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PAPER

Risk Assessment of a Portfolio Selection Model Based on a Fuzzy
Statistical Test

Pei-Chun LIN†a), Nonmember, Junzo WATADA†b), Member, and Berlin WU††c), Nonmember

SUMMARY The objective of our research is to build a statistical test
that can evaluate different risks of a portfolio selection model with fuzzy
data. The central points and radiuses of fuzzy numbers are used to deter-
mine the portfolio selection model, and we statistically evaluate the best re-
turn by a fuzzy statistical test. Empirical studies are presented to illustrate
the risk evaluation of the portfolio selection model with interval values.
We conclude that the fuzzy statistical test enables us to evaluate a stable
expected return and low risk investment with different choices for k, which
indicates the risk level. The results of numerical examples show that our
method is suitable for short-term investments.
key words: portfolio selection, optimization, fuzzy probability distribu-
tions, fuzzy statistics, data analysis

1. Introduction

The portfolio selection model has been well developed on
the basis of a mean-variance approach. It was first proposed
by Markowitz [14]–[16], who combined probability and op-
timization theories to analyze the performance of economic
agents. The key principle of the mean-variance model is
to use the expected return of a portfolio as investment re-
turn and the variance of the expected returns of the port-
folio as investment risk. Most of the existing portfolio se-
lection models are based on probability theory. The mean-
variance portfolio selection problem has been studied by
Sharpe [23], Merton [17], Perold [21], Pang [19], Voros [27],
and Best [2], [3]. To analyze uncertain phenomena in the
real world, multivariate data analysis has been applied to in-
vestigate portfolio selection problems. For example, Zhang
et al. [40] discussed the portfolio selection problem when
the returns of assets are fuzzy numbers. Hasuike et al. [8]
discussed two portfolio selection problems including prob-
abilistic future and ambiguous expected returns. Moreover,
Hasuike and Ishii [7] discussed a portfolio selection prob-
lem with type-2 fuzzy returns involving interval numbers
and considering investor’s subjectivity. Giove, et al. [6] dis-
cussed a portfolio selection problem in which the prices of
the securities are treated as interval variables. To deal with
such an interval portfolio problem, they adopted a minimax
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regret approach based on a regret function.
Some other research works discussed how to solve

fuzzy portfolio selection models, as Peng et al. [20] ad-
dressed the portfolio selection problems in fuzzy environ-
ments by a credibility programming approach based on a
credibility measure (see [13]). Wang et al. [29] proposed
a new real options analysis approach by combining the bi-
nomial lattice-based model with a fuzzy random variable.
Zhang et al. [36] proposed a model to convert the fore-
casted uncertain values into normal fuzzy numbers. Tanaka
and Guo [24], [25] proposed two types of portfolio selec-
tion model based on fuzzy probabilities and exponential
possibility distributions, respectively. Wang and Zhu [30],
and Lai et al. [9] constructed interval programming mod-
els of portfolio selection. Zhang and Wang [39] and Zhang
et al. [38] discussed the portfolio selection problem based
on the (crisp) possibilistic mean and variance when short
sales are not allowed at all risky assets. Watada [28], Ra-
maswamy [22], and Leon et al. [10] discussed portfolio se-
lection using fuzzy decision theory.

Most studies did not consider any kind of probability
distribution function with fuzzy random variables. More-
over, no statistical test was applied to examine the results
of the portfolio selection model with fuzzy data. In view of
this weakness, the objective of this paper is to develop a sta-
tistical test to evaluate the results of the portfolio selection
model with fuzzy data. First, we deal with the problem of
finding the distribution function with fuzzy data.

The distribution function must be predicted under a
specified condition or for a situation given in advance (see
[18]). When we want to work with fuzzy data, the underly-
ing probability distribution of the fuzzy data is not known. It
is not easy to describe such information in terms of statistics.
Therefore, we must establish techniques to handle such in-
formation and knowledge. Following Zadeh [34], [35], we
will use fuzzy set theory and take the concept of fuzzy
statistics into consideration. Fundamental statistical mea-
surements such as mean, median and mode are useful for
illustrating characteristics of a sample distribution. More re-
search works should focus on fuzzy statistical aspects of the
model and its applications in engineering, medical and so-
cial science. Wu and Cheng [31] identified a model structure
through qualitative simulation; Casalino et al. [4], Esogbue
and Song [5], and Wu and Sun [32] discussed the concepts
of fuzzy statistics and applied them to social surveys. Wu
and Tseng [33] used the fuzzy regression method of coeffi-
cient estimation to analyze the Taiwan monitoring index of
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economics. All of the above-mentioned studies dealt with
problems by using the central point values. Lin et al. [12]
proposed a new weight function of fuzzy numbers defined
by the central point and radius. Moreover, Lin et al. [11]
proposed a method to recognize the underlying distribution
function using its central point and radius, which gives us
more information about the original fuzzy data.

The objective of this paper is to build a statistical test of
fuzzy data, and apply it to a portfolio selection problem with
interval values, and then statistically evaluate the best return.
In the first step, we need to find the probability distribution
function and each parameter in the probability distribution
functions. When we know the distribution function of each
parameter, we can easily calculate the expected return and
variance. Those values can enable us to define a portfolio
selection model with interval values. We also give a decision
by a fuzzy statistical test, which explicitly tells us whether
or not we statistically accept the risk in investment.

The rest of the paper consists of the following. Sec-
tion 2 gives a brief review of the related studies. The main
method is described in Sect. 3. Section 4 illustrates empir-
ical studies with interval values and how to apply a fuzzy
statistical test on the portfolio selection model. Finally, the
concluding remarks and the topics of further studies are pre-
sented in Sect. 5.

2. Notations and Preliminary Definitions

2.1 Fuzzy Numbers

To proceed with the detailed discussion, it would be more
advantageous to introduce some useful notation.
Note that fuzzy number Fi denotes a vector form because of
central point and radius.
Notation
Ai: acceptance region of i
A: 2-dimensional acceptance regionA = Ao ×Al

α: significance level
C: a subset of a specified collection of elements in U
Ci: a specified collection of element i
ε: risk level
Fi: interval values Fi = [ai, bi]
F̄: fuzzy sample mean
I: unit vector I = [1, 1, · · · , 1]′
ICi : characteristic function of Ci

k: risk level
K: decision set of k
li: the i radius values of Fi

L∗: optimal solution in model (17)
L: a stochastic quantity with mean ml and variance σ2

l
m0: a specified value
mi: mean values of i
mi0 : a specified value of i0
m: mean vector m ≡ (mo,ml)
m0: a specified vector m0 ≡ (mo0 ,ml0 )
μ: membership function
oi: the i central point values of Fi

O: a stochastic quantity with mean mo and variance σ2
o

Ω: probability space
ri: the return rate of asset i
r: the return vector r = [r1, r2, · · · , rn]′
r̄: the expected return vector r̄ = [r̄1, r̄2, · · · , r̄n]′
R: return of portfolio vector x
�: real numbers
Σ: a 2 × 2 covariance matrix Σ = [cov(O, L)]2×2

S ni : sample standard deviation of the data set with size n
Sn: standard deviation vector Sn ≡ (S no , S nl )
σ2

i j: variance of low i and column j
t: variables in t-distribution
Ti: the i statistic for the hypothesis H0

T: a statistic vector T ≡ (To,Tl) for the hypothesis H0

U: universal set
U∗: optimal solution in model (18)
V: an n × n covariance matrix V = [σi j]n×n

Wn: sum of Xi with size n
x: a portfolio vector x = [x1, x2, · · · , xn]′
x∗: optimal solution vector of model (1) which is x∗ =
[x∗1, x

∗
2, · · · , x∗n]′

xi: the proportion invested in asset i
Xi: random variables of i
X̄n: sample mean of the data set with size n

Zadeh [34] proposed fuzzy set theory to deal with the
vagueness in data, where membership grade of a fuzzy set is
a value between 0 and 1, although the characteristic function
of a set takes only a value of 0 or 1. The following defini-
tions of fuzzy numbers will be used in the whole paper.
Definition 1 [18] Let U be a universal set and C =

{C1,C2, · · · ,Cn} be the subset of a specified collection
of elements in U. For any term or statement X on U,
the membership function of {C1,C2, · · · ,Cn} is denoted
{μ1(X), μ2(X), · · · , μn(X)}, where μ : U → [0, 1] is a real
value function. If the domain of the universal set is discrete,
then the fuzzy number x of X can be written as

μU(X) =
n∑

i=1

μi(X)ICi (X), (1)

where ICi (X) = 1 if x ∈ Ci, and ICi (X) = 0 if x � Ci.
If the domain of the universal set is continuous, then the
fuzzy number x can be written as

μU(X) =
∫

Ci⊆C
μi(X)ICi (X). (2)

Note that, many writings denote a fuzzy number as

μU(X) =
μ1(X)

C1
+
μ2(X)

C2
+ · · · + μn(X)

Cn
,

where “+” stands for “or”, and “ ··” denotes the membership
μi(X) on Ci.
Definition 2 Fuzzy Sample Mean (data with interval val-
ues) [18]

Let U be a universe set and {Fi = [ai, bi], ai, bi ∈
�, i = 1, · · · , n} be a sequence of a random fuzzy sample
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on U. Then, the fuzzy sample mean value is defined as

F̄ =

⎡⎢⎢⎢⎢⎢⎣1n
n∑

i=1

ai,
1
n

n∑
i=1

bi

⎤⎥⎥⎥⎥⎥⎦.

Example 1 Let F1 = [2, 3], F2 = [3, 4], F3 = [4, 6], F4 =

[5, 8], and F5 = [3, 7] be the starting salary for 5 newly
graduated master’s students. Then, the fuzzy sample mean
for the starting salary of the graduated students will be

F̄ =
[
2 + 3 + 4 + 5 + 3

5
,

3 + 4 + 6 + 8 + 7
5

]

= [3.4, 5.6].

Definition 3 An interval value is denoted as F = [a, b] with

a central point o =
a + b

2
and radius l =

b − a
2

. We give the

notation as F ≡ (o, l).
When we have fuzzy numbers, we need statistical

methods to deal with the data. Let us recall that a fuzzy
statistical test means a statistical test which can deal with
fuzzy data. First, we introduce a traditional statistical test in
the following subsection.

2.2 Statistical Analysis

Let X1, · · · , Xn be a sequence of random variables (not nec-
essarily normally distributed). We say that the Xi are inde-
pendently identically distributed (i.i.d) if the Xi are indepen-

dent and have the same distribution. We write Wn =

n∑
i=1

Xi

and X̄n =
Wn

n
to denote the total and average, respectively,

of the nX′i s. We introduce the most important theorem in
statistics as follows.

Theorem 1 Central Limit Theorem [1]
Let X1, · · · , Xn be i.i.d. random variables with mean m

and variance σ2. Let

Zn =
n

1
2 (X̄n − m)
σ

=
Wn − nm

n
1
2σ

.

Then, Zn converges in distribution to Z as n → ∞. We de-
note

Zn → Z ∼ N(0, 1) as n→ ∞,
where Z distributes according to a standard normal distribu-
tion function N(0, 1).

Note that m denotes mean and μ expresses a member-
ship function.

In statistics, functions of observations are often impor-
tant. Therefore, we introduce the following statistical test.

Theorem 2 T -test [26]
For samples X1, X2, · · · , Xn of a normally distributed

stochastic quantity X ∼ N(m, σ2), a statistic for the hypoth-
esis H0 : m = m0 is

T =
X̄n − m0

S n√
n

, (3)

and the acceptance region A for T under probability α for
an error of the first type is

A =
⎧⎪⎪⎪⎨⎪⎪⎪⎩t ∈ �| | t |=

∣∣∣∣∣∣∣∣
X̄n − m0

S n√
n

∣∣∣∣∣∣∣∣ ≤ tn−1;1− α2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (4)

where X̄n and S n are the sample mean and the sample stan-
dard deviation of the data, m0 is a specified value, n the sam-
ple size and tn−1;1− α2 the (1 − α2 )-fractile of the t-distribution
with degree of freedom n − 1, respectively.

When the above information is given, we have pro-
vided all prior knowledge for dealing with a portfolio se-
lection problem.

Now, we give a brief description of the portfolio selec-
tion model in the following subsection.

2.3 Markowitz’s Portfolio Selection Model

Markowitz’s mean-variance model is based on a probability
distribution in which uncertainty is equated with random-
ness [14]–[16]. That is, the return on the ith asset, ri, will be
regarded as a random variable.

Consider a market with n risky assets. An investor’s
position in this market is described by a portfolio vector
x = [x1, x2, · · · , xn]′, where the ith component xi repre-
sents the proportion invested in asset i. The return vec-
tor on portfolio vector x is denoted r = [r1, r2, · · · , rn]′,
where ri represents the return rate of asset i. In the conven-
tional mean-variance methodology for portfolio selection,
ri is regarded as a random variable, ∀i = 1, 2, · · · , n. Let
r̄ = [r̄1, r̄2, · · · , r̄n]′ and V = [σi j]n×n be the expected return
vector and covariance matrix, respectively. The return R on

the portfolio x is given by R =
n∑

i=1

rixi. Set I = [1, 1, · · · , 1]′.

The objective of the investor is to choose a portfolio that
maximizes the return on the investment under some con-
straints on the risk of the investment.

A mean-variance model can be formulated mathemati-
cally for portfolio selection as

max r̄x
s.t.

√
x′Vx ≤ ε

I′x ≤ 1
xi ≥ 0 ∀i = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (5)

where ε(ε ≥ 0) represents the risk level, x′Vx =
∑n

i=1 σ
2
ii x

2
i +∑n

j=1
∑n

i=1,i� j σi j xix j, σi j = cov(ai, a j) is the covariance, and
ai and a j are random variables, ∀i, j = 1, 2, · · · , n.
Here, we rewrite formula (5) clearly in the following for-
mula:
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max E

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

rixi

⎞⎟⎟⎟⎟⎟⎠
s.t.

√
x′Vx ≤ ε

n∑
i=1

xi ≤ 1

xi ≥ 0 ∀i = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

That is, we need to solve the following programming prob-
lem:

max
n∑

i=1

E(ri)xi

s.t.
√

x′Vx ≤ ε
n∑

i=1

xi ≤ 1

xi ≥ 0 ∀i = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (7)

We will introduce the fuzzy statistical test on portfolio se-
lection model in the following section.

3. Fuzzy Statistical Test on the Portfolio Selection
Model

Assume that there are n distinct tradable assets in the mar-
ket. The terminal rate of return for asset i, denoted as ri,
∀i = 1, 2, · · · , n, is assumed to be a fuzzy random variable.
By the widely accepted definition, the expectation of a fuzzy
random variable is a fuzzy variable. We give some defini-
tions to express the total fuzzy return R on a portfolio vector
x, where x = [x1, x2, · · · , xn]′ is an n row vector.

3.1 Portfolio Selection Model with Interval Values

Let Fi = [ai, bi] ≡ (oi, li), ∀i = 1, 2, · · · , n, be interval values
on the probability space Ω, where oi is a random variable of
central point of Fi, and li is a random variable of the radius
of Fi, ∀i = 1, 2, · · · , n.

Definition 4 Fuzzy Expected Return (data with interval val-
ues)

For the proportion invested in asset i, ∀i = 1, 2, · · · , n,
we have x = [x1, x2, · · · , xn]′. Definition 3 specifies the
fuzzy expected return of Fi, i.e. Fi ≡ (oi, li), ∀i = 1, 2, · · · , n,
as follows:

E[R(x)] ≡
n∑

i=1

E(Fi)xi =

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

E(oi)xi,

n∑
i=1

E(li)xi

⎞⎟⎟⎟⎟⎟⎠ .

Note that R[x] ≡
n∑

i=1

Fi xi, ∀i = 1, 2, · · · , n.

Definition 5 Fuzzy Portfolio Variance (data with interval
values)

For the proportion invested in asset i, ∀i = 1, 2, · · · , n.
We have x = [x1, x2, · · · , xn]′. Definition 3 specifies the
fuzzy portfolio variance of Fi, ∀i = 1, 2, · · · , n, as follows:

var[R(x)] ≡
n∑

i=1

var(Fi)xi

=

⎛⎜⎜⎜⎜⎜⎝var

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

oixi

⎞⎟⎟⎟⎟⎟⎠ , var

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

lixi

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ ,

where
var(
∑n

i=1 oixi) =
∑n

i=1 σ
2
oii

x2
i +

∑n
j=1
∑n

i=1,i� j σoi j xix j,
σoi j = cov(oi, o j), and var(

∑n
i=1 lixi) =

∑n
i=1 σ

2
lii

x2
i +∑n

j=1
∑n

i=1,i� j σli j xix j, σli j = cov(li, l j), ∀i, j = 1, 2, · · · , n.

Now, let us describe the portfolio selection model with
interval values as follows.
Model 1 Portfolio Selection Model with Interval Values

Let Fi ≡ (oi, li), ∀i = 1, 2, · · · , n, be interval values.
The portfolio selection model with interval values is de-
scribed as follows:

max
n∑

i=1

E(oi)xi

min
n∑

i=1

E(li)xi

s.t. x′Vox ≤ ε2

x′Vlx ≤ ε2

n∑
i=1

xi ≤ 1

xi ≥ 0 ∀i = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (8)

where ε (ε ≥ 0) represents the risk level, x′Vox =∑n
i=1 σ

2
oii

x2
i +
∑n

j=1
∑n

i=1,i� j σoi j xix j, σoi j = cov(oi, o j), and
x′Vlx =

∑n
i=1 σ

2
lii

x2
i +
∑n

j=1
∑n

i=1,i� j σli j xix j, σi j = cov(li, l j),
∀i, j = 1, 2, · · · , n.

To reduce the calculation load, we rewrite formula (8)
into the following formula:

max
n∑

i=1

E(oi)xi

min
n∑

i=1

E(li)xi

s.t.
n∑

i=1

√
var(oi)xi = k

n∑
i=1

√
var(li)xi ≤ k

n∑
i=1

xi ≤ 1

xi ≥ 0 ∀i = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

Note that because
x′Vox =

∑n
i=1 σ

2
oii

x2
i +
∑n

j=1
∑n

i=1,i� j σoi j xix j ≤ (
∑n

i=1 σoii xi)2

≤ ε2, we set (
∑n

i=1 σoii xi)2 = k1
2, i.e.,

∑n
i=1 σoii xi = k1,

where σoii =
√

var(oi). We can obtain another restriction
in the same way, i.e.,

∑n
i=1 σlii xi = k2, where σlii =

√
var(li).

We can choose a k such that
∑n

i=1

√
var(oi)xi = k1 = k and∑n

i=1

√
var(li)xi = k2 ≤ k.

Therefore, we can obtain the optimal solution of the
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model 1 in (9) by choosing different values for k (k ≥ 0),
which indicates the acceptable risk level. We obtain the op-
timal solution vector x∗ = [x∗1, x

∗
2, · · · , x∗n]′.

Moreover, when we obtain the optimal solution vector
x∗ = [x∗1, x

∗
2, · · · , x∗n]′, we can calculate the fuzzy expected

return E(R(x∗)):

E[R(x∗)] ≡
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

E(oi)x∗i ,
n∑

i=1

E(li)x∗i

⎞⎟⎟⎟⎟⎟⎠ .
Now, we have defined the portfolio selection model

with interval values. The model can have many solutions.
The solutions depend on the risk level k. Let us describe
how to choose the risk level k in the following subsection.

3.2 Fuzzy Statistical Test for the Portfolio Selection
Model

First, we define a T -test with interval data.

Definition 6 T -test with interval values
For interval values Fi = [ai, bi] ≡ (oi, li), samples

o1, o2, · · · , on can be approximated as a normally distributed
stochastic quantity O ∼ N(mo, σ

2
o) by Theorem 1, and the

samples l1, l2, · · · , ln can be approximated as a normally
distributed stochastic quantity L ∼ N(ml, σ

2
l ) by Theo-

rem 1. Hence, the bivariate normal distribution of the 2-
dimensional random vector F can be written in the notation
F ∼ N(m,Σ), where m ≡ (mo,ml) is a mean vector and
Σ = [cov(Xo, Xl)] is a 2 × 2 covariance matrix.

In fact, Σ =

[
σ2

o 0
0 σ2

l

]
because o and l are indepen-

dent.
Statistics for each hypothesis are written as follows.

H0 : m = m0, f or statistic vector T ≡ (To,Tl), (10)

where m0 ≡ (mo0 ,ml0 ) is a specified vector, To =
X̄on − mo0

S on√
n

and Tl =
X̄ln − ml0

S ln√
n

.

Note that, here mo0 =

n∑
i=1

E(oi)x∗ and ml0 =

n∑
i=1

E(li)x∗. We

set m0 = E[R(x∗)] in this paper.
The acceptance regionA for T under probability α for

an error of the first type is defined as

A = Ao ×Al. (11)

Note that

Ao=

⎧⎪⎪⎪⎨⎪⎪⎪⎩to ∈ �| | to |=
∣∣∣∣∣∣∣∣
X̄on − mo0

S on√
n

∣∣∣∣∣∣∣∣≤ tn−1;1− α2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , and (12)

Al =

⎧⎪⎪⎪⎨⎪⎪⎪⎩tl ∈ �| | tl |=
∣∣∣∣∣∣∣∣
X̄ln − ml0

S ln√
n

∣∣∣∣∣∣∣∣ ≤ tn−1;1− α2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (13)

where X̄on is the sample mean of o, S on is the sample stan-
dard deviation of o, X̄ln is the sample mean of l, S ln is the
sample standard deviation of l, n is the sample size and
tn−1;1− α2 is the (1− α2 )-fractile of the t-distribution with n− 1
degrees of freedom.

Now, we give the decision of the portfolio selection
model based on the fuzzy statistical test.
Definition 7 Fuzzy Statistical Test on the Portfolio Selection
Model with Interval Values

According to Definition 6 and Formula (9) in Model
1, we say that if m0 ∈ A, then we do not reject the null
hypothesis H0. In this situation, the decision of K is

K = {k|k ≥ 0 such that m0 ≡ (mo0 ,ml0 ) ∈A,
we do not re ject H0}.

Note that m0 ∈ A means that mo0 ∈ Ao and ml0 ∈ Al.
Hence, we obtain the solution of Model 1 with different k
and get a set K.

Now, we give the procedure of solving the portfolio
selection model with interval values by a fuzzy statistical
test in the following subsection.

3.3 Procedure of Solving Portfolio Selection Model with
Interval Values

The procedure can be written in the following to solve port-
folio selection model with interval values by a fuzzy statis-
tical test:

Step 1. Collect the fuzzy data and calculate the return of
each exchange currency with interval values.
Step 2. Compute oi and li, ∀i = 1, 2, · · · , n.
Step 3. Identify the underlying distribution by simulating oi

and li.
Step 4. Calculate the parameters for the expected value and
variance in model (9).
Step 5. Solve the optimization model (9) with different
values k. Stop solving the model when the optimal so-
lution is indicated with only one asset and

∑n
i=1 xi = 1.

(i.e. x∗ = (1, 0, 0, 0, 0)′ or (0, 1, 0, 0, 0)′or (0, 0, 1, 0, 0)′ or
(0, 0, 0, 1, 0)′ or (0, 0, 0, 0, 1)′, we stop solving the model.)
Step 6. Calculate K by Definition 7.
Step 7. Obtain the optimal vector solution x∗ with different
k in K.
Step 8. Compute the possibility distribution of the fuzzy ex-
pected return R(x∗) with different k in K.

To illustrate our proposed effective meanings and ap-
proaches to obtain efficient portfolios, we exemplify a real
portfolio selection problem in the following section.

4. Empirical Studies

Example 2 We selected five exchange currencies (USD,
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Table 1 Interval values of each exchange currency.

July 1, 2010 July 2, 2010 · · · Dec. 31, 2010
[a, b]

USD [86.94, 88.55] [87.30, 88.20] · · · [81.26, 81.84]
EUR [106.80,109.84] [109.49,110.65] · · · [107.70,108.56]
AUD [72.82, 73.99] [73.69, 74.66] · · · [82.45, 83.14]
GBP [130.26,133.06] [132.89,133.61] · · · [125.27,126.67]
CHF [81.20, 82.83] [82.02, 82.90] · · · [86.17, 87.25]

Table 2 Interval returns of each exchange currency.

[A, B]
USD [−1.41, 0.21] [−1.04, −0.14] · · · [−7.08, −6.5]
EUR [−0.35, 2.69] [2.35, 3.51] · · · [0.55, 1.41]
AUD [−0.69, 0.48] [0.18, 1.15] · · · [8.94, 9.63]
GBP [−0.64, 2.15] [1.99,2.70] · · · [−5.63, 4.24]
CHF [−0.15, 1.48] [0.66, 1.55] · · · [4.82, 5.90]

Table 3 Central point o and radius l of each interval values [A, B].

(o, l)
USD (−0.60, 0.81) (−0.59, 0.45) · · · (−6.79, 0.29)
EUR (1.17, 1.52) (2.93, 0.58) · · · (0.98, 0.43)
AUD (−0.11, 0.59) (0.67, 0.49) · · · (9.29, 0.35)
GBP (0.76, 1.40) (2.35, 0.36) · · · (−4.93, 0.70)
CHF (0.66, 0.81) (1.11, 0.44) · · · (5.36, 0.54)

EUR, AUD, GBP and CHF) from the Bank of Tokyo-
Mitsubishi. The original data came from the closing prices
of every day from July 2010 to December 2010. There were
124 interval values in this period [a, b], where a is the min-
imum price, and b is the maximum price in one day. We
presented some interval values in Table 1.

Suppose that we buy the five exchange currencies with
opening prices on July 1. We assume that an investor buy
5 exchange currencies on July 1, and do not take any action
from the day he bought around half a year. Our objective is
to choose a portfolio that maximizes the return (interval val-
ues) on the investment under some constraints on the selec-
tion with different risks k. Moreover, we make the decision
for selecting the best return by a fuzzy statistical test.

First, we calculated the interval returns [A, B] of each
exchange currency, where A=a-opening price on July 1 and
B=b-opening price on July 1. The original prices on July
1 of each exchange currency were 88.35, 107.15, 73.51,
130.91 and 81.36, respectively. We give the results in Ta-
ble 2.

Then, we calculated the central point o = A+B
2 and ra-

dius l = B−A
2 . Table 3 presents the data.

We simulated the values o and l, respectively. We ob-
tain the probability distributions O and L for each respective
exchange currency. Table 4 presents the results.

Note that the abbreviation LOG denotes logistic dis-
tribution, W, N, and Γ denote Weibull distribution, normal
distribution and gamma distribution, respectively.

When we knew the distribution function, we used the
moment method estimator (MME) to estimate the parameter
for each distribution function. Hence, we could find out the
expected values and variances by using those parameters.
Table 5 shows the results.

Table 4 Parameters of probability distribution functions for interval
values.

O L
USD LOG(−4.23, 1.21) W(0.45, 3.26)
EUR LOG(4.44, 1.33) Γ(7.69, 0.08)
AUD LOG(6.03, 1.56) Γ(7.51, 0.07)
GBP N(0.80, 2.412) Γ(9.87, 0.06)
CHF W(3.01, 1.58) Γ(9.99, 0.05)

Table 5 Expected values and variances for interval values.

O1 O2 O3 O4 O5

Expected value −4.23 4.44 6.03 0.80 2.70
Variance 4.79 5.78 8.03 2.412 3.06

L1 L2 L3 L4 L5

Expected value 0.40 0.62 0.53 0.59 0.50
Variance 0.02 0.05 0.04 0.04 0.02

Now, we have all the data that we need in our portfolio
selection model with interval values. We put these data in
Model (9) and present the results as follows:

max −4.23x1 + 4.44x2 + 6.03x3 + 0.80x4 + 2.70x5

min 0.40x1 + 0.62x2 + 0.53x3 + 0.59x4 + 0.50x5

s.t.
√

4.79x1 +
√

5.78x2 +
√

8.03x3 +
√

5.81x4

+
√

3.06x5 = k√
0.02x1 +

√
0.05x2 +

√
0.04x3 +

√
0.04x4

+
√

0.02x5 ≤ k
x1 + x2 + x3 + x4 + x5 ≤ 1
xi ≥ 0 ∀i = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(14)

We rewrite the model with estimated parameters as fol-
lows:

max −4.23x1 + 4.44x2 + 6.03x3 + 0.80x4 + 2.70x5

min 0.40x1 + 0.62x2 + 0.53x3 + 0.59x4 + 0.50x5

s.t. 2.19x1 + 2.40x2 + 2.83x3 + 2.41x4 + 1.75x5 = k
0.14x1 + 0.22x2 + 0.20x3 + 0.20x4 + 0.14x5 ≤ k
x1 + x2 + x3 + x4 + x5 ≤ 1
xi ≥ 0 ∀i = 1, 2, · · · , n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(15)

We solved Model (15) by using GP-IGP (Linear and In-
teger Goal Programming). The result depends on the selec-
tion with different values of k. We gave the value k greater
than zero and accurate to second decimal places in this ex-
ample. We present the result in Table 6.
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Table 6 Fuzzy statistical test for the results of model (14) and (15) with different conditions k.

k 0.5 1 1.5 2 2.5 2.6∑5
i=1 xi 0.23 0.46 0.68 0.91 1 1
x∗ [.23, 0, 0, 0, 0]′ [.46, 0, 0, 0, 0]′ [.68, 0, 0, 0, 0]′ [.91, 0, 0, 0, 0]′ [.52, 0, .48, 0, 0]′ [.36, 0, .64, 0, 0]′
m0 (−0.97, 0.09) (−1.93, 0.18) (−2.90, 0.27) (−3.86, 0.37) (0.74, 0.46) (2.34, 0.48)
m (−0.95, 0.09) (−1.90, 0.18) (−2.81, 0.28) (−3.77, 0.37) (0.68, 0.45) (2.29, 0.47)
Sn (0.47, 0.03) (0.95, 0.07) (1.41, 0.11) (1.89, 0.15) (1.05, 0.13) (1.36, 0.14)
A [−1.03, −0.86] [−2.07, −1.73] [−3.06, −2.56] [−4.10, −3.43] [0.49, 0.87] [2.05, 2.54]

×[0.08, 0.10] ×[0.17, 0.20] ×[0.25, 0.30] ×[0.34, 0.40] ×[0.43, 0.48] ×[0.44, 0.49]
Decision m0 ∈A m0 ∈A m0 ∈A m0 ∈A m0 ∈A m0 ∈A

k 2.7 2.8 2.81 2.82 2.83∑5
i=1 xi 1 1 1 1 1
x∗ [.2, 0, .8, 0, 0]′ [.05, 0, .95, 0, 0]′ [.03, 0, .97, 0, 0]′ [.02, 0, .98, 0, 0]′ [0, 0, 1, 0, 0]′
m0 (3.95, 0.50) (5.55, 0.52) (5.71, 0.53) (5.87, 0.53) (6.03, 0.53)
m (3.90, 0.48) (5.41, 0.50) (5.61, 0.50) (5.71, 0.50) (5.92, 0.50)
Sn (1.87, 0.15) (2.42, 0.17) (2.49, 0.18) (2.53, 0.18) (2.61, 0.18)
A [3.57, 4.24] [4.98, 5.84] [5.17, 6.06] [5.26, 6.17] [5.45, 6.38]

×[0.46, 0.51] ×[0.47, 0.53] ×[0.47, 0.53] ×[0.47, 0.53] ×[0.47, 0.54]
Decision m0 ∈A m0 ∈A m0 ∈A m0 ∈A m0 ∈A

Table 7 The fuzzy expected return with different conditions k.

k 0.5 1 1.5 2 2.5 2.6
x∗ [.23, 0, 0, 0, 0]′ [.46, 0, 0, 0, 0]′ [.68, 0, 0, 0, 0]′ [.91, 0, 0, 0, 0]′ [.52, 0, .48, 0, 0]′ [.36, 0, .64, 0, 0]′

E[R(x∗)] (−0.97, 0.09) (−1.93, 0.18) (−2.90, 0.27) (−3.86, 0.37) (0.74, 0.46) (2.34, 0.48)
Interval Value [−1.06, −0.88] [−2.11, −1.75] [−3.17, −2.63] [−4.23, −3.49] [0.28, 1.20] [1.86, 2.82]

k 2.7 2.8 2.81 2.82 2.83
x∗ [.2, 0, .8, 0, 0]′ [.05, 0, .95, 0, 0]′ [.03, 0, .97, 0, 0]′ [.02, 0, .98, 0, 0]′ [0, 0, 1, 0, 0]′

E[R(x∗)] (3.95, 0.50) (5.55, 0.52) (5.71, 0.53) (5.87, 0.53) (6.03, 0.53)
Interval Value [3.45, 4.45] [5.03, 6.07] [5.18, 5.70] [5.34, 6.40] [5.50, 6.56]

Explanation of decision with T-test

In Table 6, for example, when k = 2.5, we have x∗ =
[0.52, 0, 0.48, 0, 0]′. We calculated the return

R =
n∑

i=1

rixi = r1x1 + r2x2 + r3x3 + r4x4 + r5x5

= 0.52 ∗ r1 + 0.48 ∗ r3.

Therefore, we obtained 124 new data points.
We calculated the expected value m and standard de-

viation Sn by Minitab15. The results are m ≡ (0.68, 0.45)
and Sn ≡ (1.05, 0.13). The hypothesis was H0 : m =

(0.74, 0.46), for statistic vector T ≡ (To,Tl), where To =∣∣∣∣∣∣∣∣
0.68 − 0.74

1.05√
124

∣∣∣∣∣∣∣∣ = 0.55 and Tl =

∣∣∣∣∣∣∣∣
0.45 − 0.46

0.13√
124

∣∣∣∣∣∣∣∣ = 0.17. The 95

percent confidence interval was [0.49, 0.87]and [0.43, 0.48],
respectively.

Because (0.74, 0.46) ∈ [0.49, 0.87] × [0.43, 0.48], we
accepted the hypothesis. Note that we say (0.74, 0.46) ∈
[0.49, 0.87]×[0.43, 0.48]; this means that 0.74 ∈ [0.49, 0.87]
and 0.46 ∈ [0.43, 0.48].

Hence, we obtained the fuzzy expected return

E[R(x∗)] ≡
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

E(oi)x∗i ,
n∑

i=1

E(li)x∗i

⎞⎟⎟⎟⎟⎟⎠
= (0.74, 0.46). (16)

The interval value of the fuzzy expected return was
[0.28, 1.20].

Using the same method for the other values of k, we
can also obtain the respective interval value of the fuzzy ex-
pected return. We present the results in Table 7.

In Table 7, we can see that we accepted the hypothesis
for k ≤ 2.83 and that we had a stable return for k ≥ 2.81
because we had the same expected return of radius. More-
over, we cannot solve model (15) for k > 2.83. We obtained
a negative return for k ≤ 2 and the maximum return for
k = 2.83. We got the optimal solution x∗ = (0, 0, 1, 0, 0)′
when k = 2.83. Therefore, we stop solving the model.

In this example, we conclude that the maximum fuzzy
expected return was [5.50, 6.56]. We present a scatterplot of
m0 = E[R(x∗)] ≡ (mo0 ,ml0 ) with respect to different values
of k in Fig. 1.
Example 3 In [37], Zhang implemented the concept of the
γ-level to deal with the optimization model. He also adopted
an additional condition of the upper and lower bounds in the
model proposed by Markowitz. We applied his model to
solve our problem but deleted the upper bound and lower
bound of his example.

First, we calculated the expected value of 124 in-
terval returns by Definition 2. We obtained 5 inter-
val numbers as follows: USD=r1 = [−4.56,−3.73],
EUR=r2 = [3.59, 4.89], AUD=r3 = [5.41, 6.43], GBP=r4 =

[0.17, 1.44], and CHF=r5 = [2.05, 3.06].
Hence, the lower possibilistic mean-standard deviation
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Table 8 Fuzzy statistical test for the results of model (17) and (18) with different conditions.∑5
i=1 xi 0.23 0.46 0.68 0.91 1
x∗ [0, 0, 0.23, 0, 0]′ [0, 0, 0.46, 0, 0]′ [0, 0, 0.68, 0, 0]′ [0, 0, 0.91, 0, 0]′ [0, 0, 1, 0, 0]′

[L∗,U∗] [1.24, 1.48] [2.49, 2.96] [3.68, 4.37] [4.92, 5.85] [5.41, 6.43]
m0 (1.36, 0.12) (2.725, 0.235) (4.025, 0.345) (5.385, 0.465) (5.92, 0.51)
m (1.36, 0.12) (2.72, 0.23) (4.02, 0.35) (5.39, 0.46) (5.92, 0.51)
Sn (0.60, 0.04) (1.20, 0.09) (1.78, 0.13) (2.38, 0.17) (2.61, 0.19)
A [1.26, 1.47] [2.51, 2.94] [3.71, 4.34] [4.97, 5.81] [5.46, 6.38]

×[0.11, 0.12] ×[0.22, 0.25] ×[0.32, 0.37] ×[0.43, 0.49] ×[0.47, 0.54]
Decision m0 ∈A m0 ∈A m0 ∈A m0 ∈A m0 ∈A

Fig. 1 Scatterplot of mo0 ,ml0 vs. k.

model was

max −4.56x1 + 3.59x2 + 5.41x3 + 0.17x4 + 2.05x5

s.t. x1 + x2 + x3 + x4 + x5 ≤ 1
xi ≥ 0 ∀i = 1, 2, · · · , n

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
(17)

and the upper possibilistic mean-standard deviation model
was

max −3.73x1 + 4.89x2 + 6.43x3 + 1.44x4 + 3.06x5

s.t. x1 + x2 + x3 + x4 + x5 ≤ 1
xi ≥ 0 ∀i = 1, 2, · · · , n

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
(18)

Table 8 shows the results, where L∗ denotes the optimal so-
lution in model (17), and U∗ denotes as the optimal solution
in model (18).

From Table 8, we can see that when we choose∑5
i=1 xi = 1, the optimal solution of model (17) and (18) are

the same as x∗ = [0, 0, 1, 0, 0]′.
Hence, we obtained the fuzzy expected return

E[R(x∗)] ≡
⎛⎜⎜⎜⎜⎜⎝

n∑
i=1

E(oi)x∗i ,
n∑

i=1

E(li)x∗i

⎞⎟⎟⎟⎟⎟⎠
= (5.92, 0.51). (19)

The interval value of the fuzzy expected return was
[5.41, 6.43].

5. Discussion

In this paper, we attempted to establish a fuzzy statistical
test. We proposed a method to defuzzify fuzzy data. That
is, we used central point and radius instead of interval data.
Therefore, the central point and radius were simplified to
real numbers and had statistic characteristic. We estimated
the probability distribution by using central point and ra-
dius and calculated the expected value and variance based on
the estimated parameters of the underlying probability dis-
tribution. We supported the efficacy of the proposed method
through an application of maximizing investment portfolio
of foreign exchange currencies. An empirical study of a
portfolio selection model was conducted based on a fuzzy
statistical test in Example 2.

Example 2 showed that we chose only one exchange
currency (AUD) and had the maximum expected return in
(5.50, 6.56) when k = 2.83. We say that we have a stable
return for k ≥ 2.81 because we have the same expected re-
turn of radius. Moreover, we get a negative value of return
when the value k is less than or equal to 2. We can see
that we accepted all the values k for selecting the best return
in Example 2. That is, we chose the expected return when
k = 0.5, 1, 1.5, 2, 2.5, 2.6, 2.7, 2.8, 2.81, 2.82, 2.83. But in
fact that we do not accept all the expected return because
we need to consider financial reports, experts’ individual
experiences and other factors in real world. For example,
we do not want to buy a negative expected return when the
value k is less than or equal to 2. Hence, in this example,
we thought that an investor can consider to buy a portfolio
when the value k is greater than 2.

In Example 3, we took the same interval returns as Ex-
ample 2 and used Zhang’s model [37] to solve the portfolio
selection problem. The author took the left and right points
of the interval returns to build separated models, thus obtain-
ing the maximum expected return by solving these separated
models. The results showed that Zhang obtained the max-
imum expected return by choosing only one exchange cur-
rency (AUD). (i.e. x∗ = (0, 0, 0.23, 0, 0)′ or (0, 0, 0.46, 0, 0)′
or (0, 0, 0.68, 0, 0)′ or (0, 0, 0.91, 0, 0)′ or (0, 0, 1, 0, 0)′.) We
made the value

∑5
i=1 xi equal to 0.23, 0.46, 0.68, 0.91 and

1 in Table 8 to illustrate the optimal solutions. The value∑5
i=1 xi in Table 8 is the same as in Table 6. We made a

decision by a fuzzy statistical test in this example and ac-
cepted all the solution (L∗,U∗) under different conditions.
We could see that we got positive values of expected re-
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turn in different conditions in Table 8. The expected re-
turn is better than the expected returns in Example 2 when
the value

∑5
i=1 xi is equal to 0.23, 0.46, 0.68 and 0.91, but

will get less return when
∑5

i=1 xi = 1 and choose only
one exchange currency (AUD). (i.e. the optimal solution is
x∗ = (0, 0, 1, 0, 0)′.) We conclude that although we accepted
all the expected return in this example, but it is shortcoming
that the author did not consider the risk level and only chose
one exchange currency in different conditions.

In both these two examples, we can see that our model
can give a greater expected return than the expected return
in Zhang’s model when k = 2.83. Moreover, we provide dif-
ferent risk levels for investors to make decision. The fuzzy
statistical test also provides reasonable results in our model.
We not only make a decision by a fuzzy statistical test but
also consider financial reports, experts’ individual experi-
ences and other factors in real world.

The results base on a fuzzy statistical test can indicate
two informations as follows. 1. In our paper, we tested the
expected return by a fuzzy statistical test, the results indi-
cated whether we should accept or reject the expected re-
turn. 2. Since the expected return was solved from the port-
folio selection model and the parameters in the model were
calculated by estimated parameters of underlying distribu-
tion function, we conclude that if we accept the hypothesis
(i.e. expected return), it means that it is no problem from
data extraction to get an expected return based on the value
k.

In our paper, we provide the risk level k for investors
to make decision. We need to decide the value k first and
solve the linear programming model many times until we
get the solution with only one exchange currency. Because
of setting the value k in the model, we have many expected
returns which depend on the value k. We obtain a maximum
return with different risk levels in our model and make a de-
cision for selecting the best return by a fuzzy statistical test.
We conclude that it is conservative investment and more ob-
jective for investors to make decision when they buy many
exchange currencies. We also conclude that the evaluation
by the fuzzy statistical test enables us to obtain a stable ex-
pected return and low risk investment with different choices
based on the risk level k.

6. Conclusions

In this paper, we established a statistical test of fuzzy data
which is called as fuzzy statistical test. We introduced a con-
cept for “defuzzifying” fuzzy data into real numbers. That
is, we use the central point and radius instead of the inter-
val data. Hence, the central point and radius will have the
statistic characteristics as mean and variance, and the con-
ventional statistic test can be applied. In order to illustrate
the efficacy of the proposed method, we introduced an ap-
plication of maximizing investment portfolio of foreign ex-
change currencies.

The portfolio selection model was built by using ex-
pected value and variance of central point and radius. The

expected value and variance was calculated by the estimated
parameters of underlying distribution function. We evalu-
ated the best return by a fuzzy statistical test. In this pro-
cedure, from data extraction to fuzzy statistical test, it is
no doubt that the model can deal with the interval data, so
does the fuzzy statistical test, because we had “defuzzify-
ing” fuzzy data into real numbers before we solved the port-
folio selection model. Hence, the model becomes to a tradi-
tional linear programming model.

The empirical studies showed that we could provide
many risk levels and expected returns. It’s more objective
for investors to make decision when they buy exchange cur-
rencies. But we still have further points need to improve in
the future as follows:

1. In this paper, we just considered the interval returns.
We thought that if we can estimate the returns with tri-
angular fuzzy numbers or trapezoid fuzzy numbers in
the future, it will make the proposed method more re-
alizable.

2. In the proposed portfolio selection model, we gave a
constraint inequality with risk level k which was given
in advance. We made the value k greater than zero and
accurate to second decimal places in our paper. We
thought that we can give more risk levels and results
for investors to make decision in the future.

3. In fact that the financial market is affected by many
non-probabilistic factors and the future returns of risky
assets cannot be predicted accurately in any uncertain
economic environment. Although we can evaluate and
select the best return by a fuzzy statistical test, we
thought that we also need to consider financial reports,
experts’ individual experiences and other factors in real
world.
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