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Hardware Software Co-design of H.264 Baseline Encoder on
Coarse-Grained Dynamically Reconfigurable Computing
System-on-Chip

Hung K. NGUYEN†a), Nonmember, Peng CAO†b), Member, Xue-Xiang WANG†, Jun YANG†, Longxing SHI†,
Min ZHU††, Leibo LIU††, and Shaojun WEI††, Nonmembers

SUMMARY REMUS-II (REconfigurable MUltimedia System 2) is a
coarse-grained dynamically reconfigurable computing system for multi-
media and communication baseband processing. This paper proposes a
real-time H.264 baseline profile encoder on REMUS-II. First, we pro-
pose an overall mapping flow for mapping algorithms onto the platform
of REMUS-II system and then illustrate it by implementing the H.264 en-
coder. Second, parallel and pipelining techniques are considered for fully
exploiting the abundant computing resources of REMUS-II, thus increas-
ing total computing throughput and solving high computational complex-
ity of H.264 encoder. Besides, some data-reuse schemes are also used
to increase data-reuse ratio and therefore reduce the required data band-
width. Third, we propose a scheduling scheme to manage run-time re-
configuration of the system. The scheduling is also responsible for syn-
chronizing the data communication between tasks and handling conflict
between hardware resources. Experimental results prove that the REMUS-
MB (REMUS-II version for mobile applications) system can perform a
real-time H.264/AVC baseline profile encoder. The encoder can encode
CIF@30 fps video sequences with two reference frames and maximum
search range of [−16, 15]. The implementation, thereby, can be applied
to handheld devices targeted at mobile multimedia applications. The plat-
form of REMUS-MB system is designed and synthesized by using TSMC
65 nm low power technology. The die size of REMUS-MB is 13.97 mm2.
REMUS-MB consumes, on average, about 100 mW while working at
166 MHz. To my knowledge, in the literature this is the first implemen-
tation of H.264 encoding algorithm on a coarse-grained dynamically re-
configurable computing system.
key words: reconfigurable computing, reconfigurable multimedia sys-
tem, REMUS-II, coarse-grained dynamically reconfigurable architecture,
H.264/AVC encoder

1. Introduction

H.264/AVC is the latest video coding standard developed
jointly by ITU-T Video Coding Experts Group and ISO/IEC
Moving Picture Experts Group. It was designed to re-
place all the past video standards in almost all kinds of
applications. Therefore, it defines several different pro-
files to meet the various requirements for distinct applica-
tions. Compared with previous standards, the coding tools
of H.264/AVC when used in an optimized mode allow them-
selves to achieve up to 50% improvement in bit-rate effi-
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ciency at the expense of more than two times the compu-
tational complexity for a decoder and more than ten times
the hardware complexity for an encoder [1]. The reason is
that many new features such as quarter-pixel accurate mo-
tion estimation with variable block sizes (VBS-ME) and
multiple reference frames, intra prediction, integer transfor-
mation based on the discrete cosine transform (DCT), alter-
native entropy coding modes CAVLC or CABAC, in-loop
de-blocking filter, etc. are included.

Implementation of H.264 codec for mobile devices
gives designers some challenges such as reducing chip
area and power consumption, increasing application per-
formance, shortening time-to-market, and simplifying the
updating process. Traditional approaches, e.g. Application
Specific Integrated Circuits (ASICs), Digital Signal Proces-
sors (DSPs), Application-Specific Instruction Set Proces-
sors (ASIPs), and Field Programmable Gate Arrays (FP-
GAs) have been used for implementing the mobile mul-
timedia systems. However, none of them meet all of the
above challenges [23]. Recently, a very promising solution
was the reconfigurable computing systems that couple pro-
cessors with Coarse-Grained Reconfigurable Architectures
(CGRA). When implementing an application, these systems
map kernel functions of the application onto the CGRAs so
they can achieve high performance approximately equiva-
lent to that of ASIC while maintaining a degree of flexibility
close to that of DSP processors. By dynamically reconfig-
uring hardware, CGRAs allow many hardware tasks to be
mapped onto the same hardware platform, thus reducing the
area and power consumption of the design.

To overcome some limitations of conventional micro-
processors and fine-grained reconfigurable devices in the
field of multimedia and communication baseband process-
ing, we developed a coarse-grained dynamically reconfig-
urable computing system called REMUS-II. In this paper,
we first propose an overall mapping flow that is possible to
apply for mapping an arbitrary algorithm onto the platform
of REMUS-II system. Next, we present HW/SW (Hard-
ware/Software) co-design of the H.264/AVC baseline pro-
file encoder, which is aimed at mobile multimedia appli-
cations, on the platform of REMUS-MB (REMUS-II ver-
sion for Mobile applications) in detail. Our implementa-
tion supports all tools of baseline profile and can encode
CIF@30 fps video sequences with two reference frames
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and search range [−16, 15] in real-time when operating at
166 MHz. The encoder can produce the compressed video
sequences of which quality and bit-rate approximate those
of the JM reference software. The die size of REMUS-MB
is 13.97 mm2. REMUS-MB consumes, on average, about
100 mW while working at 166 MHz. The experimental re-
sults showed that the implementation meets requirements
for high performance, flexibility, and energy efficiency.

The rest of the paper is organized as follows. Related
works and problem definition are presented in Sect. 2. In
Sect. 3, overview of the REMUS-MB architecture is intro-
duced. The overall mapping flow for mapping an arbitrary
algorithm onto the platform of REMUS-II system is pro-
posed in Sect. 3. The Sects. 4 and 5 give implementation
of the H.264 encoder on REMUS-MB system in detail. The
experimental results and conclusion are given in Sects. 6 and
7, respectively.

2. Related Works and Problem Definition

In the literature, there are a lot of works related to the re-
alization of modules of an H.264/AVC encoder, but there
are only several works that proposed a complete design of
H.264/AVC encoder. Most of them use ASIC approach [e.g.
2-6], whereas the others use DSP [e.g. 7] or ASIP [e.g. 9, 10]
approach.

All of ASIC-based implementations aim at support-
ing high-resolution video sequences (e.g. 720 pHD or
1080 pHD) due to high-performance advantage of ASIC
method. Although the ASIC-based approach can achieve
optimization on power consumption, area, and performance,
it lacks flexibility. Therefore, ASIC-based designs usually
have a higher NRE (Non-Recurring Engineering) cost and
longer time-to-market when the system needs upgrading or
changing. By contrast, multimedia systems are often de-
signed not only for a specific application but also for multi-
ple applications. This sharing of resources by several appli-
cations makes the system cheaper and more versatile. Be-
sides high performance, low power consumption and cost,
it also needs flexibility to simplify upgrades without replac-
ing the system. Moreover, mobile multimedia applications
often have the limited display resolution and low bit-rate,
and just need supporting baseline profile with video formats
Common Intermediate Format (CIF = 352×288) and Quar-
ter CIF (QCIF = 176 × 144). Therefore, for the mobile
multimedia applications, DSP, ASIP, and CGRA-based ap-
proaches can be used to achieve high flexibility. The work
in [7] developed and optimized H.264/AVC video encoder
on the TM320DM642 DSP platform. However, because of
limitation related to performance of DSP processors, the au-
thors implemented a series of optimization to reduce com-
plexity of the algorithm at the expense of significant degra-
dation in compressed video quality. As an alternative solu-
tion, ASIP-based designs were proposed to compromise the
advantages of ASIC and DSP approaches. The authors in [9]
proposed an ASIP processor for only intra-frame encoding
part of H.264/AVC encoder. In [10], the authors proposed

an ASIP architecture, which is called VSIP, for implemen-
tation of H.264/AVC. To implement a real-time H.264/AVC
decoder, VSIP needs coprocessors for high computation-
intensive parts such as inter prediction and entropy coding.
However, there is not any result related to the encoder to be
shown.

Obviously, the ASIP approach also does not of-
fer sufficient computing power for implementation of
the H.264 codec, especially the H.264 encoder. To
overcome these obstacles, several CGRAs such as
RaPiD [11], MorphoSys [12], PACT XPP-III [13], [14], and
ADRES [15], [16] have been proposed for modern multi-
media and wireless communication applications in the last
decade. PACT XPP and ADRES are the most noticeable
two architectures. PACT XPP-III [13] consists of an ar-
ray of three types of coarse-grained Processing Array Ele-
ments (PAEs): ALU-PAE, RAM-PAE, and FNC-PAE, and a
packet communication network. The ALU-PAEs and RAM-
PAEs are combined to produce a dataflow array for process-
ing computation-intensive parts. FNC-PAE is a VLIW-like
processor core that is aimed at processing control-oriented
parts of the application. ADRES [15] is the reconfigurable
system template that tightly couples a VLIW processor and
a coarse-grained reconfigurable matrix. The VLIW proces-
sor and the coarse-grained reconfigurable matrix are inte-
grated into a single architecture but with two virtual func-
tional views. These CGRAs have been proven to be the
promising solution for multimedia processing. Some works
have been proposed to map either parts [17], [21] or the
whole [14], [16], [19] of H.264 decoding algorithms onto
CGRAs. However, to my knowledge, there is not any previ-
ous work that is proposed for implementation of the H.264
encoder in the literatures. One of the main reasons is that
these CGRAs do not provide enough computing resources
for dealing with very high computational complexity of
H.264 encoder. For example, to solve high computational
complexity of the motion estimation module, the proposed
VLSI designs usually adopt a parallel architecture that in-
cludes 256 PEs (Processing Elements) and an adder-tree in
order to exploit completely inherent parallelism of the algo-
rithm. Whereas, the limited resource amount of the existing
CGRA architectures makes them impossible to satisfy real-
time processing requirement.

3. Architecture of REMUS-II System

3.1 Overview of the REMUS-II Architecture

REMUS-II, which stands for REconfigurable MUltimedia
System 2, is a coarse-grained reconfigurable computing
system for multimedia and communication baseband pro-
cessing. We have developed two versions for REMUS-II:
REMUS-HD for High-Definition applications and REMUS-
MB for Mobile applications. The main difference between
REMUS-HD and REMUS-MB is: REMUS-HD has two
RPUs (Reconfigurable Processing Unit), whereas REMUS-
MB has only one RPU. The overall architecture of the
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Fig. 1 The overall architecture of REMUS-MB.

REMUS-MB is shown in Fig. 1. The REMUS-MB con-
sists of an ARM7TDMI, an RPU, a Micro Processor Unit
(μPU), and several assistant functional modules such as in-
terrupt controller (IntCtrl), Direct Memory Access (DMA)
unit, and External Memory Interface (EMI), etc. All mod-
ules are connected with each other by ARM AMBA bus.
The ARM processor functions as the host processor that is
used for controlling application and scheduling tasks. The
RPU is a powerful dynamically reconfigurable system, and
consists of four Reconfigurable Computing Arrays (RCAs).
In turn each of RCAs is an array of 8x8 RCs (Reconfigurable
Cells), and can run independently to accelerate computing
performance.

In comparison with the previous version [18] of RE-
MUS, this version has been improved by adding the μPU
and optimizing Data-flow. The μPU consists of an array
of 8 RISC micro-processors (μPEA) and an array of stream
processing elements (SPA). The processors of the μPU com-
municate with each other and with the ARM processor by
a simple mailbox mechanism. The processing elements of
SPA are dedicated to bit-level computation-intensive appli-
cations, e.g. entropy codec, whereas the μPEA is aimed
at executing control-intensive parts and float-point oper-
ations of applications. With the extended ability of the
μPU, HW/SW partition becomes more flexible. By map-
ping computation-intensive kernel loops onto the RPU, and
control-intensive tasks or bit-level, float-point operations
onto μPU, the REMUS-II system can achieve the same per-
formance as ASIC while maintaining a degree of flexibility
close to that of DSP processors. On the other hand, to satisfy
the high data bandwidth requirement of multimedia applica-
tions, data flow of REMUS-II was optimized [20] to offer a
three-level hierarchical memory, including off-chip memory
(DDR SDRAM), on-chip memory (SRAM), and RPU inter-
nal memory (RIM). In order to accelerate the data flow, a
Block Buffer is also designed to cache data for RPU.

The operation of REMUS-II is reconfigured dynami-
cally in run-time according to the required hardware tasks.

Fig. 2 The RCA architecture.

To support such configuration, RPU is equipped with a
Configuration Interface (CI) and a hierarchical configura-
tion memory (CM). The CI is responsible for receiving and
buffering configuration words, or context, which are sent
from the μPU. Function of whole RCA can be reconfig-
ured once by the CI. The CM is composed of off-chip CM,
on-chip CM, and Context Register files. Contexts can be
dynamically pre-fetched from off-chip CM and cached by
on-chip CM that leads configuration to be accelerated. The
Context Register files are equipped for each RCA core in
order specify the way each RCA will operate.

3.2 Architecture of RCA Core

The RCA core is composed of an array of 8x8 RCs, an
Input FIFO (Input FIFO), an Output FIFO (Output FIFO),
two Constant Registers (Constant REG), RIM memory and
a controller, etc. (Fig. 2). The input and output FIFO is the
I/O buffers between external data flow and RCA. Each RC
can get data from the input FIFO or/and Constant REG, and
store data back to the output FIFO. These FIFOs are all 256-
bit in width and 8-row in depth, and can load/store thirty-two
bytes or sixteen 16-bit words per clock cycle. Especially, the
input FIFO can broadcast data to every RC that have been
configured to receive the data from the input FIFO. This
benefits data-reuse between iterations. Interconnection be-
tween two neighboring rows of RCs is implemented by the
router. Through the router, an RC can get results that come
from an arbitrary RC in the immediately above row of it.
The Controller generates the control signals that maintain
execution of RCA accurately and automatically according to
configuration information in the Context Registers. The ar-
chitecture of RCA core is basically loop-oriented one. Exe-
cuting model of the RCA core is pipelined multi-instruction-
multi-data (MIMD) model. In this model, each RC can be
configured separately to process its own instructions, and
each row of RCs corresponds to a stage of pipeline. Multiple
iterations of a loop are possible to execute simultaneously in
the pipeline.

RC is the basic processing unit of RCA. Each RC in-
cludes the data-path that can execute signed/unsigned fixed-
point 8/16-bit operations with two/three source operands,
such as arithmetic and logical operations, multiplier, and
multimedia application-specific operations (e.g. barrel shift,
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shift and round, absolute differences, etc.). Each RC also
includes a register called TEMP REG. This register can be
used either to adjust operating cycles of the pipeline when a
loop is mapped onto the RCA, or to store coefficients during
executing an RCA core loop.

3.3 Three-Level Configuration Model

The configuration information for REMUS-II is organized
in three levels: RPU-level context (CL0), RCA-level con-
text (CL1), and Core-level context (CL2). The CL0 con-
text consists of the information about which CL1 context
will be loaded into the RPU, as well as how to communi-
cate data between internal and external components of the
RPU, etc. The total length of CL0 is variable from 1 to 33
32-bit words. The CL0 is dynamically generated by the host
ARM or the μPE which is specified as the supervisor of the
RPU. The CL1 context defines the data communication of
a certain RCA, and the address of CL2 contexts that needs
to be loaded for an execution session. The total length of
CL1 is variable from 5 to 73 32-bit words. The CL2 context
specifies particular operation of the RCA core (operation of
each RC, interconnection between RCs, input source, output
location, etc.) as well as the control parameters that con-
trol operation of the RCA core. The total length of CL2
is 107 32-bit words. The configuration process is divided
into three stages: the first stage is for generating configura-
tion context (CL0); the second stage is for pre-fetching and
delivering context group (CL1); and the third stage is for re-
allocating core contexts (CL2). These three stages also can
be pipelined.

4. Mapping Methodology

To utilize the abundant amount of resources of REMUS-
II for exploiting inherent multilevel parallelism in applica-
tions, a mapping flow started from a high-level description
of an algorithm keeps an important role. Mapping flow for
REMUS-II must deal with many aspects of parallel com-
puting and all its associated compiling techniques such as
computation and data partition, inter-process synchroniza-
tion, and code generation, etc.

In this paper, we propose an overall mapping flow,
which is based on traditional SoC (System-on-Chip) design
flow, for mapping an arbitrary algorithm onto the platform
of REMUS-II system as shown in Fig. 3. The presence of
reconfigurable resources in the REMUS-II system leads to
the need for modifying and extending the conventional de-
sign flow so that it focuses on the higher abstraction levels
at where most of the important design decisions are given.
Since structure of the reconfigurable hardware has been de-
fined, the main characteristics of the RPU have to be taken
into account during HW/SW co-design to identify the parts
of the applications that are candidates for mapping on the re-
configurable hardware. Afterwards, the mapping flow syn-
thesizes those parts to generate configuration information
(or context) instead of the architecture design phase as in

Fig. 3 Mapping flow proposed for REMUS-II system.

the traditional SoC design flow. At this aspect, the map-
ping flow is quite similar to the compilation flow for soft-
ware programs running on a processor. On the other hand,
run-time reconfigurability of reconfigurable hardware also
brings new problems to the partition and mapping of hard-
ware tasks. For partition between hardware tasks, instead of
just considering spatial partition as it happens in traditional
SoC hardware design the temporal partition and schedul-
ing problem must be addressed. Furthermore, it also needs
a mechanism, which is similar to scheduling in multi-task
operating systems, to handle context multiplexing as well
as inter-context data communication. This causes increase
in complexity of the mapping flow, since only mapping of
hardware tasks also includes the problems of HW/SW co-
design.

We have been working in an effort to automate this
mapping flow. Currently, some phases have been assisted by
automatic tools (e.g. Core-level Mapper, RCA-level Map-
per), whereas the others either have been developing (e.g.
partitioning of a large DFG into several sub-DFGs) or still
need manual effort (Code-level transformation, HW/SW Par-
tition, and Code Generation).

5. Implementation of H.264 Encoder

The main challenge of H.264 encoder implementation is
high computational complexity and huge data bandwidth of
some encoding tools, e.g. multi-frame, variable block size
motion estimation (MF-VBS-IME). This section presents
the method for mapping the H.264 baseline profile encod-
ing algorithm, which is aimed at mobile multimedia appli-
cations, onto REMUS-MB system in detail. The REMUS-
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II system still lacks the automatic tools that aid design-
ers in the process of HW/SW Partition and Code Gener-
ation. Therefore, to map H.264 encoding algorithm onto
the REMUS-MB system, we have done these phases man-
ually using the heuristic method that requires experience
and knowledge about the target architecture as well as the
algorithm of application. We first develop a REMUS-
MB-oriented C-software model for the encoding algorithm
and then focus on analyzing computation-intensive loops
of the model. Some loop and data structure transforma-
tions are used to parallelize computation-intensive parts
while reducing inter-process data communication. Next, the
computation-intensive loops are mapped onto RPU to in-
crease total computing throughput and solve high compu-
tational complexity. Besides, some data-reuse schemes are
also used to increase the data-reuse ratio, hence reduce re-
quired data traffic. Finally, we propose a scheduling scheme
to manage the dynamic reconfiguration of the system. The
scheduling scheme also takes charge of synchronizing the
data communication between tasks, and managing the con-
flict between hardware resources.

5.1 Structure of H.264/AVC Encoder for REMUS-MB

The mobile multimedia applications usually have the limited
display resolution and the low bit-rate. Therefore, a base-
line profile encoder supporting video formats such as CIF
and QCIF is appropriate for these applications. However,
to achieve the best quality, our encoder supports full-search
VBS-ME with two reference frames and a [−16, 15] search
range. Some main specifications for the encoder are listed in
Table 1. We choose the JM reference software [26] as a start
point for developing our C model. The JM software has ex-
cellent compression performance, but the code contains a lot
of redundant coding tools and the complex data structure. It
also includes many sequential processes, so it requires some
modifications and optimizations to be mapped efficiently to

Table 1 Parameters of H.264 encoder.

parallel hardware architecture of the REMUS-MB system.
The C model, which contains only tools of the base-

line profile, is profiled by ARM profiler to detect the
computational-intensive loops. Figure 4 shows the encoding
process of the encoder with main functional blocks: Mo-
tion Estimation (ME), Motion Compensation (MC), Intra
Prediction (IPRED), Rate-Distortion Mode Decision (MD),
(Inverse) Transform and Quantization, Reconstruction, and
Context Adaptive Variable Length Coding (CAVLC). These
functional blocks process 16 × 16-pixel Macro-Blocks
(MBs) of each current frame one-by-one. The prediction
MB, which is predicted either by Intra Prediction (I-type)
or by Inter Prediction (P-type), is subtracted from the cur-
rent MB to calculate residues. Next, the residues are trans-
formed, quantized, and entropy coded. In our implementa-
tion, the computing of residues for I-type MB is merged into
MC unit. After that, if MB is P-type, MC unit will continue
to interpolate chroma pixels at sub-pixel location according
to the motion vector outputted by ME unit and then calculate
the chroma residues.

5.2 Hardware/Software Partition

Some time-consuming functional modules as shown in
Fig. 4 need accelerating by the RPU, whereas the others are
mapped on μPU for processing in parallel.

The ME, which consumes about 50%–90% of the to-
tal encoding time depending on the number of reference
frames [2], is the most complex module of the encoder.
Therefore, the ME is the best candidate for mapping on the
RPU. Besides, we also choose MC, Transform and Quan-
tization (Trans: including both forward and inverse paths),
and Deblocking filter (DB) to map on the RPU due to its
inherent instruction-level and data-level parallelism. The
loops of these modules are transformed and partitioned fur-

Fig. 4 Functional block diagram of H.264/AVC encoder.
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ther into some sub-tasks whose DFG fit on the computing
resource of the RPU.

In Intra-frame prediction (IPred), all prediction pixels
are calculated based on the reconstructed pixels of previ-
ously encoded neighboring blocks or MBs. There are nine
prediction modes for luma 4×4-blocks (IPred4×4) and four
prediction modes for luma 16 × 16-block (IPred16×16) and
chroma 8 × 8-blocks (IPred chroma). For each block, Intra
prediction is implemented by referring to its upper, upper-
left, left, and upper-right neighboring blocks. Because of
data dependency among IPred4×4 of luma 4×4-blocks, five
functional units - including IPRED, IntraMD, TQ, ITQ, and
ResCons - form an encoding loop (Fig. 5). Because of sup-
porting various prediction modes without loop-level paral-
lelism, Intra-frame prediction is a control-intensive and ir-
regular process. Therefore, generating prediction pixels for
each mode (IPred16×16, IPred chroma, and IPred4×4), In-
traMD and ResCons are assigned to the μPEA, whereas TQ
and ITQ (i.e. Trans. for IPred4×4 in Fig. 6) of the IPred4×4
encoding loop are assigned to the RPU.

The parameters of the prediction model (e.g. MB-type,
prediction information, QP, etc.), residual coefficients are
compressed by the entropy encoder. The bitstream gener-
ator then produces a compressed bit-stream or file accord-
ing to syntax of H.264 [1]. A compressed video sequence
consists of coded prediction parameters, coded residual co-
efficients and header information. In the baseline profile of
H.264/AVC, CAVLC is used to encode the residual coeffi-
cients and Universal Variable Length Coding (UVLC) is
used to encode the parameters. All of these methods require
bit-level manipulations, which are inefficient to be imple-

Fig. 5 Encoding loop of IPred4×4.

Fig. 6 Scheduling for encoding a P-type Macro-block on the REMUS-MB.

mented by the RPU since the RPU is designed to process
data at the word-level. For this reason, entropy encoder
(CAVCL and UVLC) and bitstream generator are mapped
to the SPA of the μPU.

Finally, control and schedule of the whole encod-
ing process are mapped onto the ARM host processor,
whereas the rest of code, including MVcost generation,
Rate-Distortion Mode Decision, Reconstruction (ReCon),
boundary strength (Bs) computation, etc. are mapped onto
the μPEA.

5.3 Scheduling of Tasks

After HW/SW partition, the hardware tasks are synthesized
to generate configuration information (e.g. DFG, control pa-
rameters, modes of data transfer). On the other hand, some
codes are inserted into the source code of software tasks for
purpose of supervision and communication. Each functional
module is implemented independently on REMUS-MB sys-
tem to evaluate functionality and performance before they
are integrated together into a complete encoder. Because of
run-time reconfigurability of the REMUS-MB system, the
integration is a very complex process that requires a good
schedule to manage switch tasks in/out of the reconfigurable
hardware. The schedule is also responsible for synchroniz-
ing the data communication among tasks and handling the
conflict between hardware resources.

Based on analyzing the data dependency between tasks
of H.264 encoder, the tasks are scheduled and controlled
by the host ARM processor. Figure 6 shows scheduling
scheme for the worst case, encoding a P-type Macro-block.
In order to achieve H.264 CIF@30 fps real-time encoding
at 166 MHz clock, the system must process each MB in
about 13973 clock-cycles. Firstly, at the system level, data
flow of the encoder is shortened by exploiting parallelism
among its tasks. In particular, inter prediction is scheduled
to execute in parallel with intra prediction, whereas entropy
coding and deblocking filter are also scheduled to execute
concurrently. At the module level, each task is again parti-
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Fig. 7 (a) Configuration of the REMUS-MB for implementation of the whole H.264 encoder, and (b)
Mailbox architecture.

tioned into several sub-tasks for parallel execution. For ex-
ample, SAD/SATD computation of ME task is mapped onto
the RPU, whereas generating MVCost, computing the cost
function, and making Inter mode decision (InterMD) are as-
signed to the μPEA; Deblocking process is also divided into
two main stages: Boundary-Strength (Bs) parameter calcu-
lation which is allocated to the μPEA, and filtering operation
that is mapped onto the RPU.

After the system is powered or reset, the ARM host
processor is booted automatically from external program
memory. It will boot the μPEA then. The main function of
ARM is to manage the computing resources of the REMUS-
MB by scheduling and allocating tasks to proper computing
resources. Besides, the ARM processor also takes charge
of managing the shared memories which are used for data
communication among tasks. The μPE of μPEA can operate
as a supervisor associated with a RPU or as an independent
processing element. As a supervisor, the μPE is responsi-
ble for generating or/and selecting configuration words at
run-time. As an independent processing element, the μPE is
in charge of executing control-intensive tasks and the other
tasks which are not suitable for RPUs, e.g. float point opera-
tions. In practice, we choose the μPE0 to associate with the
RPU as the supervisor that will generate configuration con-
text for the RPU according to the required hardware tasks, as
well as implementing data communication between the task
on the RPU and the tasks on the other hardware resources.
The μPE7 is chosen to supervise and collaborate with the
SPA in order to execute the Entropy encoding and generate
the output bit-stream (Fig. 7 (a)).

Communication and synchronization: The μPEs
of the μPU communicate with each other and with the
ARM processor via a simple mailbox-based mechanism
(Fig. 7 (b)). When one device (μPE or ARM processor)
wants to communicate with the others, it first sends a mail

to the mailbox, next the mailbox generates an interrupt that
informs the corresponding processor to check the mail and
handle it. Since an incoming mail will trigger a new process
on μPE, RPU, or SPA, the mail also serves as synchroniza-
tion.

Operation of RPU: When appearing a requirement
to execute a hardware task, e.g. IME task, on the RPU,
the ARM processor sends the relevant control information
to the μPE0 through the mailbox. Then the μPE0 gen-
erates the configuration words dynamically and/or select-
ing proper configuration context from Context-Group cache
to configure the RPU. After receiving configuration con-
text through FIFO Write Channel, communication channel
and memory access modes are configured first to pre-fetch
data from external memory to RIM and then write to in-
put FIFO. Next, functionalities of RCA cores are config-
ured according to the given task. Once configuration has
finished and data is available on inputs (e.g. Input FIFO,
Constant REGs, TEMP REGs), RCA core can start execu-
tion. Three phases, including Configuration, data Load, and
Execution, are possible to implement in pipelined fashion.
Therefore, it is possible to hide the time of configuration
and data load under the time of execution. The time needed
to configure the whole RPU (e.g. for the first time) is about
62 cycles. For the next configuration times (e.g. configura-
tion for FME and Trans), because the configuration hides
under previous processes it only takes four cycles on aver-
age to switch between the current task and the next task.
Some tasks (for example, MC and DB) have the data depen-
dence on the processes that are not executed by RPU, thus
after configuring they have to wait for available data on in-
puts. As a result, these tasks cannot start until the previous
processes have finished.

Operation of the SPA: After intra/inter prediction and
transform and quantization for a MB have completed, MB-
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level information (i.e. MB-type, prediction parameters, etc.)
and the residual coefficients must be encoded to form the
compressed bit-stream. The SPA consists of an array of
special-purpose processing elements, which can be used to
implement multi-standard entropy encoding/decoding under
controlling of one or more μPEs of the μPEA. In this paper,
particularly, the μPE7 and the SPA collaborate on encoding
the parameters and residual coefficients to form the com-
pressed bit-stream. The μPE7 receives control parameters
(e.g. picture parameters, slice-level information, address of
residual coefficients, etc.) and generating signals to control
operation of the SPA. The SPA is in charge of encoding the
residual coefficients by using CAVLC and LUT (Look-up
Table) unit, and encoding the parameters by using UVLC
unit to produce Header and MB-level bit-streams, respec-
tively. The ADG (ADdress Generating) unit is used to gen-
erate addresses that allow residual coefficients to be read
from SRAM in the zig-zag order to the input FIFO of the
SPA. Besides, SPA is also responsible for packing MB-layer
bit-streams and Header information into NAL (Network Ab-
straction Layer) units of the output bit-stream according to
the syntax of the H.264 standard [1]. The whole entropy en-
coding process requires about 622 cycles to complete for the
worst case (QP = 20).

6. Partition and Mapping of Motion Estimation

VBS-ME is the tool that has the highest computational
complexity and the largest memory access bandwidth in
H.264/AVC encoder. An efficient implementation of ME
module has an important role in successful implementation
of the whole H.264 encoder. To demonstrate the low-level
mapping branch of the Mapping flow, this section presents
the methodology for mapping the kernel loops of full-search
VBS-ME algorithm onto the RPU in detail, as well as show-
ing how the RPU collaborates with the other hardware re-
sources to complete function of VBS-ME algorithm.

Motion Estimation (ME) in video coding exploits tem-
poral redundancy of a video sequence by finding the best
matching candidate block of each current MB from a search
window in reference frames. The H.264 standard supports
VBS-ME that means each current MB has 41 partitions or
sub-partitions of seven different sizes (4 × 4, 4 × 8, 8 × 4,
8× 8, 8× 16, 16× 8, and 16× 16). The H.264 also supports
quarter-pixel accurate ME, so VBS-ME is partitioned into
integer ME (IME) and fractional ME (FME). If full-search
VBS-IME is chosen and search range is [−p, p − 1] in both
x- and y-directions, the size of the search window is given
by [N + 2p− 1,N + 2p− 1]. Therefore, each of 41 partitions
or sub-partitions needs to be matched with 4p2 candidates in
the search window by evaluating the RDO (Rate-Distortion
Optimized) cost function:

J = S AD + λ × MVCost, (1)

S AD(m, n) =
N−1∑
i=0

N−1∑
j=0

|C(i, j) − P(i + m, j + n)|. (2)

Here, S AD(m, n) is sum of absolute differences of the
current block and the candidate block at search position (m,
n), MVCost is estimated by using a lookup table defined in
the reference software by JVT, and λ is Lagranggian pa-
rameter that is derived from the quantization parameter to
make trade-off between distortion and bit-rate. C(x, y) and
P(x, y) are the current and search pixel, respectively; Mo-
tion Vector, MV, is the offset between position of the current
macro-block and position of a candidate block in the search
window.

Next, FME performs motion search around the center
pointed by Integer MV (IMV) and further refines 41 IMVs
into fractional MVs (FMVs) of half- or quarter-pixels pre-
cision. FME is usually divided into two stages: fractional
pixels are interpolated from integer pixels, and then residual
pixels between current block pixels and interpolated pixels
are used to compute the cost function for each search posi-
tion. FME interpolates half-pixels using a six-tap filter and
then quarter-pixels by a two-tap one [1]. The cost function
is given by:

J = S AT D + λ × MVCost. (3)

where, SATD is the sum of absolute values of Hadamard
transformed residual pixels. The Hadamard transform is
based on 4 × 4-block. Computation of SATD is as follows:

D(i, j) = C(i, j) − P(i, j) (4)

T D = H∗D∗H

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1 1
1 1 −1−1
1−1−1 1
1−1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∗D∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1 1
1 1 −1−1
1−1−1 1
1−1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

S AT D =

⎛⎜⎜⎜⎜⎜⎜⎝
3∑

i=0

3∑
j=0

|T D(i, j)|
⎞⎟⎟⎟⎟⎟⎟⎠
/
2 (6)

6.1 Integer Motion Estimation

A. HW/SW Partition
The loops of full-search VBS-IME procedure are trans-
formed so that 41 SADs (in Eq. (2)) of partitions of seven
size modes are computed according to a tree-based hierar-
chical architecture, i.e. SAD of sixteen 4x4-partitions are
computed and then reused to compute SADs of larger size
partitions. By rearranging, we can reduce about 85% of to-
tal amount of SAD computations by eliminating redundant
computations. Next, HW/SW partition decides to map the
control of the loops onto the ARM7 host processor, while
the body of the loops gets further transformation by dis-
tributing to two parts: (1) computations of SADs of 41 par-
titions; and (2) computation of MVcosts and cost function
J, and decision on the minimum J. Because computation of
MVCost includes bit-level operations, whereas decision on
the minimum Js includes many if-statements, so it is more
efficient to map part (2) onto the μPU. Part (1) is mapped
onto the reconfigurable hardware array as shown in the next
sub-section.
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Fig. 8 (a) Parallel implementation, (b) Systolic implementation for computing SAD 1×4 of a candi-
date, and (c) DFG of the task IME-1 (DFG1) for computing SAD 1×4s of one 8 × 8-block.

B. Partition and Mapping of Hardware Tasks onto RCA
To implement SAD computation of 41 partitions, the pro-
posed VLSI designs usually compute concurrently 256 ADs
(Absolute Differences in Eq. (2)) first, and then an adder-tree
is used to calculate 41 SADs of partitions/sub-partitions.
This process makes a continuous data-flow, so no intermedi-
ate data are buffered. In contrast, REMUS-MB just has 256
RCs that are enough to compute 256 ADs concurrently, but
for completing computation of 41 SADs it must be imple-
mented by some contexts. In other words, the computation
of 41 SADs needs partitioning into several sub-tasks that fit
on available resources of the RPU. However, the presence of
multi-context gives rise to the problem about inter-context
data communication. When partitioning, therefore, we have
to consider two criterions: performance and amount of data
exchanged between tasks, with constraint of the available
(computing and storage) resources of only one RCA. Num-
ber of contexts is also taken into account during partition be-
cause a large number of contexts increases not only pressure
on capacity of memory for intermediate data and configura-
tion contexts but also configuration overhead when switch-
ing between contexts.

Firstly, each 16 × 16-MB is divided into four 8 × 8-
blocks so that amount of the corresponding computations
is fitted in available resource of one 8 × 8-RCA. Then
four 8 × 8-blocks are mapped currently onto four 8 × 8-
RCAs for parallel processing. Next, the computation of
SADs is divided into three tasks: the task IME-1 first
computes SAD of 1 × 4-pixel columns (SAD 1×4) at all
search positions; next IME-2 is responsible for computing
SAD of sub-partitions (i.e. SAD 4×4, SAD 4×8, SAD 8×4,
SAD 8×8); and then IME-3 computes SAD of partitions

Table 2 Various ways of IME-1 task. (for computing an 8×8-candidate)

(i.e. SAD 16×8, SAD 8×16, SAD 16×16). Actually, there
are some ways to allocate function to IME-1, three ones of
them are shown in Table 2. In order to reuse SADs of 4 × 4
sub-blocks for computing larger size blocks, SAD 4×4 is
the largest computation granularity that is possible to allo-
cate to IME-1. As shown in Table 2, the way that computes
SAD of a 1 × 4-pixel column achieves the best trade-off be-
tween the number of operations and amount of data trans-
ferred to the next task. Although SAD 1×4 is selected for
IME-1, but please note that number of operations is still
much larger than available computing resources (only 64
RCs) of the RCA. A full parallel and direct implementa-
tion for computation of a SAD 1×4 (as shown in Fig. 8 (a))
is unfeasible due to too resources required. To solve this
problem, we propose a systolic-type [22] architecture that
utilizes RC’s capability of executing three-operand opera-
tions to compute SAD 1×4 with only four RCs as shown in
Fig. 8 (b). This solution not only allows sixteen SAD 1×4s
of a 8 × 8-block to be computed completely by the RCA
with only one context but also achieve high performance
(5+ (n− 1) cycles for computing n candidates compare with
4 + (n − 1) cycles of the solution in Fig. 8 (a)). Moreover, it
also exploits fully overlapping data between two successive
iterations (i.e. two successive candidates in vertical direc-
tion) to reduce inner bandwidth of RPU. Figure 8 (c) shows
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Fig. 9 Input data partition for computing SAD of one 8 × 8-partition.

DFG of IME-1 (DFG1) for computing one 8 × 8-block as a
demonstrative example. Each DFG1 is in charge of comput-
ing concurrently sixteen values of SAD 1×4, and four such
DFG1s are possible to be mapped simultaneously onto the
RPU for processing whole 16 × 16-macroblock.
C. Partition and mapping of Data
Partition and mapping of data are required to solve the huge
data bandwidth of VBS-IME algorithm by exploiting some
data-reuse schemes to increase data-reuse ratio and there-
fore reduce required data bandwidth. At the beginning of
operation, four 8× 8-TEMP REG arrays are loaded 16 × 16
pixels of current MB and then reconfigured to retain their
content during the RCA core is running. Next, pixels of ref-
erence area are pre-fetched into the block buffer of the RPU.
On the other hand, the distributed RIM modules of the RPU
are also exploited to increase the availability of reference
pixels for operation of each RCA. Because each RCA is in
charge of computing SADs for one 8 × 8-partition, the ref-
erence area as shown in Fig. 9 must be read from external
memory and stored in the RIM memory of each RCA. Size
of the reference area, [8+ 2p− 1, 8+ 2p− 1] pixels, may be
much larger than size of the RIM memory, so the reference
area is divided into 2p bands of 8 × (8 + 2p − 1) pixels in
size, i.e. each band corresponds to one displacement step in
horizontal direction and includes all displacement steps in
vertical direction. At the particular period of time, only one
band is loaded to RIM. When ME process is changed from
one band to another band, pixels of the overlapped area can
be reused, and only a (8 + 2p − 1)-pixel column of the next
band must be loaded. By such partition, we can reduce pres-
sure on capacity of the RIM memory as well as the amount
of access to external memory. Moreover, in combination
with read-while-write functionality of the RIM memory, the
time spent for updating the RIM memory is hidden under
computing time of the RPU.

6.2 Fractional Motion Estimation

A. HW/SW Partition
In the worst case, the 41 IMVs that are outputted by IME
may point to 41 different positions in the reference frame,
so each IMV needs to be refined independently into sub-
pixel precision. The FME process is implemented sequen-

tially in two steps: half refinement and quarter refinement.
There are nine positions searched in both half-pixel refine-
ment and quarter-pixel refinement. In each refinement level,
the computing process, in turn, is divided into four parts:
sub-pixel interpolation, SATD computation, MVcost gener-
ation, and decision on the best candidate. Because compu-
tation of MVCost includes bit-level operations, it is more
efficient to map this part onto the μPEA. The other parts are
mapped onto the reconfigurable hardware as shown in the
next sub-section.
B. Partition and Mapping of Hardware Tasks onto RCA
Sub-pixel Interpolation. Because computation of SATD
values is based on 4 × 4-block that is also the smallest size
supported by the H.264, therefore, we first focus on map-
ping computation of a 4 × 4-block and then reuse it in all
types of block size.

Figure 10 (a) shows the DFG of a half-pixel inter-
polator, which consists of five 6-tap filters. By using
TEM REG registers to buffer data and adjust operating cy-
cles of pipeline, the interpolator can receive ten input pixels
and then generate five output pixels simultaneously. The
process of half-pixel interpolation first generates horizontal
half-pixels and then vertical half-pixels. By using the trans-
pose mode of RIM memory (as shown in Fig. 10 (b)), we
can implement interpolation of horizontal pixels as well as
vertical pixels with the same DFG of the interpolator. After
half-pixels have generated, quarter-pixels are generated by
using the DFG shown in Fig. 11. Through the input FIFO,
a row of eleven horizontal adjacent integer-pixels and half-
pixels are fed into the ten bilinear filters (denoted as BF)
in the 1st row for interpolating ten horizontal pixels. The
first ten pixels of input FIFO are also shifted down in the
TEMP REG of the RCA. After two cycles, twenty bilinear
filters in the 2nd row will generate vertical and diagonal pix-
els by filtering the corresponding pixels from TEMP REG
and the input FIFO.

In order to apply the above method to the blocks of
which sizes are larger than 4 × 4 pixels, we can decompose
them into some 4 × 4-blocks. However, such decomposing
results in a large redundant amount of interpolation due to
the overlapped area between adjacent interpolating windows
as shown in Fig. 13. To overcome this problem, when filter-
ing horizontal pixels, we decompose a large partition into
some blocks of 4-pixel in width and 4/8/16-pixel in height,
instead of decomposing it into some 4×4-pixel-fixed blocks.
For example, an 8×8-partition is decomposed into two 4×8-
blocks, instead of four 4 × 4-blocks, as shown in Fig. 13 (a).
The same technique is also applied for filtering vertical pix-
els as shown in Fig. 13 (b). Consequently, 24% of cycles
required for interpolation is reduced.
SATD Computation. 4×4-Hadamard transform is the most
important unit of SATD computation. Many VLSI designs
for SATD computation implement 4 × 4-Hadamard trans-
form unit dependently by using two 1-D Hadamard units
(e.g. [25]) without considering correlation between Eq. (4–
6). Such implementation is not useful for mapping onto
REMUS-MB. In the paper, we have considered the corre-
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Fig. 10 DFG for 1/2-pel interpolation (a) and transpose mode of RIM (b).

Fig. 11 DFG of Quarter-pixel Interpolator.

lation among Eq. (4–6) in order to find the DFG that is the
most optimal for mapping onto the REMUS-MB system. In-
stead of using two 1-D Hadamard units, we are also using
one 2-D Hadamard unit. The optimized DFG for computing
SATD, which can be mapped completely onto one 8 × 8-
RCA, is shown in Fig. 12. A 4 × 4-pixel block is first di-
vided into two halves of 8 pixels to input to the DFG in
sequential order. Eight RCs in the 1st row generate eight
residues in parallel and then transmit them to 2-D Hadamard
transform unit. The transformed residues of the 1st half are
stored in TEMP REGs waiting for transformed residues of
the 2nd half. Once residues of the 2nd half have transformed,
they are compared with the transformed residues of the 1st

half to find maximum values. The maximum values then are
transferred to the adder-tree in order compute SATD value,
finishing computing SATD of a 4 × 4-block. The process is
fully pipelined with eight latency cycles. No intermediate
data is buffered when computing SATD of a 4 × 4-block,
therefore, no additional internal memory is required.

6.3 Scheduling of Sub-Tasks

Execution of sub-tasks of ME is scheduled to implement on
the hardware resources of REMUS-MB in Time-Division
Multiplexing fashion as shown in Fig. 14. Firstly, the first
two tasks, IME-1 and IME-2, occupy whole RPU during
the first two phases of ME process. Once IME-1 and IME-
2 have finished, RPU is reconfigured so that IME-3, Inter-
polation, and SATD computation are mapped onto RCA0,
{RCA1, RCA2}, and RCA3, respectively. Execution and

Fig. 12 The DFG for SATD computation.

Data-flow of the RPU are reconfigured dynamically under
controlling of μPE0. To reduce computing load on the RPU,
the other tasks including MVCost generation, finding the
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best IMV/FMV and Mode Decision (MD) are assigned to the
μPE2 and μPE3 of the μPEA, respectively. The tasks that
are mapped onto the RPU communicate data to each other
via the distributed RIM memory. On the other hand, on-chip
SRAM is used for communicating data between tasks on the
μPEA as well as between tasks on the μPEA with tasks on
the RPU.

Cooperation among RPU, μPE2 and μPE3 are synchro-
nized by the mailbox mechanism of which operation based
on sending and receiving mails. We would describe hand-
shake protocol between IME-2 and μPE3 as a demonstrative
example. When IME-2 in progressing and a data block of
SAD results has been stored in SRAM, a mail containing
address and size of data block will be sent from μPE0 to
the μPE3. To prevent new output data from overwriting the
old ones, μPE0 also needs to keep the storage area occu-
pied by this data block as “write-protected area” in SRAM.
Similarly, the μPE3 also have had address of MVcost values
which are generated and mailed to μPE3 by μPE1 before.
After receiving mail from μPE0, μPE3 loads the SADs and
MVcost values from the corresponding addresses of SRAM
and then computes on the data to find the best IMV. When
the whole data block in SRAM has been copied into data
memory of μPE3, even if it has not been processed by μPE3,
μPE3 will sent back a mail to μPE0 and μPE2 in order in-
form them that the storage area occupied by the data block
in SRAM may be unlocked, and that it is ready to receive
next data block.

7. Evaluation and Experiment Results

To evaluate the performance of REMUS-MB, a functional
RTL model has been designed in Verilog and then synthe-

Fig. 13 The overlapped area among adjacent interpolating windows in
horizontal (a) and vertical (b) direction.

Fig. 14 Scheduling of sub-tasks of ME on REMUS-MB.

sized by Synopsys Design Compiler using TSMC 65 nm
low power technology. The die size of REMUS-MB is
13.97 mm2. REMUS-MB consumes about 100 mW on av-
erage while working at 166 MHz. The detailed specifica-
tions of the platform are shown in Table 3. The layout of
REMUS-MB is given in Fig. 15.

To encode a CIF video sequence at frame rate 30 fps
(CIF@30 fps) in real-time, the system that operates at
166 MHz has a 13973-cycle budget for encoding a MB. Be-
cause of target at mobile multimedia applications, some per-
formance evaluations are implemented on QCIF and CIF
video sequences, which contain 120 frames at frame rate
30 fps, by RTL simulation. Performance of the kernel loops,
which are mapped on the RPU, is shown in Table 4. The ex-
perimental results showed that, in the worst case, the num-
ber of cycles to encode a P-type MB by our implementa-
tion on the REMUS-MB platform is 6750 cycles with search
range [−16, 15] for ME. The REMUS-MB system is com-
pletely able to encode CIF@30 fps video sequences with
two reference frames and search range [−16, 15] when op-
erating at 166 MHz.

To evaluate the compressed video quality, we also com-
pare our implementation with the reference software JM18.
The JM software encoder is established to the same set of
encoding parameters as in Table 1. Both our encoder and JM

Table 3 Specifications of the REMUS-MB platform.

Fig. 15 The layout of REMUS-MB.
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reference encoder are tested with three CIF@30 fps video
sequences: news, waterfall, and mobile (which are selected
according to motion level from low to high). The PSNR ver-
sus Bitrate curves are shown in Fig. 16. Our implementation
can produce the compressed video sequences with quality
and bit-rate which approximate those of the JM18: for the
worse case quality degradation is about 0.1 dB.

Table 5 shows performance comparison between our
implementation and the experimental results of several pre-
vious works. The PSNR values are measured at the same
input video sequence (“Foreman” sequence) and parame-
ter QP = 28. Our implementation is the first CGRA-based

Table 4 Performance of H.264 Encoding Kernel Loops on the RPU.

Fig. 16 The Rate-Distortion curves of (a) News cif and Waterfall cif, and (b) Mobile cif video se-
quences.

Table 5 Performance comparison.

H.264 encoder reported in the literature. Our implementa-
tion can support real-time encoding CIF@30 fps video se-
quences with all encoding tools of baseline profile such
as quarter-pixel resolution VBS-ME with one or two ref-
erence frames, intra prediction, DCT and Hadamard trans-
form, RDO mode decision, CAVLC, etc. Therefore, our im-
plementation can achieve the highest compression perfor-
mance.

8. Conclusion and Future Works

The paper proposes the overall methodology for mapping al-
gorithms onto the platform of REMUS-MB system and then
presents the work on the HW/SW co-design of a real-time
H.264 baseline profile encoder. At the low-level mapping
branch of the mapping flow, we present methodology for
mapping a highly complex algorithm as full-search VBS-
ME algorithm in detail. Because the REMUS-MB system
is designed with computing resources for a range of ap-
plications, so it takes a lot of effort to partition the encod-
ing process into several tasks/sub-tasks, which fit on avail-
able computing resources of the system, and then gives
them a proper scheduling scheme to synchronize their co-
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operation. After mapping, we simulated to validate both
functionality and timing of whole implementation. Our
mapping methodology exploits data reuse and computa-
tion parallelism of the algorithm in order not only to in-
crease total computing throughput and solve high compu-
tational complexity but also to reduce the number of config-
uration switches and inter-process data communication be-
tween tasks. Experiments in mapping H.264 encoding algo-
rithm onto REMUS-MB system demonstrate that complex
applications can be mapped with competitive performance
on REMUS-MB platform. Performance evaluation shows
that REMUS-MB can perform H.264 encoder at a real-time
speed for CIF@30 fps video sequences with two reference
frames and maximum search range of [−16, 15]. The imple-
mentation, therefore, can apply to handheld devices targeted
at mobile multimedia applications such as video recorder,
video telephone, video conference, etc. To my knowledge,
this is first-time HW/SW co-design of the H.264 encoder on
CGRA is reported in the literature.

In this paper, to meet requirements of low power and
area for mobile applications, we have used the REMUS-MB
to implement the encoder. For HDTV applications, we also
have developed the REMUS-HD platform, which includes
two RPUs. With the abundant resources of the REMUS-
HD, the encoding process can be organized in multi-stage
pipelined architecture to process concurrently more than one
MB at the same time and therefore improve the hardware
utilization and the performance. In the future, some aspects
such as task partition, DFG of each sub-task, scheduling
scheme, etc., will continue to be optimized according to the
architecture of the REMUS-HD to achieve higher perfor-
mance at higher resolutions. Besides, to extend applicabil-
ity of the REMUS-II system, we also will focus on devel-
oping tools to automate the proposed mapping flow. More-
over, to aid designers in efficiently and conveniently using
the REMUS-II system, it is necessary to have an operation
system (OS) which handles and synchronizes the data com-
munication among tasks and takes care of hardware resource
conflicts.

Acknowledgments

This work was supported by the National High Technol-
ogy Research and Development Program of China (863 Pro-
gram) (grant no.2009AA011700) and the National Natu-
ral Science Foundation of China (grant no.61204023, grant
no.61006029, and grant no.61203251).

The authors would like to thank to C. MEI, B. LIU,
JJ. YANG, YC. LU, YQ. FAN, GG. GAO, J. XIAO, H. LEI
and CX. ZHANG for their helpful discussions and technical
support.

References

[1] I.E. Richardson, The H.264 advanced video compression standard,
second edition, John Wiley & Sons, 2010.

[2] T.C. Chen, S.Y. Chien, Y.W. Huang, C.H. Tsai, C.-Y. Chen, T.-W.
Chen, and L.-G. Chen, “Analysis and architecture design of an

HDTV720p 30 frames/s H.264/AVC encoder,” IEEE Trans. Circuits
Syst. Video Technol., vol.16, no.6, pp.673–688, June 2006.

[3] H.-C. Chang, J.-W. Chen, C.-L. Su, Y.-C. Yang, Y. Li, C.-H. Chang,
Z.-M. Chen, W.-S. Yang, C.-C. Lin, C.-W. Chen, J.-S. Wang, and J.-
I. Quo, “A 7 mW-to-183 mW dynamic quality-scalable H.264 video
encoder chip,” IEEE International Conference on Solid-State Cir-
cuits, Digest of Technical Papers, pp.280–281, San Francisco, USA,
Feb. 2007.

[4] K. Babionitakis, G. Doumenis, G. Georgakarakos, G. Lentaris, K.
Nakos, D. Reisis, I. Sifnaios, and N. Vlassopoulos, “A real-time
H.264/AVC VLSI encoder architecture,” J. Real-Time Image Pro-
cessing 2008, vol.3, no.1–2, pp.43–59, DOI: 10.1007/s11554-007-
0054-9.

[5] Z. Liu, Y. Song, M. Shao, S. Li, L. Li, S. Ishiwata, M. Nakagawa,
S. Goto, and T. Ikenaga, “HDTV1080p H.264/AVC encoder chip
design and performance analysis,” Proc. IEEE Symposium on VLSI
Circuits, pp.12–13, Kyoto, Japan, June 2007.

[6] Y.-K. Lin, D.-W. Li, C.-C. Lin, T.-Y. Kuo, S.-J. Wu, et al., “A 242-
mW 10-mm2 1080p H.264/AVC high-profile encoder chip,” IEEE
International Solid State Circuits Conference, Digest of technical
papers, pp.314–615, San Francisco, USA, Feb. 2008.

[7] D.-T. Lin and C.-Y. Yang, “H.264/AVC Video encoder realization
and acceleration on TI DM642 DSP,” Lect. Notes Comput. Science,
2009, vol.5414/2009, pp.910–920, DOI: 10.1007/978-3-540-92957-
4 79.

[8] Z. Wei, K.L. Tang, and K.N. Ngan, “Implementation of H.264
on Mobile Device,” IEEE Trans. Consum. Electron., vol.53, no.3,
pp.1109–1116, Aug. 2007. DOI: 10.1109/TCE.2007.4341593.

[9] K. Kim, S. Park, and Y. Paek, “Application-specific instruc-
tion set processor for H.264 on-chip encoder,” SoC Design
Conference (ISOCC), 2009 International, pp.373–376, DOI:
10.1109/SOCDC.2009.5423839.

[10] S.D. Kim and M.H. Sunwoo, “ASIP Approach for Implementation
of H.264/AVC,” J. Signal Processing Systems, vol.50, no.1, pp.53–
67, 2006. DOI: 10.1007/s11265-007-0109-y.

[11] C. Ebeling, D.C. Cronquist, P. Franklin, J. Secosky, and S.G. Berg,
Mapping Applications to the RaPiD Configurable Architecture, FP-
GAs for Custom Computing Machines, IEEE, 1997.

[12] H. Singh, M.H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M.
Chaves Filho, “MorphoSys: An integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Trans.
Comput., vol.49, no.5, pp.465–481, 2000.

[13] X. Technologies, “XPP-III processor overview,” White Paper, July
2006.

[14] M.K.A. Ganesan, S. Singh, F. May, and J. Becker, “H.264 decoder
at HD resolution on a coarse grain dynamically reconfigurable ar-
chitecture,” International Conference on Field Programmable Logic
and Applications, pp.467–471, 2007.

[15] B. Mei, S. Vernalde, D. Verkest, H. Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix,” Field Programmable Logic
and Application, Lect. Notes Comput. Sci., vol.2778, pp.61–70,
Springer, 2003.

[16] B. Mei, B. De Sutter, T. Vander Aa, M. Wouters, A. Kanstein, and S.
Dupont, “Implementation of a Coarse-Grained reconfigurable media
processor for AVC decoder,” J. Signal Processing System, vol.51,
pp.225–243, 2008.

[17] C. Arbelo, A. Kanstein, S. Lopez, J.F. Lopez, M. Berekovic,
R. Sarmiento, and J.-Y. Mignolet, “Mapping control-intensive
video kernels onto a coarse-grain reconfigurable architecture: The
H.264/AVC deblocking filter,” in Design, Automation & Test in Eu-
rope Conference & Exhibition, 2007. DATE ’07, pp.1–6, 2007.

[18] M. Zhu, L. Liu, S. Yin, C. Yin, and S. Wei, “A cycle-accurate simu-
lator for a reconfigurable multi-media system,” IEICE Trans. Inf. &
Syst., vol.E93-D, no.12, pp.3202–3210, Dec. 2010.

[19] M. Zhu, et al., “A reconfigurable multi-processor SoC for media ap-
plications,” IEEE International Symposium on Circuits and Systems,



NGUYEN et al.: HARDWARE SOFTWARE CO-DESIGN OF H.264 BASELINE ENCODER
615

2010 (ISCAS 2010).
[20] X. Liu, C. Mei, P. Cao, M. Zhu, and L. Shi, “Date flow optimization

of dynamically coarse grain reconfigurable architecture for multi-
media applications,” IEICE Trans. Inf. & Syst., vol.E95-D, no.2,
pp.374–382, Feb. 2012.

[21] X. Yang, L. Liu, S. Yin, M. Zhu, W. Jia, and S. Wei, “Mapping
deblocking algorithm of H.264 decoder onto a reconfigurable ar-
ray architecture,” 2011 International Conference on Consumer Elec-
tronics, Communications and Networks (CECNet), pp.4166–4169,
2011.

[22] H.T. Kung and P.L. Lehman, “Systolic (VLSI) arrays for relational
database operations,” Proc. ACM-Sigmod 1980 Int’l Conf. Manage-
ment of Data, p.105, 1980.

[23] G. Theodoridis, D. Soudris, and S. Vassiliadis, “A survey of coarse-
grain reconfigurable architectures and cad tools basic definitions,
critical design issues and existing coarse-grain reconfigurable sys-
tems,” pp.89–149, 2008.

[24] L. Wang and C.J. Ping, “H.264 video encoder implementation based
on TMS320DM642 DSP,” International Conference on Management
and Service Science, 2009 (MASS ’09), pp.1–4, Sept. 2009. DOI:
10.1109/ICMSS.2009.5304159.

[25] T.-C. Chen, Y.-W. Huang, and L.-G. Chen, “Fully utilized
and reusable architecture for fractional motion estimation of
H.264/AVC,” Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp.9–12, Montreal, Canada, May
2004.

[26] JM reference software, http://iphome.hhi.de/suering/tml/

Hung K. Nguyen received the B.S. and M.S.
degrees in electronic engineering from Vietnam
National University, Hanoi, Vietnam, in 2003
and 2005, respectively. He is currently working
to get the Ph.D. degree in electronic engineering
at Southeast University, Nanjing, China. His re-
search interests mainly include multimedia pro-
cessing, reconfigurable computing and SoC de-
signs.

Peng Cao received the B.S., M.S. and Ph.D
degrees in Information Engineering and Elec-
trical Engineering from Southeast University in
2002, 2005 and 2010 respectively. His research
interests mainly include digital signal and image
processing, image/video compression, reconfig-
urable computing and related VLSI designs.

Xue-Xiang Wang was born in Xinjiang
Province, China, in 1972. She received the M.S.
degree in electronics in 2001 from the South-
east University of China. She is currently pursu-
ing the Ph.D. degree with the Southeast Univer-
sity. Her research interests include SoC design,
memory subsystem.

Jun Yang received the B.S., M.S., and
Ph.D. degrees from Southeast University, Nan-
jing, China, in 1999, 2001, and 2004, respec-
tively, all in electronic engineering. He is cur-
rently a research fellow and the chairman of SoC
department of National ASIC system Engineer-
ing Research Center (CNASIC), Southeast Uni-
versity. His research interests include chip ar-
chitecture design and VLSI design.

Longxing Shi received the B.S., M.S., and
Ph.D. degrees from Southeast University, Nan-
jing, China, in 1984, 1987, and 1992, respec-
tively, all in electronic engineering. He is cur-
rently a Professor and the Dean of Integrated
Circuit (IC) College, Southeast University. His
research interests include system-on-a-chip de-
sign, VLSI design, and power IC design.

Min Zhu received the B.S. degree from
the Department of Micro & Nano Electronic,
Tsinghua University, Beijing, China, in 2006,
where he is currently working toward the Ph.D.
degree in the Institute of Microelectronics. His
research interests include reconfigurable com-
puting and multimedia processing.

Leibo Liu received the B.S. degree in
electronic engineering from Tsinghua Univer-
sity, Beijing, China, in 1999 and the Ph.D. de-
gree in Institute of Microelectronics, Tsinghua
University, in 2004. He now serves as an Asso-
ciate Professor in Institute of Microelectronics,
Tsinghua University. His research interests in-
clude Reconfigurable Computing, Mobile Com-
puting and VLSI DSP.

Shaojun Wei was born in Beijing, China
in 1958. He received Ph.D. degree from Fac-
ulte Polytechnique de Mons, Belguim, in 1991.
He became a professor in Institute of Microelec-
tronics of Tsinghua University in 1995. He is a
senior member of Chinese Institute of Electron-
ics (CIE). His main research interests include
VLSI SoC design, EDA methodology, and com-
munication ASIC design.


