph f ∈ P, it suffices to show that
one can efficiently find the string y stated in (2). However, it
is not straightforward to show whether the statement holds.
The similar argument applies to ≤p

smet-reducibility.
We assume that f ≤p

par g and g ∈ NPMV. Then the
Turing transducer Mf constructed in the proof above com-
putes some refinement of f since set-g(ψ(x)) ⊆ set- f (x).
However, one does not know whether Mf can output all
strings of set- f (x) on the input x. Hence, one can only
prove f ∈c NPMV on the assumptions that f ≤p

par g and
g ∈ NPMV. This statement is true if we replace ≤p

par with
≤p

m or ≤p
met.

6. Concluding Remarks

In this paper, we have extended a part of the results of Fal-
iszewski and Ogihara [4] to cover the classes NPMV and
NPMVg. We have shown that if any parsimonious complete

function for NPMV (or NPMVg) is length-decreasing self-
reducible, then any function in NPMV (or NPMVg) has a
refinement which is polynomial-time computable (Theorem
1). We have also shown that Theorem 1 still holds when the
term “parsimonious” is replaced with “many-one” or “met-
ric many-one” (Corollary 4). Our result means that there ex-
ists an NPMV (or NPMVg)-complete function which is not
length-decreasing self-reducible unless P = NP (Corollary
5).
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