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L1-Norm Based Linear Discriminant Analysis: An Application to
Face Recognition

Wei ZHOU†a), Nonmember and Sei-ichiro KAMATA†b), Member

SUMMARY Linear Discriminant Analysis (LDA) is a well-known fea-
ture extraction method for supervised subspace learning in statistical pat-
tern recognition. In this paper, a novel method of LDA based on a new
L1-norm optimization technique and its variances are proposed. The con-
ventional LDA, which is based on L2-norm, is sensitivity to the presence
of outliers, since it used the L2-norm to measure the between-class and
within-class distances. In addition, the conventional LDA often suffers
from the so-called small sample size (3S) problem since the number of
samples is always smaller than the dimension of the feature space in many
applications, such as face recognition. Based on L1-norm, the proposed
methods have several advantages, first they are robust to outliers because
they utilize the L1-norm, which is less sensitive to outliers. Second, they
have no 3S problem. Third, they are invariant to rotations as well. The
proposed methods are capable of reducing the influence of outliers substan-
tially, resulting in a robust classification. Performance assessment in face
application shows that the proposed approaches are more effectiveness to
address outliers issue than traditional ones.
key words: linear discriminant analysis, L1-norm, linear programming,
LDA-L1, 2DLDA-L1, BLDA-L1, face recognition

1. Introduction

In many data analysis problems, measurements or observa-
tion data often lie in a lower dimensional subspace within
the original high dimensional data space. Such a subspace,
especially the linear subspace, has many important appli-
cations in computer vision and pattern recognition, such as
motion estimation [1], face recognition [2]. Especially, in
face recognition system, the feature vector of face is always
located in high dimension and it takes times to classify the
faces, so dimensionality reduction is an important step in
face recognition task. Among these subspace methods, lin-
ear discriminant analysis (LDA) [3] is one of the most pop-
ular methods. LDA tries to find a set of projections that
maximize the ratio of the between-class (S w) distance to the
within-class (S w) distance. These projections constitute a
low-dimensional linear subspace by which the data struc-
ture, such as face features, in the original input space can be
effectively captured.

The classical LDA [3], [4] tries to find an optimal dis-
criminant subspace to maximize the S b separability and the
S w compactness of the data samples in a low-dimensional
vector space. However, in many cases, the classical LDA
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suffers from the so called Small Sample Size (3S) problem,
since it needs one of the scatter matrices (S w) is nonsingu-
lar to calculate S −1

w . Unfortunately, the size of the training
set is much smaller than the dimension of the feature space
in many applications, such as face recognition. In recent
years, some LDA extensions have been proposed to deal
with such 3S problem. The most famous one is called Fish-
erface [5], which first applied PCA to reduce the original
data and then used LDA to extract the discriminant informa-
tion. However, this approach may lose important discrimi-
nant information in the PCA stage for further face classifica-
tion process. In [6], null-space linear discriminant analysis
(NLDA) was proposed, which projected all the samples onto
the null space of S w and then extracted discriminant infor-
mation. In [7], direct linear discriminant analysis (DLDA)
extracted the discriminant information from the null space
of S w matrix, achieved by diagonalizing first S b then diago-
nalizing S w. A common drawback of the above methods is
that they solve the discriminant vectors by focusing on a sin-
gle data subspace rather than the full data space. Therefore,
these methods may lose some useful discriminant informa-
tion [8], [9] to some extent. Thus, in [8], the researchers pro-
posed a dual-space LDA (DSLDA) approach to take full ad-
vantage of the discriminant information of the training sam-
ples. The basic idea of the DSLDA method is to divide the
whole data space into two complementary subspaces, i.e.,
the range space of the within-class scatter matrix and its
complementary space, and then solve the discriminant vec-
tors in each subspace. On the other hand, from the compu-
tational point of view, DSLDA method may not be suitable
for online training problems because of its heavy computa-
tional cost. In [9], the authors proposed a complete kernel
Fisher discriminant analysis (CKFD) algorithm, which can
be used to carry out discriminant analysis in both scatters.

However, Frobenius norm (L2-Norm), which is sen-
sitivity to the presence of outliers or noise, is used in all
the above LDA approaches to measure S b and S w distances.
Thus, the process of training may be dominated by outliers
since the S b or S w distance is determined by the sum of
squared distances. Inspired by [10], [11] to reduce the influ-
ence of outliers, we propose a novel L1-norm based linear
discriminant analysis called LDA-L1 for robust discriminant
analysis (and also we noted the traditional LDA based on L2
norm as LDA-L2 in the following). Let Z = (z1, z2, . . . , zn)
be n data points in d-dimensional space. In matrix form Z =
(z ji), index j sum over spatial dimensions, j = 1, 2, . . . , d
and index i sum over data points, i = 1, 2, . . . , n. L2 norm is
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Fig. 1 Fit a line to 10 given data points. The two data points on upper-left
are outliers.

defined as

||Z||L2 =

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

i=1

d∑
j=1

z2
ji

⎞⎟⎟⎟⎟⎟⎟⎠
1
2

, (1)

and L1 norm is defined as

||Z||L1 =

n∑
i=1

d∑
j=1

|z ji|. (2)

It is well known that L1-norm is much more robust to out-
liers than L2-norm. Figure 1 shows a simple example of
computing the 1D subspace (the straight line) from ten 2D
input data points, two of which are outliers. While L2-norm
gives erroneous line fitting, L1-norm gives correct result.

Recently, in order to solve the outlier problem, Li [12]
proposed rotation invariant L1-norm (notated as R1-norm)
based linear discriminant analysis (we call it LDA-R1 in the
following). The R1-norm is defined as

||Z||R1 =

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
d∑

j=1

z2
ji

⎞⎟⎟⎟⎟⎟⎟⎠
1
2

. (3)

Here, R1-norm is determined by the sum of elements with-
out being squared. Thus, the R1 norm is less sensitive to
outliers than L2-norm. However, LDA-R1 takes a lot of time
to achieve convergence for a large dimensional input space.
In this paper, instead of maximizing variance which is based
on L2-norm, L1-norm based linear discriminant analysis is
proposed. Based on the reports in [10], the proposed method
is expected less sensitive to outliers than L2-norm and R1-
norm based approaches, and it also does not have 3S issue
since it do not need to calculate the inverse of scatter matrix
S −1
w . In addition, the proposed method is simple and easy to

implement.

The remainder of this paper is organized as follows:
problem formulation will be described in Sect. 2. In Sect. 3,
the solution of the proposed method will be introduced.
Some variances will be illustrated in Sect. 4 and Sect. 5. Ex-
perimental results are presented in Sect. 6. Finally, conclu-
sions and future work are discussed in Sect. 7.

2. Problem Formulation

Assume we have a set of samples X = {{xl
i}Nl

i=1}Cl=1 ∈ Rd×n.
Nl of which belong to class ωl (l = 1, 2, . . . ,C), where n and
d denote the number of samples and the dimension of the
original input space, respectively, and n =

∑C
l=1 Nl.

In LDA-L2, the objective is to seek t projections Y =
{{yl

i}Nl

i=1}Cl=1 ∈ Rt×n by means of t linear transformation vec-
tors wi ∈ Rd×1, which can be arranged by columns into a pro-
jection matrix W = [w1, w2, . . . , wt] ∈ Rd×t, which embeds
the original d dimension into t dimension vector space such
that t < d. Let S b be the between-class scatter matrix, and
S w be the within-class scatter matrix. Thus, the between-
class and within-class distances can be, respectively, formu-
lated as:

S b =

C∑
l=1

(ml − m)(ml − m)T , (4)

S w =
C∑

l=1

Nl∑
i=1

(xl
i − ml)(xl

i − ml)
T , (5)

where ml = (1/Nl)
∑Nl

i=1 xl
i is the mean of the samples be-

longing to the l-th class, and m = (1/n)
∑C

l=1 Nlml is the
global mean of the samples. LDA-L2 aims to find an op-
timal transformation W by maximizing the ratio of Tr(S b)
and Tr(S w) as the following problem

max
W

JL2 = max
W

Tr(S b)
Tr(S w)

= WT S bW
WT S wW . (6)

It is known that the L2-norm is sensitive to outliers and
R1-norm approach was presented to solve this problem [12].
In this case, the problem becomes finding W that maximizes
the following objective function:

max
W

JR1 = (1 − α)
∑C

l=1 Nl

√||WT (ml − m)||2−
α
∑C

l=1

∑Nl

i=1

√
||WT (xl

i − ml)||2.
(7)

Here, the parameter α is a trade-off predefined coeffi-
cient such that 0 < α < 1. However, for a large dimensional
input space, it takes a lot of time to achieve convergence,
and also it has null space problem, which appears very of-
ten in face recognition application. In this paper, we want to
maximize the L1 dispersion using the L1-norm in the feature
space as the following

max
W

JL1 = max
W

∑C
l=1 Nl ||WT (ml−m)||L1∑C

l=1
∑Nl

i=1 ||WT (xl
i−ml)||L1

= max
W

∑C
l=1 Nl |WT (ml−m)|∑C

l=1
∑Nl

i=1 |WT (xl
i−ml)|
.

(8)
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The solution of Eq. (8) is invariant to rotations because
the maximization is done on the feature space and it is ex-
pected to be more robust to outliers than the L2-Norm and
R1-Norm solution. Moreover, no Small Sample Size prob-
lem will be occurred as described above.

3. L1 Norm Based Linear Discriminant Analysis

Generally, classical LDA used L2 norm (Frobenius norm) to
perform dimensionality reduction while preserving as much
of the class discriminatory information as possible. How-
ever, L2 norm is sensitive to outliers and is not satisfied for
robust discriminant analysis. In order to address this key is-
sue, L1 norm is applied into the objective function and we
call this novel approach as L1 norm based Linear Discrimi-
nant Analysis (LDA-L1).

Suppose that W = [w1, w2, . . . , wt] ∈ Rd×t is the orthog-
onal projection matrix which want to be obtained. Here, we
use greedy iteration algorithm to find wk(k = 1, 2, . . . , t) one
by one. wk(r) stands for the result wk of the iteration r. In
order to remove the absolute value operators in Eq. (8), po-
larity functions pl(r) and ql(r) are introduced as

pl(r) =

{
1 if wT

k (r)(ml − m) > 0
−1 if wT

k (r)(ml − m) ≤ 0,
(9)

ql(r) =

{
1 if wT

k (r)(xl
i − ml) > 0

−1 if wT
k (r)(xl

i − ml) ≤ 0,
(10)

with the help of pl(r) and ql(r), for a special wk, Eq. (8) can
be rewritten as

max
wk

JL1 = max
wk

∑C
l=1 Nl plw

T
k (ml−m)∑C

l=1
∑Nl

i=1 qlw
T
k (xl

i−ml)
. (11)

An important property to notice about the objective Eq. (11)
is that it is invariant with respect to rescaling of the vectors
wk → ρwk. Hence, we can always choose wk such that the
denominator is simply

∑C
l=1

∑Nl

i=1 qlw
T
k (xl

i − ml) = 1, since
it is a scalar itself. For this reason we can transform the
problem of objective Eq. (11) into the following constrained
optimization problem:

max
wk

J∗L1
= max

wk

∑C
l=1 Nl plw

T
k (ml − m),

s.t.
∑C

l=1

∑Nl

i=1 qlw
T
k (xl

i − ml) = 1,
wT

k wk = 1.

(12)

Let

f (wk(r)) =
∑C

l=1 Nl pl(r)wk(r)T (ml − m). (13)

First, we want to prove if wk(r + 1) = argmax
wk

f (wk) then

f (wk(r + 1)) ≥ f (wk(r)). According to Eq. (9), we can get
pl(r + 1)wT

k (r + 1)(ml − m) ≥ pl(r)wT
k (r + 1)(ml − m), then

f (wk(r + 1)) =
∑C

l=1 Nl pl(r + 1)wT
k (r + 1)(ml − m)

≥ ∑C
l=1 Nl pl(r)wT

k (r + 1)(ml − m),
(14)

since wk(r + 1) = argmax
wk

f (wk), then

f (wk(r + 1)) ≥ ∑C
l=1 Nl pl(r)wT

k (r)(ml − m)
= f (wk(r)).

(15)

Thus, what we want to do in the next step is to find wk(r +
1) = argmax

wk

f (wk) where wk(r + 1) stands for the result wk

of the iteration r + 1. Inspired by the solution of LDA-L2,
this problem can be converted into

max
wk

f (wk) =
∑C

l=1 Nl plw
T
k (ml − m),

s.t.
∑C

l=1

∑Nl

i=1 qlw
T
k (xl

i − ml) = 1,
wT

k wk = 1.

(16)

Denote θ =
∑C

l=1 Nl pl(ml −m) and φ =
∑C

l=1

∑Nl

i=1 ql(xl
i −ml).

Consequently, based on augmented Lagrangian method, we
can have the following optimization problem:

max
wk

L = wT
k θ − λ(wT

k φ − 1) − 1
2β(w

T
k wk − 1). (17)

According to the Karush-Kuhn-Tucker (KKT) conditions
for the optimal solution, we can get
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂L
∂wk
= θ − λφ − βwk = 0

∂L
∂λ
= wT

k φ − 1 = 0
∂L
∂β
= wT

k wk − 1 = 0.
(18)

Then based on Eq. (18), we can obtain the solution of λ, β
and wk as follows:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ = θ

Tφ
φTφ

β = (θT − λφT )φ
wk =

1
β
(θ − λφ).

(19)

Since pl(r) ≤ 1 and each element of wk(r) is less equal
to 1, then

f (wk(r)) =
∑C

l=1 Nl pl(r)wk(r)T (ml − m)
≤ ∑C

l=1 Nl‖ml − m‖L1
.

(20)

Thus, apparently, f (.) function has an upper bound and
increases monotonically. Then, by iteration we can get the
optimal wk in Eq. (11). So far, the previous equations can be
used to compute the principal vector wk of W ∈ Rd×t. And in
order to calculate the following vector wk+1(k = 1, 2, . . . , t −
1), xl

i should be updated as

(xl
i)

k+1 = (xl
i)

k − wkw
T
k (xl

i)
k, (21)

and then be followed by Eq. (11), for k = 1, we have
(xl

i)
1 = xl

i. This kind of updating rule guarantees that wk+1

is orthogonal to wk and then W is an orthogonal matrix. To
justify wT

k wk+1 = 0, first we prove that wT
k (xl

i)
k+1 = 0 holds.

Multiply wT
k on both sides of Eq. (21), then

wT
k (xl

i)
k+1 = wT

k (xl
i)

k − wT
k wkw

T
k (xl

i)
k, (22)

since wT
k wk = 1, then we can have

wT
k (xl

i)
k+1 = wT

k (xl
i)

k − wT
k (xl

i)
k = 0. (23)

On the other side, wk+1 can be represented by (xl
i)

k+1,
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Algorithm 1 LDA-L1

Require: X = {{xl
i}Nl

i=1}Cl=1 ∈ Rd×n, t ≤ d

Initialization: W = [w1, w2, . . . , wt] ∈ Rd×t ,WT W = I, X1 = X
for k = 1→ t do
wk(1) = wk , r = 1
while not converge do

1. Calculate pl(r) and ql(r) according to Eq. (9) and Eq. (10)
2. Update wk according to Eq. (19)
3. r++

end while
Update Xk+1 = Xk − wkw

T
k Xk

end for
return W ∈ Rd×t

such as wk+1 =
∑C

l=1

∑Nl

i=1 γil(xl
i)

k+1, where γil are coeffi-
cients. Then we can have wT

k wk+1 = 0.
Finally, we can get the algorithm of Eq. (8) as Algo-

rithm 1.
Note that this procedure tries to find a local maximum

solution and there is a possibility that it may not be the
global solution. However, considering that the initial vec-
tor w1 can be set arbitrarily, by setting w1 appropriately, we
can run the LDA-L1 procedure several times with different
initial vectors and output the projection vector that gives the
maximum L1 dispersion.

4. L1 Norm Based Two Dimensional Linear Discrimi-
nant Analysis

L1 Norm Based Two Dimensional Linear Discriminant
Analysis (2DLDA-L1) aims to find two optimal transfor-
mation matrices W1 = [w1

1, w
1
2, . . . , w

1
t1] ∈ Rw×t1 and W2 =

[w2
1, w

2
2, . . . , w

2
t2] ∈ Rh×t2 to maximize the following objec-

tive function

max
W1,W2

J2D
L1
= max

W1,W2

∑C
l=1 Nl ||WT

1 (m2D
l −m2D)W2 ||L1∑C

l=1
∑Nl

i=1 ||WT
1 ((xl

i)
2D−m2D

l )W2 ||L1

= max
W1,W2

∑C
l=1 Nl |WT

1 (m2D
l −m2D)W2 |∑C

l=1
∑Nl

i=1 |WT
1 ((xl

i)
2D−m2D

l )W2 |
.

(24)

In 2DLDA-L1, the sample is treated as a matrix instead of
the vector in LDA-L1. (xl

i)
2D ∈ Rw×h, where w and h de-

note the width and height of samples, respectively. m2D
l =

(1/Nl)
∑Nl

i=1(xl
i)

2D is the mean of the samples belonging to
the l-th class, and m2D = (1/n)

∑C
l=1 Nlm2D

l is the global
mean of the samples. Based on the solution of LDA-L1, pro-
jection matrix W1 and W2 can be solved one by one. More
specifically, firstly, we can fix W2 to solve W1 and then fix
W1 to solve W2.

5. L1 Norm Based Block Linear Discriminant Analysis

In this section, the L1-norm based optimization is applied to
Block LDA, which is called L1 Norm Based Block Linear
Discriminant Analysis (BLDA-L1). This procedure consists
of dividing each sample into several small blocks to build
several sub-datasets and combining them to optimize basis
vectors with respect to the L1-dispersion. Instead of using
row vectors as computational units, this approach is based

Fig. 2 Sample of BLDA-L1 (Block size is 3 by 3).

on the observation that the pixels within a small block usu-
ally have strong correlation.

Figure 2 gives an example. Assume that we have orig-
inal 6 by 6 image as Fig. 2 (a) (the number is denoted the
location of each pixel), and the block size B is set 3 by 3.
Then we can non-overlapping divide the original image into
4 blocks and convert it into 9 by 4 image as Fig. 2 (b). Each
row in Fig. 2 (b) stands for one block in Fig. 2 (a). That is,
BLDA-L1 can be converted into 2DLDA-L1, and then we
can use the algorithm for 2DLDA-L1 to solve it.

Some points should be noted. If the block is selected
as each row of the original image, then BLDA-L1 is same
as 2DLDA-L1. If the whole image is treated as one block,
then BLDA-L1 is same as LDA-L1. Thus, BLDA-L1 can be
considered as a general framework of LDA-L1 and 2DLDA-
L1.

6. Experiments

In this section, we will apply the proposed LDA-L1 algo-
rithm and its variances to face recognition problems based
on ORL [13], AR [14] and FERET [15] dataset. The perfor-
mance is compared with those of LDA-L2 and LDA-R1. In
our study, several initialization of w1 is used: the first type
is several arbitrary values; the second type is the solution of
LDA-L2; the third type is a data vector in the training set,
which has a maximum mean value. According to the follow-
ing experiments, we can conclude that in general, the third
type data is enough to get our solution converges to global
optimization. And most times, the second type data and the
third type data can get the same solution, while the first type
data sometimes suffers the local optimization problem.

6.1 ORL Dataset

The first experiment over the ORL dataset [13] is to compare
the classification performances and reconstruction errors of
LDA-L2, LDA-R1 and the proposed methods. The ORL
database consists of face images of 40 different people, each
individual providing 10 different images. For some subjects,
the images were taken at different times. The facial expres-
sions open or closed eyes, smiling or non-smiling and facial
details (glasses or no glasses) also vary. The images were
taken with a tolerance for some tilting and rotation of the
face of up to 20 degrees. Moreover, there is also some vari-
ation in the scale of up to about 10 percent. All images are
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Fig. 3 ORL dataset (a) Original Images (b) Corresponding Images with
occlusion.

gray scale and normalized to a resolution of 32 × 32 pix-
els. Among these 400 images, 30 percent were randomly
selected and occluded with a rectangular noise consisting of
random black and white dots whose size was 10 × 10, lo-
cated at a random position. For a better illustration, some
training samples are shown in Fig. 3. 3 images per person
were used for training and others were for testing. Simple 1-
nearest-neighbor(1NN) classifier was used for the final clas-
sification. The performance is shown in Fig. 4, where x-axis
corresponds to the reduced dimension and y-axis is associ-
ated with the accuracy. The average number of iterations
for LDA-L1 is 5.1 while 9.7 for LDA-R1. From this figure,
we can see that the proposed method is the outstanding one
and can obtain about 10 percent or 40 percent than LDA-R1
and LDA-L2, respectively. Moreover, in this figure, when
the reduced dimension is very small, the proposed method
can get significant performance. In order to see how the ac-
curacy changes in small dimension, another experiment is
carried out and the result is shown in Fig. 5. From this fig-
ure, we can see more clear about the effectiveness of the
proposed method.

Figure 6 and Fig. 7 shows the accuracy with the change
of selected feature dimension and block size by 2DLDA-
L1 and BLDA-L1, respectively. From these two figures, we
can see that the accuracy of two dimensional based LDA is
higher than one dimension based LDA, and in Fig. 7, smaller

Fig. 4 Classification results on occluded ORL Dataset.

Fig. 5 Classification results for small dimension on occluded ORL
Dataset.

Fig. 6 Classification results on occluded ORL Dataset by 2DLDA-L1
method.

Fig. 7 Classification results with different block size by BLDA-L1
method on occluded ORL Dataset.
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Table 1 Recognition rate on occluded ORL dataset.

method Recognition Rate

LDA-L2 38.6
LDA-R1 67.1

2DPCA-L1 [11] 79.1
LDA-L1 76.6

2DLDA-L1 81.9
BLDA-L1 83.2

Fig. 8 Classification results on un-occluded ORL Dataset.

Table 2 Recognition rate on un-occluded ORL dataset.

method Recognition Rate

LDA-L2 67.5
LDA-R1 77.1

2DPCA-L1 [11] 85.1
LDA-L1 84.7

2DLDA-L1 89.3
BLDA-L1 91.4

or larger block size will decrease the recognition rate. The
reason may be that if the block size is small, then the correla-
tion within each block is weak, and the correlation between
blocks will be weak if large block size is applied. Finally,
the accuracy on ORL dataset is concluded in Table 1, and
our proposed methods has higher performance than tradi-
tional ones.

In order to show the effectiveness of the proposed
methods in un-occluded case, several evaluations are carried
out. Figure 8 illustrated the relationship between the accu-
racy and the reduced dimension. And Table 2 shows the
comparison precision among several traditional approaches
and the proposed methods. From these experiments, we can
generate that the proposed methods are not only effective
to deal with occlusion problem, but also powerful in un-
occlusion case.

In next experiment, the proposed methods are applied
to face reconstruction problems and the performances are
compared with those of other methods. We applied LDA-
L2, LDA-R1, LDA-L1, 2DLDA-L1 and BLDA-L1 and ex-
tracted various numbers of features. By using only a frac-
tion of features, we could compute the average reconstruc-
tion error with respect to the original un-occluded images
as Eq. (25) and Eq. (26) for one dimension based and two

Fig. 9 Average reconstruction errors for ORL dataset.

dimension based LDA, respectively,

e1(m) =
1
n

n∑
i=1

||xorg
i −

t∑
k=1

wkw
T
k xi||2, (25)

e2(m) =
1
n
||(X2D)org −W1WT

1 XorgW2WT
2 ||2. (26)

Here, n is the number of samples, which is 400 in this case,
xorg

i and xi are the i-th original un-occluded image and the
i-th image used in the training, respectively, and t is the
number of extracted features. (X2D)org and Xorg are original
un-occluded matrix based image and occluded matrix based
image used in the training, respectively. Figure 9 shows
the average reconstruction errors for various numbers of ex-
tracted features. In this figure, even when the number of
extracted features is small, the average reconstruction error
of the proposed method is much smaller than LDA-L2 and
LDA-R1 approaches. The difference between the proposed
method and traditional methods is apparent and BLDA-L1
is the most outstanding one.

6.2 AR Dataset

The AR [14] dataset consists of over 3,200 color images of
the frontal images of faces of 126 subjects. There are 26
different images for each subject, including frontal views
with different facial expressions, lighting conditions and oc-
clusions. For each subject, these images were recorded in
two different sessions separated by two weeks, each session
consisting of 13 images. For the experiments reported in
this section, 60 different individuals were randomly selected
from this database. Then there are 1560 images in our ex-
periments. All images were manually cropped and resized
to 80 by 60. Some example images of one person are shown
in Fig. 10.

In this experiment, we compare the recognition perfor-
mances of the different algorithms on AR database. We ran-
domly selected six samples of each individual for training,
and the remaining ones were used for testing. We performed
10 times to randomly choose the training set and calculate
the average recognition rates. Some classification results
are listed in Fig. 11, where we can see that the proposed
methods have higher performance than LDA-L2 and LDA-
R1, especially for 2DLDA-L1 and BLDA-L1. (Note that in
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Fig. 10 Some samples from AR dataset.

Fig. 11 Classification results on AR Dataset.

Fig. 12 Classification results for small dimension on AR Dataset.

2DLDA-L1 and BLDA-L1, the Dim. is equal to t1 × t2) In
general, LDA-L1 can obtain about 10 percent or 20 percent
than LDA-R1 and LDA-L2, respectively. And the average
number of iterations for LDA-L1 is 7.5 while 25.3 for LDA-
R1. Thus, we can see clearly that LDA-R1 takes much more
computation cost to achieve convergence in larger dimen-
sional input space, such as face recognition application, than
LDA-L1. Base on this evaluation, our proposed methods are
more effective and efficient than the traditional approaches
to solve facial expression, illumination or occlusions issues.

In Fig. 12, we focus on only low-dimensional spaces
because we want to make a comparison of the most discrim-
inant features for the proposed methods and some related
algorithms. Same as Fig. 11, the proposed methods can ex-
tract more discriminant features.

Fig. 13 Average reconstruction errors for AR dataset.

Table 3 Recognition rate on AR dataset.

method Recognition Rate

LDA-L2 58.6
LDA-R1 69.1

2DPCA-L1 [11] 82.2
LDA-L1 81.6

2DLDA-L1 85.7
BLDA-L1 87.5

Fig. 14 Some samples from FERET dataset.

The average reconstruction errors for AR dataset are
shown in Fig. 13 with various numbers of extracted features.
From this figure, we can see that the average reconstruction
error of the proposed method is much smaller than the tradi-
tional approaches while BLDA-L1 is a little better or com-
parable than 2DLDA-L1.

Finally, the accuracy on AR dataset is concluded in Ta-
ble 3, and our proposed methods are superior to the tradi-
tional approaches.

6.3 FERET Dataset

The FERET dataset is a standard face image set to test and
evaluate face recognition algorithms [15]. In this evaluation,
we chose a subset of the FERET database. It includes 900
images of 150 individuals (each individual has six images).
The six images of each individual consist of two or three
front images with varied facial expressions and illumina-
tions, and other images ranging from −15◦ to +15◦ pose.
The facial portion of each original image was cropped to a
size of 100 by 80 and no preprocessing method was applied.
Figure 14 illustrates the six cropped images of one person.
In our experiments, three images of each individual (450 im-
ages) are randomly selected for training. These training im-
ages were also used as gallery images. The remaining 450
images were used as probe images. The nearest neighbor
classifier was used to match probe images and gallery im-
ages, and the average recognition rate was adopted by cal-
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Fig. 15 Recognition Rate by combine LBP and some feature reduction
methods from FERET dataset.

Fig. 16 Recognition Rate by combine 1DLPMS-B and some feature re-
duction methods from FERET dataset.

culating the mean value of recognition rates across 5 runs.
In this section, several experiments are conducted to

judge whether the proposed methods are powerful or not
when some other feature spaces are applied. Here, we
selected two local patterns: uniform LBP [16] (the num-
ber of sampling points is set 8) and our previous proposed
1DLPMS-B [17] (Here, four kinds of scans are used and the
number of sampling points for each scan is set 4). LBP
first assigns a label to every pixel of an image by thresh-
olding the 3 ×3-neighborhood of each pixel with the center
pixel value and considering the result as a binary number.
Second, all the binary numbers generate a histogram to be
treated as the feature vector of this face. In 1DLPMS-B,
multi-scans are used to capture the different spatial informa-
tion on the facial image. Compared to LBP, which only uses
a circle to encode the neighborhood pixels, multi-scans can
keep more spatial information, reduce the effect of illumina-
tion and noise problem and 1DLPMS-B is rotation invariant.
First, each facial image is equally divided into 80 blocks,
and then the above mentioned local patterns is applied into
each block. Thus, the total feature dimension of each facial
image is 59×80 = 4720 and 64×80 = 5120, respectively and
the average recognition rate by LBP is 85.6% while 88.5%
for 1DLPMS-B. Figure 15 shows some classification results
corresponding to LBP combined with some feature reduc-
tion methods and the results by combing 1DLPMS-B and
related feature reduction methods are shown in Fig. 16.

From these two figures, we can see that the feature
reduction methods are also effective and efficient in some
other feature spaces, which are extracted by local patterns.
Our proposed methods can improve accuracy by about 8 per-
cent while 4 percent for LDA-R1 and 1 percent for LDA-L2.
Note that the feature vector was firstly converted into two

Fig. 17 Average reconstruction errors for FERET dataset by LBP.

Fig. 18 Average reconstruction errors for FERET dataset by 1DLPMS-
B.

dimensions when 2DLDA-L1 and BLDA-L1 was applied.
In the second estimation, the average reconstruction

errors for FERET dataset with LBP and 1DLPMS-B are
shown in Fig. 17 and Fig. 18 with various numbers of ex-
tracted features. From these figures, we can also see that the
proposed methods are more suitable for reconstruction in lo-
cal patterns based feature space, while BLDA-L1 performs
best compared to other approaches.

7. Conclusions and Future Work

In this paper, we have proposed some methods of LDA
based on L1-norm optimization, which better characterize
the between-class separability and within-class compact-
ness. The proposed methods are to find projections that
maximize the L1-norm in the projected space instead of the
conventional L2-norm. 2DLDA-L1 and BLDA-L1 are not
only robust to outliers, but also treat an image as a matrix
to make good use of the spatial structure information. The
proposed L1-norm optimization technique avoids to com-
pute the eigen-composition problem and is easy to imple-
ment. In more specification, it first suppresses the negative
effects of outliers, second it has no 3S problem and third it
is invariant to rotations. Experimental results have demon-
strated the effectiveness of the proposed methods compared
to the existing approaches.

In our future work, some more variances, such as ten-
sor based and kernel based LDA and some more applica-
tions based on the proposed methods will be evaluated. For
BLDA-L1, in principle, the blocks do not need to have same
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shape or cover the whole image, for example, in our face ap-
plication, some key blocks around eyes, nose and mouth can
be selected. How to choose these blocks is also our further
research.
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