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PAPER

A Time-Varying Adaptive IIR Filter for Robust Text-Independent
Speaker Verification

Santi NURATCH†, Panuthat BOONPRAMUK†, Nonmembers, and Chai WUTIWIWATCHAI††a), Member

SUMMARY This paper presents a new technique to smooth speech
feature vectors for text-independent speaker verification using an adaptive
band-pass IIR filer. The filter is designed by considering the probability
density of modulation-frequency components of an M-dimensional feature
vector. Each dimension of the feature vector is processed and filtered sep-
arately. Initial filter parameters, low-cut-off and high-cut-off frequencies,
are first determined by the global mean of the probability densities com-
puted from all feature vectors of a given speech utterance. Then, the cut-off
frequencies are adapted over time, i.e. every frame vector, in both low-
frequency and high-frequency bands based also on the global mean and
the standard deviation of feature vectors. The filtered feature vectors are
used in a SVM-GMM Supervector speaker verification system. The NIST
Speaker Recognition Evaluation 2006 (SRE06) core-test is used in evalua-
tion. Experimental results show that the proposed technique clearly outper-
forms a baseline system using a conventional RelAtive SpecTrA (RASTA)
filter.
key words: speaker verification, feature smoothing, adaptive filter, Gaus-
sian Mixture Model (GMM), Support Vector Machines (SVM)

1. Introduction

Speaker verification aims to authenticate persons from their
speech signals [1]. In the text-independent scheme, Gaus-
sian Mixture Model (GMM) is one of the most widely used
algorithms. A verification score is calculated based on the
likelihood ratio of a GMM speaker model and a Univer-
sal Background Model (UBM) [2]. The UBM representing
a speaker norm is trained from various speech data which
cover a large set of speakers. The speaker model can be
adapted from the UBM with an adaptation algorithm such as
Maximum a Posteriori (MAP) [4]. Support Vector Machines
(SVM) applied on GMM Supervectors [5] is also widely de-
ployed in text-independent speaker recognition and verifica-
tion.

Mel-Frequency Cepstral Coefficients (MFCCs) plus
their first and second order derivatives (MFCC+Δ+ΔΔ) [6],
[7] are commonly used features. Often, the feature vector is
post-processed by a RASTA filter to suppress unnecessary
modulation-frequency components of the feature vector [8],
followed by applying zero-mean and unit-variance normal-
ization to compensate channel effects.
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The RASTA is an IIR band-pass filter that helps mak-
ing the feature vector more robust to linear spectral dis-
tortion. Therefore, using RASTA, most of speaker ver-
ification and speaker recognition systems which operate
in noisy environments can be improved [2], [8], [9]. It is
known that the speech or speaker feature vector of m di-
mensions extracted from different speakers composes differ-
ent modulation-frequency components. And most of feature
vectors are extracted from the spectral magnitude and trans-
formed by the Mel-scale or Mel-scale filter bank [18]. This
results in different modulation-frequency components given
by each filter in the filter bank. By the fact that a feature
vector extracted from each speech frame changes over time,
the RASTA or any other filters whose parameters are fixed
over time may not be suitable.

In this paper, we propose a new technique to design an
adaptive filter for producing robust feature vectors. The fil-
ter is IIR band-pass with cut-off frequencies adaptable based
on the probability density of the modulation-frequency com-
ponent of the feature vector. Furthermore, as the density
of modulation-frequency components in each dimension of
feature vector is different from each other, processing each
dimension of the feature vector separately is expected to im-
prove the filter performance.

The outline of this paper is as follows. In Sect. 2, we
describe pre-processing and feature extraction procedures.
Section 3 briefly reviews the detail of the RASTA filter and
the SVM-GMM supervector for speaker verification. In
Sect. 4, we explain the probability density of modulation-
frequency components of the feature vector used to design
a filter. Section 5 illustrates the proposed filter design algo-
rithm, which is based on adaptive IIR. Section 6 describes
experimental setup and results. A conclusion is given in
Sect. 7.

2. Pre-Processing and Feature Extraction

Speech data used in this paper were provided by NIST [15].
Speech signals were recoded via several telephone channels
and in many languages from both male and female speak-
ers. To extract MFCCs, the speech signal x[t] at 8-KHz
sampling frequency is pre-emphasized. The pre-emphasized
signal y[t] is divided into overlapped frames of 25 ms long
at 10 ms frame rate. The m-th speech frame y[m, n] is then
converted to a frequency domain signal X[m, k]. Its power
spectral magnitude |X[m, k]|2 is computed and weighted by
a 27 Mel-scale filter bank to obtain fmel[m, i]. The loga-
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Fig. 1 A block diagram of pre-processing and MFCC feature extraction.

rithmic value flog[m, i] is then filtered by a RASTA filter to
suppress modulation-frequency components that spread be-
low 0.26 Hz and above 12.8 Hz. The signal f f il[m, i] after
RASTA is finally used to compute 12 MFCCs C[m, j]. A
short-term energy E[m] also computed from the filtered sig-
nal f f il[m, i] and appended to form a 13-dimensional static
feature A[m, p] or MFCC E. Dynamic features, first and sec-
ond derivatives, are computed from the static features over
±2 frames spanned, and attached to the static feature. Voice
Activity Detection (VAD) could be applied at this stage to
remove non-speech frames. The final feature vector F[m, q]
of the m-th frame containing 39 elements is normalized to
be zero mean and unit variance. The resulting feature vector
S [m, p] is used in speaker verification. Figure 1 illustrates
the whole pre-processing and feature extraction processes
described above.

3. Review of Related Work

3.1 RASTA

In state-of-the-art signal processing for speaker recognition
tasks, RASTA filtering is widely exploited with an aim to
suppress spectral components that are likely out of the typi-
cal range of the human vocal tract [8], [22]. The RASTA is
an IIR band-pass filter having cut-off frequencies at 0.26 Hz
and 12.8 Hz. The RASTA transfer function described in
Eq. (1).

H(z) = 0.1z4 × 2 + z−1 − z−3 − 2z−4

1 − 0.98z−1
(1)

The spectrum of feature vector filtered by the RASTA
is smoother than the non-filtered one. This phenomenon
has been proven to improve the speaker verification perfor-
mance. A preliminary experiment on SVM-GMM Super-
vector based speaker verification using male-speaker data

Table 1 Experimental results obtained from three types of feature vec-
tors, MFCC, MFCC-RASTA and flog-RASTA.

Fig. 2 A comparison of 4-mixture GMM speaker models. (A) is trained
MFCC without filtering and (B) is trained by filtered MFCCs.

taken from the 2006 NIST Speaker Recognition task (SRE-
06) was carried out to compare three basic features; MFCC,
MFCC-RASTA and flog-RASTA. In MFCC-RASTA, the
RASTA is applied on MFCC feature vectors whereas in flog-
RASTA, the RASTA is applied on the log-Mel filter bank
spectrum before MFCC extraction. Equal Error Rate (EER)
results in Table 1 show that the RASTA applied on log-Mel
filter bank spectrum is superior to that on MFCC.

A major reason why feature smoothing could improve
the system performance is that standard deviations of fea-
tures are decreased. In speaker recognition, reducing the
feature standard deviation could make each speaker model
more unique and distinguishable. Figure 2 shows a com-
parison between two speaker models, 4-mixture GMM,
trained by MFCCs C[m, i] with and without RASTA fil-
tering. RASTA filtering obviously affects speaker models,
both on their means and standard deviations. Speaker mod-
els passing RASTA filtering are more distinguishable as the
standard deviations of Gaussian mixtures are reduced and
the Gaussian means in each speaker model are shifted far
away from each other.

Shifting means and reducing standard deviations may
not always improve speaker differentiation. True speak-
ers could be more rejected and false speakers could be
more accepted by such parameter modification. Hence,
the challenge of filter design hence is to suppress redun-
dant modulation-frequency components given feature vec-
tors with the minimal drawback on the overall system per-
formance.

3.2 SVM-GMM Supervectors

A GMM Supervector is a vector of means of every GMM
mixture arranged in one column. Given a speaker fea-
ture vector and Universal Background Model (UBM), the
speaker GMM and GMM Supervectors are obtained using
the MAP adaption algorithm [4]. The UBM is a GMM
which is trained from a large speaker database [2].

Support Vector Machines (SVM) [19] is a two-class
classifier widely applied for many classification tasks. In
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GMM-SVM speaker verification, the SVM is used to clas-
sify whether the input GMM Supervector is from an under-
lined speaker or from an imposter.

4. Feature Vector Analysis for Filter Design

It is known that the speaker features extracted from different
speakers are composed of different modulation-frequency
components, and different modulation frequency ranges.
Unfortunately, the RASTA has fixed cut-off frequencies
(fixed pass-band) and it suppresses everything lying out-
side the pass-band. In practice, it is hard to identify
whether each modulation-frequency component should be
suppressed or reserved. In this section, we consider a
modulation-frequency component density and the distribu-
tion of speaker feature vectors in order to improve the filter
design.

To obtain the modulation-frequency components of the
feature vector flog[m, i], we apply FFT on the log Mel-scale
filter bank value flog[m, i] to obtain a modulation frequency
distribution. The flog[m, i] is then segmented to R frames at
128 samples per frame and 64 samples frame shift. Each
frame is applied by a hamming window, followed by FFT
and converted to a log-power spectrum. This procedure pro-
duces fden[r, i, k] representing R frames of the FFT power
spectral density of speaker feature vector flog[m, i], where r
and k denotes the modulation frame index and FFT index re-
spectively. To visualize the spectral density fden[r, i, k], we
transform each dimension i-th of the matrix fden[r, i, k] to a
R×K matrix, favg[r, k], by averaging over all i-th dimensions
as

favg[r, k] =
1
I

I∑
i=1

fden[r, i, k] (2)

where, I is the number of filters in the Mel-scale filter bank.
The average matrix favg[r, k] is used to sketch a two dimen-
sional spectral density as shown in Fig. 3, male speakers on
the left side and female speakers on the right side. The hor-
izontal dash line in each picture denotes the low-cut-off fre-
quency, 12.8 Hz, of the RASTA.

Figure 3 shows that modulation-frequency components
of male and female speakers are somewhat different. The
low-frequency components of male speakers are observably
stronger and wider than those of female. Also the frequency
components of both genders can spread above and below the
cut-off frequency of the RASTA and can change over time.

Fig. 3 The averaged modulation-frequency density of male (A) and fe-
male (B) speakers. The speakers were requested to speak (read) the same
sentences, three minutes long approximately.

Therefore, RASTA and other existing filters which have a
fixed pass-band may not be always suitable. The major idea
of this work is that feature filtering could be more effective
if the filter is specifically designed for each dimension of
the feature vector of each particular speaker and is adapted
properly at every speech frame.

For more clearly and confidently, we analyze the
modulation-frequency component density by using 50 male
speakers and 50 female speakers. Each gender is separately
examined. To achieve this task, the log-power spectral den-
sity fden[r, i, k] is applied by the average method to form the
average modulation-frequency density in each i-th dimen-
sion, represented by favg[i, k]:

favg[i, k] =
1
R

R∑
r=1

fden[r, i, k] (3)

where R is a number of modulation frames, r is a modulation
frame index, i is a dimension index, and k is FFT index.

The Eq. (3) looks like the Eq. (2), but it computes
the average modulation-frequency density over R modula-
tion frames instead of over I dimensions. The Eq. (2) ex-
plains how the modulation-frequency components change
over time, while the Eq. (3) explains the variation of the
modulation-frequency components in different dimensions.
Figure 4 shows the average modulation-frequency density,
all dimensions and all modulation-frequency components,
of 50 male and 50 female speakers computed by the Eq. (3).
In this research, the analysis frame rate is equal to 100 Hz, so
that the maximum modulation frequency is equal to 50 Hz,
a half of the analysis frame rate.

The modulation-frequency components of different
genders and different dimensions of feature vectors are ob-
viously different. The density could also change in different
context. This implies that filters should be designed specif-
ically for each feature dimension, speaker, and spoken con-
text. Another observation is that the modulation-frequency
components density of feature vectors, both averaged over
all feature dimensions favg[r, k] or over modulation frames

Fig. 4 The average modulation-frequency density of the 27-dimensional
feature vector computed from 50 male speakers (A) and 50 female speakers
(B).
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favg[i, k], that spread over 30 Hz are very low and hard to
distinguish. Therefore, high modulation-frequency compo-
nents could be suppressed with not much effect to the veri-
fication performance.

5. Adaptive IIR Filter Design

As explained in the previous section, modulation-frequency
components of speech feature vectors change over time and
thus it is difficult to design a fixed-parameter filter that
works well on all speech frames. Therefore, an adaptive
filter in which cut-off parameters could be changed opti-
mally given a feature vector is motivated. The adaptive filter
employs a statistical method to estimate useful modulation-
frequency components of a given feature vector.

Normally, the pass-band of the RASTA filter is from
0.26 Hz to 12.8 Hz [8], [22]. As illustrated in the Fig. 3
and Fig. 4, modulation-frequency components of feature
vector useful for speaker recognition may spread out-
side the pass-band of the RASTA. To ensure that use-
ful modulation-frequency components are retained, we en-
large the frequency band being considered to 0.1 to 25 Hz.
In the proposed adaptive filter, its low-pass cut-off fre-
quency will be constrained to be within the frequency range
10 to 25 Hz and its high-pass cut-off frequency will be
within 0.1 to 0.5 Hz. These constrained frequency ranges,
called hereafter Analysis-range-high and Analysis-range-
low respectively, could provide filter cut-off frequencies
that are corresponding to that proposed by van Vuuren and
Hermansky [13]. It is noted that the proposed adaptive filter
is a band-pass filter constructed by cascading a low-pass fil-
ter (LPFi) and a high-pass filter (HPFi). The low-pass and
high-pass cut-off frequencies will be separately designed.

To specify a proper adaptation band of the filter, cut-
off frequencies are initialized by using a normal distribution
of all frame vectors in a given speech utterance as being
described in the following subsections.

5.1 Determining the Low-Pass Cut-Off Frequency of the
LPFi

Step 1: Normalizing the feature vector Xi using the
following equation:

X̂i =
Xi

max
i
|Xi| (4)

where X̂i is a normalized vector, and | · | is an absolute op-
erator.

Step 2: Applying zero-mean normalization to the X̂i in
order to remove a DC-offset by using the following equation

X̃i = X̂i −
⎛⎜⎜⎜⎜⎜⎝ 1

M

M∑
i=1

X̂i

⎞⎟⎟⎟⎟⎟⎠ (5)

where X̃i is the zero-mean normalized vector and M is the
number of speech frames.

Step 3: Dividing the sequence of normalized vectors X̃i

into Q blocks. Each block has N samples and N/2 samples
block shift. In this research, the block size N is equal to 128.
The i-th feature dimension of the q-th block is denoted by a
sequence Zi,q as

Zi,q = [x̃i,q,1, x̃i,q,2, . . . , x̃i,q,N] (6)

Step 4: Computing a log power-spectral magnitude of
the vector Zi,q by applying FFT:

Pi,q,k = 20. log

∣∣∣∣∣∣∣
N−1∑
n=0

zi,q,n.e
−i2πkn

N

∣∣∣∣∣∣∣ (7)

where k = 0, 1, 2, . . . , N − 1 is a modulation frequency in-
dex. The only half part of the Pi,q,k, k = 0, 1, 2, . . . , N/2−1,
is retained and normalized to P̂i,q,k by the following equa-
tion:

P̂i,q,k =
1
K

Pi,q,k (8)

where K is the number of modulation frequency elements,
the half part of the Pi,q,k.

Step 5: Computing a mean vector Ui,k of all Q blocks
for each feature dimension i-th and frequency index k using
the following equation:

Ui,k =
1
Q

Q∑
q=1

P̂i,q,k (9)

The Eq. (8) yields the mean vector of all blocks which

Fig. 5 (A) is the normalized mean magnitudes of modulation-frequency
density of the 27-dimensional feature vectors, computed from a speech ut-
terance. (B) the circle-doted line is the mean values of each dimension, the
diamond-doted line is the mean values plus std, and the square-doted line
is the mean values minus std. (C) shows the standard deviation (std) values
of each dimension.
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represent the modulation-frequency component density of
the i-th feature. Figure 5 shows a plot of magnitudes of fea-
tures over a modulation frequency axis. The mean vectors
Ui,k are illustrated as the gray lines. It is noted that the mod-
ulation frequency index k can be transformed to an actual
modulation frequency fk in Hz by

fk =
k fs

2K
(10)

where fs is the frame rate.
Step 6: Computing a decision threshold TH, which is

used to classify between useful and useless samples of the
Ui,k. First, a mean vector Ûk over all i-th dimensions is com-
puted by the following equation:

Ûk =
1
I

I∑
i=1

Ui,k (11)

where I is the vector dimension. Second, a decision thresh-
old TH is computed within the Analysis-range-high area, i.e.
between the a and b interval shown in the Fig. 5(A).

T H =
1

b − a + 1

b∑
k=a

Ûk (12)

The mean vector Ûk and the decision threshold TH are also
shown in the Fig. 5(A). Finally, useful components are cho-
sen by

Ũi,ϑ = Ui,k̃, a ≤ k̃ ≤ b and Ui,k̃ > T H (13)

The Ũi,ϑ is a mean vector of each feature order, containing
only Ui,k lying within Analysis-range-high, and having their
magnitudes higher than the threshold TH. It is noted that if
no element meets the condition, the maximum value of the
vector Ui,k̃ will be chosen as

Ũi,ϑ = max
a≤k̃≤b

Ui,k̃ (14)

Step 7: Computing a mean μi and a standard deviation
σi of the Ũi,ϑ over all useful elements by:

μi =
1
ζ

ξ∑
ϑ=1

Ũi,ϑ , σi =

√√√
1
ζ

ξ∑
ϑ=1

(Ũi,ϑ − μi)2 (15)

where ζ is the number of elements in the Ũi,ϑ. With the μi

and σi, vectors μi − σi and μi + σi can be computed. These
vectors are shown in Fig. 5 (B). The area between these two
vectors is used to specify an adaptive region of the adaptive
filter, which can be changed in every frame.

Step 8: Computing the modulation frequency index
vector ψi using the following equation.

Ψi = a +
b∑

k̃=a

φi,k̃ (16)

where φi,k̃ is a vector containing binary values (0 or 1),
which is obtained by an equation:

φi,k̃ =

{
1 ; Ui,k̃ > μi

0 ; otherwise
(17)

where k̃ indexes only from a to b.
Step 9: Transforming the mean vector ψi to an actual

modulation frequency vector f (μ)
i by:

f (μ)
i =

K fs

2ψi
(18)

where K is a half of the FFT size (N/2) and fs is a frame
rate. Each element of the f (μ)

i vector represents an actual
modulation frequency in Hz, which is used as an initial cut-
off frequency of the filter LPFi. Two more actual modulation
frequency vectors, f (σ−)

i and f (σ+)
i , are computed in the same

way as f (μ)
i (Step 8 and Step 9) with substitution of μi by

μi−σi and μi+σi respectively. The transformed modulation
frequency vectors are shown in Fig. 6.

Each element in the vector f (μ)
i is an initial low-pass

cut-off frequency of each LPFi filter. During filter adapta-
tion, the low-pass cut-off frequency of each feature dimen-
sion can be changed within the adaptation band from f (σ−)

i

to f (σ+)
i .

Step 10: Designing LPFi filters is based on a second
order IIR low-pass filter. The numerator and denominator
coefficients of the filters are obtained by the Butterworth al-
gorithm [24]. Each element of the vector f (μ)

i is use as an
input parameter of the Butterworth algorithm to obtain a nu-
merator B(μ)

i and the denominator A(μ)
i . Similarly, the vectors

f (σ−)
i and f (σ+)

i are taken by the algorithm to obtain B(σ+)
i ,

A(σ+)
i , B(σ−)

i , and A(σ−)
i .

5.2 Determining the High-Cut-Off Frequency of the HPFi

As mentioned in the early of Sect. 4, the high-pass cut-off
frequency is allowed to be adapted within the range 0.1 to
0.5 Hz. It is known that a FFT frequency resolution can be
computed as:

fres = fs/N (19)

where fres is the frequency resolution of the FFT, fs is the

Fig. 6 Modulation-frequency component densities of the feature vectors
f (μ)
i , f (σ−)

i , f (σ+)
i and the vectors μi, μi − σi, μi + σi.
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frame rate and N is the FFT size. In this work, fs = 100 and
N = 128 so the fres is equal to 0.781 Hz, which is higher than
the allowable adaptation band. Therefore, the high-pass cut-
off frequency of the HPFi can only be computed from the
first bin of the FFT value, i.e. the first element of Ui,k with
k = 1. An initial high-pass cut-off frequency of the HPFi is
determined by the following steps.

Step 1: Computing a mean μ̂ and a standard deviation
σ̂ of the first element of Ui,k over all feature dimensions.

μ̂ =
1
I

I∑
i=1

Ui,1, σ̂ =

√√√
1
I

I∑
i=1

(Ui,1 − μ̂)2 (20)

Step 2: Computing μ̂−σ̂ and μ̂+σ̂, which define an al-
lowable adaptation band for the high-pass cut-off frequency
as illustrated in Fig. 7.

Step 3: Computing an initial cut-off frequency of HPFi

filters by using linear interpolation as:

f̂i = f̂min +

[
(℘2 − Ui,1)( f̂max − f̂min)

(℘2 − ℘1)

]
(21)

where f̂i is a vector containing initial cut-off frequencies
of the HPFi, f̂min and f̂max are the lower-bound and upper-
bound of the adaptation frequency, and the ℘1 and ℘2 repre-
sent the values μ̂ − σ̂ and μ̂ + σ̂ respectively. The Eq. (21)
may produce some frequency values that lie outside the de-
sired adaptation band if Ui,1 is much different from μ̂±σ̂. To
prevent this problem, each element in f̂i having value lower
than f̂min or higher than the f̂maxwill be substituted by f̂min

or f̂max respectively.
Step 4: Similar to the LPFi, the HPFi is designed

based on second-order IIR high-pass filters using the But-
terworth algorithm. Filter parameters including B̂(μ)

i , Â(μ)
i ,

B̂(σ−)
i , Â(σ−)

i , B̂(σ+)
i , and Â(σ+)

i are computed.
Finally, the initial cut-off frequencies of the LPFi and

HPFi filters are used to form initial band-pass filters BPFi.

5.3 Filter Adaptation over Time

Cut-off frequencies of LPFi and HPFi that form the proposed
band-pass filter are updated at every m-th speech frame.
To reduce computation, the normalized log power spectral
magnitude P̂i,q,k described in the Eq. (8) is reused in this
step. Filter adaptation will be performed at every block q-
th. At the q-th block, we repeat the Steps 5 to 9 described in
Sect. 5.1, with replacing Ui,k by P̂i,q,k. After the Step 9, we
will get f (μ)

i which is denoted this time as ℵi,q. The ℵi,q vec-
tor represents modulation-frequency components of feature

Fig. 7 Relationship of the adaptation band of the high-pass cut-off fre-
quency and the μ̂ ± σ̂ values.

vectors at the q-th block, which are used to adjust the low-
pass cut-off frequency in the LPFi. This task can be done by
changing filter numerator and denominator coefficient vec-
tors, Bi,q and Ai,q, using linear interpolation. The numerator
vector is updated by the following equation:

B̃i,q = B(σ−)
i,q +

⎛⎜⎜⎜⎜⎜⎝Δ fi,q × ΔBi,q

f (σ+)
i − f (σ−)

i

⎞⎟⎟⎟⎟⎟⎠ (22)

where the Δ fi,q and ΔBi,q are defined as:

Δ fi,q = f (σ+)
1 − ℵi,q, ΔBi,q = B(σ+)

i,q − B(σ−)
i,q (23)

Similarly, a new denominator vector can be computed by the
Eq. (22) with replacing Bi,q by Ai,q.

Ãi,q = A(σ−)
i,q +

⎛⎜⎜⎜⎜⎜⎝Δ fi,q × ΔAi,q

f (σ+)
i − f (σ−)

i

⎞⎟⎟⎟⎟⎟⎠ (24)

where ΔAi,q = A(σ+)
i,q − A(σ−)

i,q . Numerator and denominator
coefficients of the HPFi can be updated in the same way.
During updating, the current frequency of the HPFi can be
computed by replacing the Ui,1 in the Eq. (21) by Ui,1,q.

f̂i,q = f̂min +

⎡⎢⎢⎢⎢⎣ (℘2 − Ui,1,q)( f̂max − f̂min)

℘2 − ℘1

⎤⎥⎥⎥⎥⎦ (25)

Here, the modulation-frequency mean and standard devia-
tion are assumed to be 20 Hz and 5 Hz for the LPFi and
0.3 Hz and 0.2 Hz for the HPFi. The adaptation ranges thus
span from 15 to 25 Hz for the LPFi and from 0.1 to 0.5 Hz
for the HPFi.

6. Experimental Setup and Results

6.1 Experimental Setup

Experiments were performed on the core test of the NIST-
SRE2006 evaluation (1-side training, 1-side testing, and all
trials) [15]. Data from male and female speakers were sep-
arately evaluated. The UBM was trained by 2.5 minute
speech utterances selected from the SWITCHBOARD cor-
pus. This data set covered various kinds of telephone chan-
nel. Combined with imposter speaker utterances, this data
set was also used to train the SVM. 2,091 speech utter-
ances from the NIST-SRE2004 corpus were selected for
the Nuisance Attribute Projection (NAP) [19] training data.
The 1-side training data in the NIST-SRE2005 was used to
train cohort models in the Tnorm approach [29]. An energy
based Voice Activity Detection (VAD) [29] is used to detect
and eliminate non-speech feature vectors. The 512 Gaus-
sian mixture UBM was trained by using the EM algorithm.
Speaker models obtained in this training phase were adapted
from the UBM by MAP adaptation [4] provided in the Hid-
den Markov Toolkit (HTK) [16], with only mean vectors
adapted. In SVM training and testing phases, GMM Su-
pervectors composed of the means of speaker GMMs were
used as input for SVM training. SVM processes were im-
plemented by using the SVMTorch tool [30].
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Table 2 Experimental results of male speaker data.

Table 3 Experimental results of female speaker data.

6.2 Experimental Results

The aim of evaluations was to compare the effectiveness of
the RASTA filter and our proposed adaptive filter. Two types
of the proposed adaptive filter were prepared: “AIIR-A” and
“AIIR-B”. The pass-band of AIIR-A is computed from a
global modulation-frequency distribution of the whole fea-
ture vectors, while the pass-band of AIIR-B is computed and
updated continuously at every speech frame. Comparing
these two adaptive filters will show the benefit of filter adap-
tation over time as described in Sect. 5. Experimental results
in term of Equal Error Rate (EER) and Detection Cost Func-
tion (DCF) [31] were obtained by the SVM-GMM Super-
vector based speaker verification system [23] with Tnorm
and TZnorm score normalization [7]. The DCF was com-
puted by using the following equation:

DCF = (C f r × p f r × Ptar) + (C f a × p f a × Pimp) (26)

where p f r and p f a are a false rejection rate and a false ac-
ceptance rate at an operating point. C f r and C f a are costs for
false rejection and false acceptance. Ptar and Pimp are the
prior probabilities of target-speaker trials and impostor tri-
als. Ptar and Pimp were set to 0.01 and 0.99 respectively [31].
The lower the DCF, the higher the system performance.

Table 2 and Table 3 conclude the experimental results
evaluated separately on male and female data. The results
indicate that both AIIR-A and AIIR-B filters outperform the
conventional RASTA filter. The normalization techniques,
Tnorm and TZnorm, are still important for improving the
system accuracy.

The best results of each filter are obtained after
TZnorm. Detection Error Trade-Off (DET) curves [27], only
by TZnorm, are shown in Fig. 8 and Fig. 9 for male and fe-
male speakers respectively. The results clearly show that
our proposed filters, both AIIR-A and AIIR-B, can im-
prove the speaker verification performance over the conven-
tional RASTA filter. As the cut-off frequencies of RASTA
are defined by fixed-values without considering an actual
modulation-frequency distributions of speaker feature vec-
tors, some useful information may be suppressed while
some useless information are not attenuated. The cut-off
frequencies of AIIR-A designed by considering the global
distribution of modulation-frequency components of feature

Fig. 8 DET curve of Male speakers.

Fig. 9 DET curve of Female speakers.

vectors hence help improving the filtering capability. It is
known that the speech features are time-varying. Applying
the AIIR-B filter whose parameters are adapted properly at
every speech frame can give a better result over the fixed
pass-band AIIR-A.

Finally, as the objective of the proposed method is to
relax filter cut-off frequencies regarding the feature vector
being processed, dynamic or delta parameters with an ap-
propriate window [13] could be able to provide a similar re-
sult. According to a preliminary experiment on the male
speaker set, including delta parameters with a 3-frame win-
dow with no score normalization gained a 10.09 EER which
was slightly lower than that of the baseline RASTA system,
but still higher than those produced by the proposed AIIR-A
and AIIR-B methods. One possible reason is that the pro-
posed methods allow finer adjustment of the filter parame-
ters. This issue will be extensively explored in our future
work.

7. Conclusion

In this paper, a new filter design technique based on adaptive
IIR filtering was proposed for improving the robustness of
text-independent speaker verification. Each of modulation-
frequency components of the speech feature vector extracted
from each speaker was analyzed separately and the adaptive
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IIR filter was designed based on the analysis results. Filter
cut-off frequencies, both at low-pass and high-pass, were
initialized based on the statistical distribution of features
and were updated at every speech frame. By the proposed
technique, important modulation-frequency components of
the speech feature were optimally preserved at every time
frame. According to the experimental results, the proposed
technique clearly helped improving the overall verification
performance, compared with the baseline system using the
RASTA filter. Conventional score normalization techniques
such as Tnorm and TZnorm were still applicable in the pro-
posed system.
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