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SUMMARY Parametric images can help investigate disease mecha-
nisms and vital functions. To estimate parametric images, it is necessary
to obtain the tissue time activity curves (tTACs), which express tempo-
ral changes of tracer activity in human tissue. In general, the tTACs are
calculated from each voxel’s value of the time sequential PET images esti-
mated from dynamic PET data. Recently, spatio-temporal PET reconstruc-
tion methods have been proposed in order to take into account the tem-
poral correlation within each tTAC. Such spatio-temporal algorithms are
generally quite computationally intensive. On the other hand, typical al-
gorithms such as the preconditioned conjugate gradient (PCG) method still
does not provide good accuracy in estimation. To overcome these prob-
lems, we propose a new spatio-temporal reconstruction method based on
the dynamic row-action maximum-likelihood algorithm (DRAMA). As the
original algorithm does, the proposed method takes into account the noise
propagation, but it achieves much faster convergence. Performance of the
method is evaluated with digital phantom simulations and it is shown that
the proposed method requires only a few reconstruction processes, thereby
remarkably reducing the computational cost required to estimate the tTACs.
The results also show that the tTACs and parametric images from the pro-
posed method have better accuracy.
key words: PET, parametric image, spatio-temporal reconstruction,
DRAMA

1. Introduction

Dynamic data from positron emission tomography (PET)
can provide parametric images, which can be used to vi-
sualize important physiological and biochemical informa-
tion. Such information can help elucidate disease mecha-
nisms or vital functions in the human or animal body. Here
we outline the general steps that must be taken to esti-
mate parameter values of the image. First, emission im-
ages are reconstructed from PET data with respect to each
time frame. From the image sequence we can determine tis-
sue time activity curves (tTACs), which express the tempo-
ral change of tracer activity at each voxel. Parameters may
be obtained from the tTACs and plasma time activity curve
(pTAC) by fitting a kinetic model, such as two-tissue three-
compartment model shown in Fig. 1. Methods are available
for both linear (e.g. Patlak graphic plot [1]) and non-linear
(e.g. modified Marquardt approach [2]) compartment model
analysis.
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Since pTAC can be measured e.g., from arterial blood
sampling with high accuracy, the parametric image quality
is strongly dependent on the accuracy of tTAC estimation.
The conventional approach, however, produces noisy im-
ages since typical reconstruction algorithms neglect infor-
mation from neighboring frames.

To reduce the noise, there have been proposals of some
spatio-temporal reconstruction methods with temporal ba-
sis function that take into account the temporal correlation
within each tTAC [3], [4]. Alternatively, some reconstruc-
tion methods estimate the parameters directly from the pro-
jection data, which could involve the data from all dynamic
frames in the reconstruction [5].

In line with the former studies, we might consider a
spatio-temporal reconstruction to maximize a cost function
derived from statistical properties. Such algorithms, how-
ever, have remarkably high computational cost.

Meanwhile, in the spatial reconstruction field, block-
iterative algorithms have been developed, including row-
action maximum likelihood algorithm (RAMLA) [6] and
dynamic RAMLA (DRAMA) [7], [8], proposed to improve
the convergence of maximum likelihood estimation. In par-
ticular, it was reported that DRAMA provided reasonable
signal-to-noise ratio with a satisfactory spatial resolution us-
ing only a few iterations.

This paper presents a new spatio-temporal reconstruc-
tion method based on DRAMA for list-mode data to esti-
mate tTACs with a high voxel-by-voxel accuracy and also
reducing computational cost. The proposed method allows
for fast while properly adjusting noise propagation. We
evaluate performance of this method with a digital phantom
simulation. The proposed method remarkably reduces the

Fig. 1 Three-compartment model. The parameters K1, k2, k3, and k4

denote the transfer rate between compartments. k4 is negligible for e.g., the
18F-FDG model.
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computational time required to estimate the tTACs. Also,
the tTACs and parametric images estimated using the pro-
posed method show good performance in terms of voxel-
by-voxel estimation.

2. Method

We assume in this paper that dynamic PET data set has been
given as a list-mode format, which has the detection infor-
mation stored event by event. We express the PET measure-
ment data, including N number of events, as

S = {(in, tn) | 1 ≤ n < N}, (1)

where the n-th event has been detected at a detector pair of
index in at the sampled time of index tn. Next we formulate
the relation between the list-mode data set denoted by S and
tTAC, which is needed to make parametric images. Let j be
the voxel index in object space, x j(t) be the tTAC at the j-th
voxel, and ai j be a detection sensitivity that events emitted
from j-th voxel are caught by i-th detector pair. Since events
are detected according to Poisson distribution, the probabil-
ity that the event detected at detector pair in and at time tn,
given {x j(t)}, would be

Pr(in, tn | {x j(t)}) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
j

ain jx j(t)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝∑

j

ain jx j(t)

⎞⎟⎟⎟⎟⎟⎟⎠ .
(2)

Here we adopt a basis function set for tTACs, which was
introduced in [3]:

x j(t) =
lmax∑
l=1

w jlBl(t), (3)

where w jl denotes the l-th coefficient at voxel j and Bl(t) de-
notes the lmax number of basis functions. In general, smooth
basis functions are preferred since the tTACs tend to be tem-
porally correlated. For example, a set of B-spline basis
functions is often chosen because of their easy implemen-
tation and of the locality of each basis curve. Alternatively,
we could choose a set of functions that would well repre-
sent the curves generated from a specific radioactive tracer.
This could be feasible if we know the characteristics of the
curves.

The probability of the measurement of S , given x j(t),
is derived from Eq. (2) and Eq. (3) as

Pr(S | {x j(t)}) =
∏
n∈S

Pr(in, tn | {x j(t)})

=
∏
n∈S

exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
j

ain j

∑
l

w jlBl(t)

⎞⎟⎟⎟⎟⎟⎟⎠ ·⎛⎜⎜⎜⎜⎜⎜⎝∑
j

ain j

∑
l

w jlBl(t)

⎞⎟⎟⎟⎟⎟⎟⎠ , (4)

and thus we obtain the log-likelihood function

L(w) = log

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
n∈S

∑
j

ain j

∑
l

w jlBl(tn)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
−
∑

i

∑
j

ai j

∑
l

w jl

∫ T

0
Bl(t) dt, (5)

where w denotes a vector containing w jl for all j = 1, . . . , J
and l = 1, . . . , lmax, and T denotes the measurement time.
Substituting the optimal w maximizing Eq. (5) into Eq. (3),
we can determine the tTACs, motivating our attempt to
find the optimal w. Although we regard the simple log-
likelihood function as the cost function in this paper, this ap-
proach could be easily extended by including a penalty func-
tion in Eq. (5), resulting in a penalized log-likelihood. Con-
ventionally, expectation-maximization (EM) algorithm [4]
or preconditioned conjugate gradient (PCG) algorithm [3]
have been applied to obtain the w that maximizes the cost
function. These algorithms, however, require a large num-
ber of iterations before convergence.

To speed up convergence, we adopt an approach based
on DRAMA [7], [8], a block-iterative algorithm. DRAMA
was developed as a spatial reconstruction algorithm and has
been reported to improve the convergence of maximum like-
lihood estimation. DRAMA has the characteristic defini-
tion of a relaxation parameter as described below. Here
we can apply a similar approach as the derivation of the
block-iterative algorithms for list-mode data [8]. To intro-
duce the block-iterative method to maximize the cost func-
tion Eq. (5), we decompose it into a summation of M partial
cost functions Lm(w), i.e.,

L(w) =
M−1∑
m=0

Lm(w). (6)

Also, we divide the list-mode data set into subsets S m (m =
0, . . . ,M − 1).

To define the partial cost function that satisfies Eq. (6),
we adopt a blocking-factor pm j, which is introduced in [8]
to determine how to decompose the log-likelihood function.
In this paper, define this as

pm j =

∑
i ai j(∑M−1

m′=0
∑

n∈S m′ ain j

) = ∑
i ai j∑

n∈S ain j
, (7)

which satisfies
∑

m
∑

n∈S m
pm jain j =

∑
i ai j. Then we may

define the partial cost function as

Lm(w) = log

⎛⎜⎜⎜⎜⎜⎜⎝∑
n∈S m

∑
j

ain j

∑
l

w jlBl(tn)

⎞⎟⎟⎟⎟⎟⎟⎠
−
∑

j

pm jai j

∑
l

w jl

∫ T

0
Bl(t) dt, (8)

each of which involves just the corresponding subset S m.
Applying the idea of block-iterative method with the deriva-
tive of Lm(w), we derive a new iterative algorithm as fol-
lows:
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w(k,0)
jl = w(k)

jl , (9)

w(k,m+1)
jl = w(k,m)

jl + λ(k,m)
w(k,m)

jl

C jl

∑
n∈S m

ain j ·
⎛⎜⎜⎜⎜⎜⎜⎝ Bl(tn)∑

j′ ain j′
∑

l′ w
(k,m)
jl′ Bl′ (tn)

− pm j

∫ T

0
Bl(t) dt

⎞⎟⎟⎟⎟⎟⎟⎠ , (10)

w(k+1)
jl = w(k,M)

jl , (11)

and

C jl = max
m

∑
n∈S m

pm jain j

∫ T

0
Bl(t) dt, (12)

for all j = 1 . . . J, l = 1 . . . lmax, m = 0 . . .M − 1, and k =
0, 1, . . ., where k is an index of current iteration and C jl is
a normalization coefficient. The variable λ(k,m) appearing
in Eq. (10) is a relaxation parameter for providing uniform
noise propagation [7]. One possibility for this is

λ(k,m) =
β0

β0 + m + γkM
, (13)

where β0 is a constant dependent on a geometrical correla-
tion function and γ is a constant value determined empiri-
cally.

In the proposed algorithm, it is necessary to random-
ize the observed list-mode data before dividing them into
subsets so that each subset has the same temporal informa-
tion. If the list-mode data in each subset were to have un-
equal temporal information, the proposed algorithm might
not work correctly.

3. Simulation

We carried out a computer simulation to evaluate the per-
formance of the proposed method and to investigate the
quality of resulting images as compared with those result-
ing from conventional methods. This simulation was per-
formed on data from a 3D PET scan, which has a huge num-
ber of measurement events compared with 2D scan and en-
larges the problem of the computational cost [9], and on data
from a 18F-FDG brain phantom study for imaging cerebral
metabolic rates, a typical PET tracer study [10]. We created
a list-mode data set from a 3D PET measurement of a digital
cylindrical phantom shown in Fig. 2.

The phantom had hot regions whose diameters were
3.0 cm, 4.0 cm, and 4.5 cm respectively. Two regions of in-
terest (ROIs), placed at the central slice and including 172
voxels, were set for the following evaluations (Fig. 2). The
diameter of the field of view was set as 25.0 cm so that it
could hold the whole phantom, and the field of view con-
sisted of five slices. The image resolution of each slice was
100×100 voxels. Each voxel of the phantom had a tTAC that
was one of the two types of tTACs according to the three-
compartment model (Fig. 1). The pTAC for the input func-
tion was modeled as [11] (Fig. 3) and parameter values were
set as in Table 1, which simulated 18F-FDG studies.

Fig. 2 Digital phantom settings. ROIs were placed on the central slices
of the phantom for evaluation.

Fig. 3 pTAC modeled in the simulation.

Table 1 Parameter value settings to produce two types of tTACs.

Region K1 k2 k3

Region 1 0.102 0.130 0.062
Region 2 0.054 0.109 0.045

Fig. 4 The basis function set used in the reconstruction processes in the
simulation.

To begin with, we produced sinograms of the phan-
tom at each second. We included background activity that
amounted to 1/5 of all counts and added Poisson noise to the
sinograms. Then we transformed them into list-mode for-
mat. The quantity of the list-mode count was approximately
5.0 × 106 counts and the noise level was 31.5 percent.

In the reconstruction process, we estimated tTACs from
the list-mode data using the proposed method and also us-
ing two conventional spatio-temporal methods: the PCG
method and the EM method. We adopted as the basis func-
tion model a set of 10 B-spline basis functions shown in
Fig. 4, which we confirmed can express tTACs generated
from the model. After we obtained the curves, we performed
post-smoothing using a spatial Gaussian filter having a full
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width at half maximum (FWHM) of two voxels. In the pro-
posed method, we randomized the list-mode data and then
divided them into M = 100 subsets so that all the subsets
had approximately the same counts. The constant value β0

and γ were defined as 51.6 and 0.1, respectively. In the PCG
method, to avoid negative value estimates, we overwrote the
values of the estimate w jl := max(w jl, 0) at the end of each
iteration. For evaluation of the methods, we chose the iter-
ation number at which we minimized the mean square error
values between estimated curves within the ROI II and ideal
curves, indicating the convergence of the estimates.

From the estimated tTACs, we generated parametric
images by means of Patlak graphic plot analysis [1]. This
analysis can produce parameter images of FDG-influx val-
ues Ki = K1k3/(k2+k3) by taking the slope of the integral of
Cp(t) divided by Cp(t) versus C(t)/Cp(t), where Cp(t) is the
input function and C(t) is the time change of the voxel value.
The analysis processes were performed the same way for
tTACs reconstructed with each of the three different meth-
ods.

All calculation processes were performed on an Intel
Xeon processer (2.93 GHz), and the processes of reconstruc-
tion were implemented for 8 core 16 thread parallel compu-
tations by OpenMP.

4. Results

We recorded the voxel average of root mean square error
(RMSE) values in ROI II between the reconstructed curves
and the ideal curves. We defined the RMSE here as

RMSE =
1

JROI

∑
j∈ROI

√∫ T

0
(x(k)

j (t) − xideal
j (t))2 dt, (14)

where JROI denotes the number of voxels in the ROI.
Figure 5 depicts the RMSE values through 30 iterations

of the methods. The RMSE value was smallest at one iter-
ation of the proposed method, at 15 iterations of the PCG

Fig. 5 RMSE between tTACs and the ideal curve in ROI II through 30
iterations. The red line with the cross mark indicates the proposed method,
the blue line with the plus mark indicates the PCG method, and the green
line with the triangle mark indicates the EM method.

method, and at 25 iterations of the EM method. Computa-
tional times for those iterations are shown in Table 2. The
proposed method was more than 11 times faster than the

Table 2 Computational time for the three spatio-temporal reconstruction
methods.

Method Time
DRAMA 1-iter 53 min

PCG 15-iter 11 h 33 min
EM 25-iter 13 h 42 min

Fig. 6 Estimated tTACs in ROI I. The curves were reconstructed with the
proposed method (top), with PCG method (middle), and with EM method
(bottom). The black dashed lines indicate ideal curves, the gray solid lines
indicate several examples of tTACs, and blue solid lines indicate the mean
values and the SD values within the ROI.
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Fig. 7 Estimated tTACs in ROI II. The curves were reconstructed with
the proposed method (top), with PCG method (middle), and with EM
method (bottom). The black dash lines indicate ideal curves, the gray solid
lines indicate several examples of tTACs, and blue solid lines indicate the
mean values and the SD values within the ROI.

PCG method and more than 13 times faster than the EM
method.

The tTACs estimated by all three methods for voxels
in ROI I and in ROI II are shown in Fig. 6 and Fig. 7 re-
spectively. In both figures, black dashed lines denote ideal
curves, gray solid lines denote several examples of tTACs in
the ROI, and blue solid lines denote the mean values and the
standard deviation values of the tTACs within the ROI.

Figure 8 depicts the central slices of the parametric im-

Fig. 8 Result parametric images at central slices. The line drawn on the
ideal image is the profile line of Fig. 9.

Fig. 9 Line profile of the parametric images.

ages of FDG-influx values. The images were estimated from
tTACs reconstructed with the three methods. Table 3 shows
the numerical results of the two ROIs. The image produced
from the proposed method had lower variance than that of
the PCG method and lower bias than that of the EM method.
Figure 9 shows the horizontal profiles of the line drawn on
the ideal image in Fig. 8.

5. Discussion

The reconstructed tTACs in Fig. 6 and Fig. 7 indicate that the
proposed method achieved good convergence with just one
iteration. In Fig. 6, the mean curves in ROI I using the pro-
posed method would converge to the ideal curve while those
using the PCG method would overestimate the curves, and
those using the EM method would slightly underestimate
during the latter half of the measurement time. It would
seem in Fig. 7 that their variances of the curves have slight
difference in the ROI.

In terms of the computational time shown in Table 2,
the proposed method would achieves a faster convergence
than conventional one. The dominant part of the algo-
rithm is a loop calculation for each list-mode event n. The
time of this calculation of both proposed method and EM
method would be almost the same order, and that of the
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Table 3 Bias and stantard deviation (SD) of parameter values in ROIs.

Method DRAMA PCG EM
Bias [%]
ROI I −1.71 −0.13 −2.77
ROI II −0.19 −0.48 −0.74

SD [10−3]
ROI I 1.05 1.08 1.03
ROI II 0.249 0.247 0.246

PCG method would be longer. Note that only the proposed
method has a non-negligible pre-calculation process to cal-
culate the blocking factor values, which took 20 minutes in
this simulation.

Figure 8 compares the parametric images from the
tTACs reconstructed with three methods. We plot the hor-
izontal profile (Fig. 9) along the line on the ideal image to
see the difference among the parametric images. The im-
age from tTACs obtained with the EM method might look
blurred compared with other two estimated images. As
shown in Fig. 9, a profile line of the image through the EM
method process could express the value of the centers of hot
regions; however, the profile would be slightly dull near the
edge of the regions. The profile through PCG method would
have similar values near the edge of the regions, while this
would overestimate at the centers of hot regions. As a result,
the PCG method had a quite low bias error in Table 3. Com-
pared with the two, the profile through the proposed method
could express the value around the edge of the regions. It
could indicate that the proposed method has good perfor-
mance in terms of voxel-by-voxel estimation. The proposed
method achieved low bias especially in ROI II, with similar
SD values as the other methods.

A limitation of the proposed method is that we still
have to determine empirical settings. In the definition of the
relaxation parameter, the geometrical correlation was de-
rived by assuming a two-dimensional model [7], which was
also used for three-dimensional reconstructions, or an actual
three-dimensional model (here we adopted the former ver-
sion). We might further improve estimation by a suitable
definition for a four-dimensional model. In addition, we
might have to determine the optimal number of subsets. In
the proposed method, the amount of radioactivity could af-
fect the signal to noise ratio of both spatio-temporal images
and final parametric images compared with conventional al-
gorithms. That is, if the number of subsets is redundant,
each subset could have noisy data in remarkably low activ-
ity case, and it might invoke lower quality results.

Additionally, the choice of the number of basis func-
tions could affect the quality of resulting images both us-
ing the proposed algorithm and using conventional spatio-
temporal algorithms. For instance, the reconstruction might
require more basis functions to maintain sufficient time res-
olution of the curves.

Although we evaluated using only computer simula-
tion, real PET data should be applied to validate a perfor-
mance of the proposed method, which we leave for future
work. Still, we would hope it would provide further va-

lidity of the proposed method. In such clinical PET mea-
surements, photon scatter and signal attenuation may affect
results, factors we did not consider in our simulation. There
are studies where attenuation and scatter models have been
included in the system matrix [12]. These factors can be in-
corporated by modifying the system matrix in the algorithm.

6. Conclusion

We developed a new method that extended a block-iterative
algorithm called DRAMA for spatio-temporal reconstruc-
tion. We derived the method and evaluated it using a com-
puter simulation. The results indicate that the proposed
method has good performance for generating tTACs in terms
of voxel-by-voxel estimation, and it requires considerably
less computational time compared with conventional spatio-
temporal methods. Although we focused in this paper on
a simple maximum likelihood reconstruction, it can be ex-
tended to a penalized likelihood estimation by modifying the
cost function.
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