
498
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

LETTER Special Section on Foundations of Computer Science

Linear-Time Algorithm for the Length-Constrained Heaviest Path
Problem in a Tree with Uniform Edge Lengths∗

Sung Kwon KIM†a), Member

SUMMARY Given a tree T with edge lengths and edge weights, and a
value B, the length-constrained heaviest path problem is to find a path in T
with maximum path weight whose path length is at most B. We present a
linear time algorithm for the problem when the edge lengths are uniform,
i.e., all one. This algorithm with slight modification can be used to find the
heaviest path of length exactly B in T in linear time.
key words: length-constrained paths, heaviest paths, uniform edge lengths

1. Introduction

Let T = (V, E) be an undirected tree with |V | = n. Each
edge e ∈ E is associated with two real numbers, l(e) and
w(e), called its length and weight, respectively. Let π(u, v)
denote the path between two vertices u, v ∈ V . The length
of π(u, v) is the sum of the lengths of the edges in it,
l(π(u, v)) =

∑
e∈π(u,v) l(e), and the weight of π(u, v) is the sum

of the weights of the edges in it, w(π(u, v)) =
∑

e∈π(u,v) w(e).
The length-constrained heaviest path problem is:

Given an undirected tree T with edge lengths l(e) and edge
weights w(e), and a real number B, find the heaviest path of
length at most B in T , namely, the path π such that

w(π) = max
u,v∈V
{w(π(u, v)) | l(π(u, v)) ≤ B}.

Wu et al. [8] introduced the length-constrained heaviest path
problem and solved it in O(n log2 n) time, and later, Bhat-
tacharyya and Dehne [1] improved the time complexity by
showing an O(n log n) time algorithm.

We are interested in the case where the edge lengths are
uniform. In the case of uniform edge lengths, l(e) = 1 for all
e ∈ E and B is a positive integer. We present an O(n) time
algorithm for finding the heaviest path of length at most B
in a tree with uniform edge lengths. Both algorithms [1], [8]
for the nonuniform edge length case are divide-and-conquer
ones, and they cannot solve the uniform edge length case in
linear time. A modified version of our algorithm can find
the heaviest path of length exactly B in O(n) time if such a
path exists.

Manuscript received March 5, 2012.
Manuscript revised June 6, 2012.
†The author is with School of Computer Science and Engineer-

ing, Chung-Ang University, Seoul, Korea.
∗This research was supported by the Chung-Ang University

research grant in 2013 and by Basic Science Research Program
through the NRF funded by the Ministry of Education, Science
and Technology (No. 2012008222).

a) E-mail: skkim@cau.ac.kr
DOI: 10.1587/transinf.E96.D.498

2. Preliminaries

We review data structures due to Frederickson [2], which
play a critical role in designing our algorithm. Let T be a
binary tree with n vertices. A vertex cluster (for short, clus-
ter) of T is a set of vertices that induces a connected subtree
of T . Two clusters are adjacent if there is an edge of T that
connects them. The external degree of a cluster is the num-
ber of its adjacent clusters.

Let 2 ≤ z ≤ n be an integer. A restricted partition
of order z for T is a partition of the vertex set V of T into
clusters such that∗∗

1. Each cluster in the partition has external degree at most
3.

2. Each cluster of external degree 3 contains exactly one
vertex.

3. Each cluster of external degree 1 or 2 contains at most
z vertices.

4. No two adjacent clusters can be combined, still satisfy-
ing the above.

Frederickson [2] showed that a restricted partition of order
z for T consists of Θ(n/z) clusters and can be computed in
O(n) time.

A restricted multilevel partition of order z for T is a hi-
erarchical series of partitions of V satisfying the following:

1. The clusters at level 0 form a restricted partition of or-
der z of V .

2. Each cluster at level i > 0 is either (i) a copy of a cluster
at level i−1 or (ii) the union of two clusters at level i−1.

3. There is precisely one cluster at the topmost level h,
which contains all vertices of V .

To accomplish 2 above, contract each of the clusters at
level i − 1 into a single vertex to get a “contracted” tree of
T , and compute a restricted partition of order 2 for this tree.
Each cluster in this restricted partition contains either one
“contracted” vertex or two “contracted” vertices, which re-
spectively correspond to (i) and (ii). Frederickson [2] proved
that a restricted multilevel partition of order z for T can be
constructed in O(n) time and has Θ(log(n/z)) levels, i.e.,
h = Θ(log(n/z)).

A restricted multilevel partition for T naturally gives a
rooted binary tree, called a topology tree for T , in which all
leaf nodes are at the same depth, such that:
∗∗We follow the definition given in [4].

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

LETTER
499

1. A node† at level i†† in the topology tree represents a
cluster at level i in the restricted multilevel partition.

2. A node at level i ≥ 1 has at most two children that
represent the clusters at level i − 1 whose union is the
cluster it represents.

It is obvious that a topology tree for T is of height
Θ(log(n/z)) and has Θ(n/z) leaf nodes.

Besides the Frederickson’s data structures above, a so-
lution for the following path weight query problem is em-
ployed in the design of our algorithm: For an edge-weighted
tree T , preprocess T so that, after preprocessing, given a
query pair of vertices u, v, the path weight w(π(u, v)) can be
found in O(1) time. A solution for the problem consists of
two parts: preprocessing and query-answering.

The following solution is well-known, whose prepro-
cessing works as follows: (1) Compute w(π(x, v)) for each
vertex v of T , where x is the root of T . (2) Preprocess T
so that, given a query pair of vertices u, v of T , their low-
est common ancestor can be found in O(1) time. Given
two vertices u and v, the query-answering finds their lowest
common ancestor y and computes w(π(u, v)) = w(π(x, u)) +
w(π(x, v)) − 2 · w(π(x, y)).

Since solutions with O(n) preprocessing time and O(1)
query answering time for the lowest common ancestor prob-
lem are given in [3], [5], the path weight query problem can
be solved within the same time complexity. Similarly, the
path length query problem can be defined and it can also be
solved in the same way as above.

3. The Algorithm

Since our algorithm is designed to handle binary trees only,
we first show how to transform an undirected tree into a
binary tree. Given an edge-weighted tree T0 with uniform
edge lengths, a binary tree T is obtained as follows [6]: Se-
lect an arbitrary vertex x of degree 1 of T0 and regard T0

as a rooted tree whose root is x. For each vertex of v of
T0 with d ≥ 3 children, v1, . . . , vd, replace v by a path
(v, u2, . . . , ud−1), where u2, . . . , ud−1 are new vertices and
(v, u2), (u2, u3), . . . , (ud−2, ud−1) are new edges. Each e of
these new edges has l(e) = w(e) = 0. Replace the edges
{(v, vi) | 2 ≤ i ≤ d − 1} by the edges {(ui, vi) | 2 ≤ i ≤ d − 1}
of corresponding weights, and replace the edge (v, vd) by
the edge (ud−1, vd) of corresponding weight. Each e of these
edges has l(e) = 1.

Let T = (V, E) be the resulting binary tree. The edge
lengths in T are binary, i.e., l(e) ∈ {0, 1}. T has O(|T0|) ver-
tices and edges [6], and every path in T0 has a corresponding
path in T with same length and weight, and vice versa [1].

To utilize topology tree for our purpose of computing
the heaviest path of length at most B in T , compute a re-
stricted multilevel partition of order z = B + 1 for T and
build its topology tree. Let T ∗ = (V∗, E∗) be the topology
tree. (1) T ∗ is a rooted binary tree of height h = Θ(log(n/B))
and has Θ(n/B) leaf nodes. (2) Each leaf node of T ∗ repre-
sents a cluster with at most B vertices.

For each p ∈ V∗, let Vp be the vertex cluster it rep-
resents and let Tp be the subtree of T induced by Vp. If
p has two children q and r in T ∗, then Vp = Vq ∪ Vr and
Tp = Tq ∪ Tr ∪ {(b, c)}, where (b, c) for b ∈ Vq and c ∈ Vr is
the edge connecting Tq and Tr. b and c are called the con-
nectors of Tq and Tr, respectively. If p has a single child q,
then Vp = Vq and Tp = Tq. In this case, we define the con-
nector of Tq to be the connector of Tp. For every nonroot
node p ∈ V∗, Tp has one connector.

For a nonroot node p ∈ V∗ and a vertex a ∈ V , define
Aa

p[·] to be an array of length B + 1 such that for 0 ≤ i ≤ B,

Aa
p[i] = max

v∈Vp

{w(π(a, v)) | l(π(a, v)) = i}.

In other words, Aa
p[i] is the weight of the heaviest one among

the paths of length i from a to the vertices of Vp. If there is
no path of length i from a to any vertex of Vp, then Aa

p[i] =
−∞. For notational convenience, Ap[·] is used for Aa

p[·] if a
is the connector of Tp.

Suppose for a while that the arrays Ap[·] for all nonroot
nodes p ∈ V∗ have been computed and therefore are avail-
able for reference. We show that the heaviest path of length
at most B in T can be found in O(n) time. For simplicity
of explanation, our algorithm is described to find only the
weight of the heaviest path of length at most B, but not the
path. An easy modification of our algorithm can find the
path itself.

Traverse T ∗ in postorder and compute, for each p ∈ V∗,
the weight wp of the heaviest path of length at most B in Tp.
Let α denote the root of T ∗. Then, wα is the weight we want
to compute as Tα = T .

If p ∈ V∗ is a leaf node, then find the heaviest path
π (without any length constraint) in Tp and set wp = w(π).
An algorithm for finding the longest path in trees (see, e.g.,
[7]) can be used to find π in O(B) time as Tp has at most B
vertices.

If p has a single child q in T ∗, then set wp = wq.
Consider the case where p has two children q and r in

T ∗. Let b ∈ Vq and c ∈ Vr be the connectors of Tq and
Tr, respectively, and let e = (b, c), which is the edge that
connects Tq and Tr. Since Tp = Tq∪Tr ∪{e}, and wq and wr

have already been computed, we need to compute w′ only,
the weight of the heaviest path of length at most B in Tp that
contains e.

Aq[·] and Ar[·] are used in computing w′. Compute
the “prefix maxima” array of Ar[·], defined as Â[i] =
max{Ar[j] | 1 ≤ j ≤ i} for 0 ≤ i ≤ B. If l(e) = 0, then
w′ = max{Aq[i] + Â[B − i] | 0 ≤ i ≤ B}, and if l(e) = 1, then
w′ = w(e) + max{Aq[i] + Â[B − i − 1] | 0 ≤ i ≤ B − 1}. In
either case, it takes O(B) time. Then, wp = max{wq,wr,w′}.

Since T ∗ has Θ(n/B) nodes and each computation of
wp for p ∈ V∗ takes O(B) time, we can compute wp for all
nodes p of T ∗ in O(n) time.

†To make a distinction, nodes are used for a topology tree.
††Assume that the leaf nodes are at level 0 and a node is at level

i > 0 if its children are at level i − 1.

500
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.3 MARCH 2013

Lemma 1: If the arrays Ap[·] for all nodes p of T ∗ are
available, then wα can be computed in O(n) time.

We now explain how to compute in O(n) time the arrays
Ap[·] for all p ∈ V∗ except the root. Again, T ∗ is traversed
in postorder.

If p is a leaf in T ∗, then Tp consists of at most B ver-
tices and therefore Ap[·] can be computed in O(B) time:
(1) Set Ap[i] = −∞ for 0 ≤ i ≤ B. (2) Visit the ver-
tices of Tp in preorder starting at a, the connector of Tp.
(3) For each currently visited vertex v, set Ap[l(π(a, v))] =
max{w(π(a, v)), Ap[l(π(a, v))]}. Note that each w(π(a, v)) and
each l(π(a, v)) can be found in O(1) time after the prepro-
cessings of the path weight query and path length query are
done with respect to T in O(n) time as explained in Sect. 2.

If p has a single child q in T ∗, then set Ap[·] = Aq[·].
Suppose that a nonroot node p has two children q and r

in T ∗. In this case, Tp = Tq ∪ Tr ∪ {e}, where e = (b, c) such
that b and c are the connectors of Tq and Tr, respectively.
Ap[·] is to be computed in Tp with respect to a, the connector
of Tp. At this point, the arrays for all descendants of p in T ∗
have been computed and are stored at their corresponding
nodes. Without loss of generality, assume that a ∈ Vq. We
compute Aa

q[·] and Aa
r [·] separately and then obtain Ap[·] by

computing Ap[i] = max{Aa
q[i], Aa

r [i]} for 0 ≤ i ≤ B.
We first show how to compute Aa

r [·] from Ar[·] that is
stored at r. In this case, a � Vr. Let π = π(a, c). Remember
that c is the connector of Tr and Ar[·] has been computed
with respect to c. Any path from a to a vertex in Tr contains
π.

If l(π) ≥ B, then set Aa
r [i] = −∞ for all 0 ≤ i ≤ B as no

vertex of Vr, possibly except c, can be reached from a using
a path of length at most B. If l(π) < B, then set for 0 ≤ i ≤ B

Aa
r [i] =

{ −∞ if i ≤ l(π),
w(π) + Ar[i − l(π)] if i > l(π),

Note that l(π) and w(π) can be found in O(1) time. So, Aa
r [·]

can be obtained in O(B) time.
The computation of Aa

q[·] is done by recursively calling
the function of computing Aa

p[·] with q replacing p. Note
that a is in both Tp and Tq and |Tq| < |Tp|. Shown in Fig. 1 is
our algorithm for computing Aa

p[·], which follows the expla-
nation given so far. For p at level i in T ∗, compArray(p, a)
makes at most i recursive calls until the recursion reaches
level 0.

Before analyzing the time complexity of computing

compArray(p, a)
if (p is a leaf), then directly compute Aa

p[·] and return it.
if (p has a single child q), then return Aa

q[·].
// p has two children q, r and assume that a ∈ Vq. //
compute Aa

r [·].
A =compArray(q, a).
for (i = 0 to B)

A[i] = max{A[i], Aa
r [i]}.

return A.

Fig. 1 Algorithm for computing Aa
p[·]

Ap[·] for all nonroot nodes p, let us review some proper-
ties of T ∗: T ∗ is a binary tree of height h = Θ(log(n/B)) and
has Θ(n/B) leaf nodes. Frederickson [2] proved that in T ∗
the number of nodes at level i > 0 is at most 5/6 the number
of nodes at level i − 1. So, in T ∗, if m is the number of leaf
nodes, then the number of nodes at level i is at most (5/6)im.

Since compArray(p, a) for a node p at level i makes
at most i recursive calls, the total number of recursive calls
made by calling compArray(p, a) for all nonroot nodes p in
T ∗ is at most

h−1∑
i=1

i · (5
6

)i · m,

which is less than 30m as
∑∞

i=1 i · θi = θ/(1 − θ)2 for 0 < θ <
1. Since each call to compArray(p, a), except the recursive
calls in it, takes O(B) time and m = Θ(n/B), the arrays Ap[·]
for all nonroot nodes p of T ∗ can be computed in O(n) time.

Lemma 2: The arrays Ap[·] for all nodes p of T ∗ can be
computed in O(n) time.

Given an edge-weighted tree and a positive integer B,
our algorithm for finding the heaviest path of length at most
B in the tree works as follows:

1. Transform the tree into a binary tree.
2. Compute a restricted multilevel partition of order B +

1 for the binary tree and build a topology tree for the
partition.

3. Compute Ap[·] for all nonroot nodes p of the topology
tree in postorder.

4. Compute wp for all nodes p of the topology tree in pos-
torder.

Then, wα is the weight of the heaviest path of length
at most B in T . Steps 3 and 4 can be combined into one as
wp for a node p of the topology tree can be computed once
the arrays for its children are obtained. Since each of the
steps 1–4 can be executed in O(n) time, we have proved the
following theorem:

Theorem 1: Given an edge-weighted tree and a positive
integer B, the heaviest path of length at most B in the tree
can be found in O(n) time.

The algorithm can be modified to find the heaviest path
of length exactly B. The only part of the algorithm that needs
to be modified is that of computing, for all p ∈ V∗, wp,
whose definition is now changed to the weight of the heav-
iest path of length exactly B in Tp if such a path exists and
−∞ otherwise.

If p ∈ V∗ is a leaf node, then set wp = −∞ as Tp

has at most B vertices and contains no path of length B.
If p has a single child q in T ∗, then set wp = wq. If p
has two children q and r in T ∗, then we need to compute
w′, the weight of the heaviest path of length B in Tp that
contains e, the connecting edge between Tq and Tr. w′
can be computed using Aq[·] and Ar[·]. If l(e) = 0, then
w′ = max{Aq[i]+ Ar[B− i] | 0 ≤ i ≤ B}, and if l(e) = 1, then

LETTER
501

w′ = w(e)+max{Aq[i]+Ar[B− i−1] | 0 ≤ i ≤ B−1}. Then,
wp = max{wq,wr,w′}, where wq and wr are the weights of
the heaviest paths of length exactly B in Tq and Tr, respec-
tively. Since wp for each p ∈ V∗ can be computed in O(B)
time, we have a lemma, which is similar to Lemma 1.

Theorem 2: Given an edge-weighted tree and a positive
integer B, the heaviest path of length exactly B in the tree
can be found in O(n) time.

4. Conclusion

In this paper, we present a linear-time algorithm for the
length-constrained heaviest path problem on a tree with uni-
form edge lengths. The algorithm can be modified to find
the heaviest path of a specific length on a tree with uniform
edge lengths. An interesting future work is to find other
problems that can be solved in linear time using our method
developed in this paper.

References

[1] B. Bhattacharyya and F. Dehne, “Using spine decompositions to effi-
ciently solve the length-constrained heaviest path problem for trees,”
Inf. Process. Lett., vol.108, pp.293–297, 2008.

[2] G.N. Frederickson, “Ambivalent data structures for dynamic 2-edge-
connectivity and k smallest spanning trees,” SIAM J. Comput., vol.26,
pp.484–538, 1997.

[3] D. Harel and R.E. Tarjan, “Fast algorithms for finding nearest com-
mon ancestors,” SIAM J. Comput., vol.13, no.2, pp.338–355, 1984.

[4] G.F. Italiano and R. Ramaswami, “Maintaining spanning trees of
small diameter,” Algorithmica, vol.2, pp.275–304, 1998.

[5] B. Schieber and U. Vishkin, “On finding lowest common ances-
tors: Simplification and parallelization,” SIAM J. Comput., vol.17,
pp.1253–1262, 1988.

[6] A. Tamir, “An O(pn2) algorithm for the p-median and related prob-
lems on tree graphs,” Oper. Res. Lett., vol.19, pp.59–64, 1996.

[7] R. Uehara and Y. Uno, “On computing longest paths in small graph
classes,” Int. J. Found. Comput. Sci., vol.18, no.5, pp.911–930, 2007.

[8] B.Y. Wu, K.M. Chao, and C.Y. Tang, “An efficient algorithm for
the length-constrained heaviest path problem on a tree,” Inf. Process.
Lett., vol.69, pp.63–67, 1999.

