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SUMMARY This paper presents an ensemble learning algorithm for
liver tumour segmentation from a CT volume in the form of U-Boost and
extends the loss functions to improve performance. Five segmentation al-
gorithms trained by the ensemble learning algorithm with different loss
functions are compared in terms of error rate and Jaccard Index between
the extracted regions and true ones.
key words: CT image, liver tumour, segmentation, ensemble learning,
U-boost

1. Introduction

Segmentation of metastatic liver tumours from a contrast-
enhanced computed tomography (CT) volume is a crucial
process for computer-aided surgery and diagnosis. A num-
ber of algorithms for liver tumour extraction have been pro-
posed [1]–[5]; some of them were pitted against each other
in the competition at the Medical Image Computing and
Computer-Assisted Intervention (MICCAI) workshop held
in 2008 [5], in which ensemble learning based segmentation
(ELBS) trained by AdaBoost [6] presented the best auto-
mated segmentation [7]. A segmentation algorithm consists
of several hundred weak classifiers (or hypotheses) [4], [7]–
[9], called weak segmentation processes in this paper. In
a series of training rounds, an AdaBoost algorithm repeat-
edly calls a weak segmentation process and combines the
called processes into one to construct a strong segmentation
algorithm with a minimised loss function. The best algo-
rithm in the MICCAI competition combined two ELBS al-
gorithms, one of which was trained using tumours whose
mean radius is larger than 24 mm and the other by smaller
tumours, by a logical sum operation. Because characteris-
tics of CT value distribution differ according to tumour size.
This paper also adopts the same procedure.

Although ELBS has excellent features that can deal
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with large variations in CT values, some false positives and
false negatives occur in the resultant images when compared
to manually labelled boundaries set by human observers.
One possible reason for such errors is outliers of input fea-
ture vectors; another is mislabelling of tumours used for
training. AdaBoost is known to be incapable of managing
outlier and mislabelling problems appropriately because of
its exponential loss function [10]–[12].

Several improved ensemble learning algorithms have
been proposed [10]–[13], such as modified AdaBoost
(MadaBoost) [10] and Most B-robust η-Boost (MBRη-
Boost) [11], known to be robust against outliers of feature
vectors and/or mislabelling of tumours. Each algorithm has
a different loss function, leading to different characteristics
in segmentation. The best loss function depends on the spe-
cific application. Although a comparative study of loss func-
tions is important, there is no report regarding liver tumour
segmentation. Additionally, the outlier and mislabelling
problems might occur more often around tumour boundaries
than in other locations, but this is not taken into account in
the existing ensemble learning algorithms.

The contributions of this paper are three-fold. First,
we present an ensemble learning algorithm in the form of
U-Boost [12], which is a class of ensemble learning algo-
rithms including not only AdaBoost but also MadaBoost
and MBRη-Boost. The definition in the form of U-Boost
makes the differences in algorithms clear, because the dif-
ferences can be summarised in terms of the differences
in the loss functions. Second, extensions of the loss
functions of MadaBoost and MBRη-Boost are proposed
to improve segmentation performance. Third, we com-
pare the five ELBS algorithms for metastatic liver tumour
segmentation trained by the five ensemble learning algo-
rithms, or AdaBoost, Modified AdaBoost (MadaBoost),
Most B-robust η-Boost (MBRη-Boost) and extensions of
the MadaBoost and MBRη-Boost, to show the difference
between AdaBoost and the other algorithms, the effective-
ness of the proposed extension and determine the optimal
algorithms.

2. Methods

2.1 An Ensemble Learning Algorithm

Consider a segmentation that distinguishes two different
classes in a label set L = {−1, 1}. Here, a voxel in a tu-
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mour has a value of 1. The segmentation process of
a three-dimensional image includes mapping from a three-
dimensional position vector �xi to the labels ht(�xi): Z3 → L.
Pseudo-code for U-Boost is provided in Fig. 1.

U-Boost finds an optimum weak segmentation pro-
cess ht (t = 1, . . . ,T ) repeatedly in a series of training
rounds, which minimises the weighted error εt computed
from the training dataset. Finally, the sequence of weak
segmentation processes is integrated into final output H
with weight αt, which intuitively measures the importance
assigned to ht, and αt increases as the error εt of ht de-
creases. Here, a weak segmentation process ht(�xi) is defined
as follows.{

f (�xi) ≥ T f ⇒ ht(�xi) = 1 (tumor)
else ⇒ ht(�xi) = −1 (other tissue)

(1)

The symbol f (�xi) is the value of a feature at location �xi and
T f is a threshold value. We prepared 80 features, which
are divided into three groups (see Table 1). The first group
contains CT-value-based features, such as the variance and
skewness, measured in a region near the voxel of interest.
Features in the second group are based on the output of
a convergence index (C.I.) filter [3] used for enhancing tu-
mours. The spatial filter computes a convergence index
of gradient vectors in a spherical mask region centred at
the voxel of interest, resulting in a high convergence index

Fig. 1 Illustrations of ensemble learning algorithm for liver tumour seg-
mentation based on U-Boost.

Table 1 Details of features for weak segmentation processes.

around the centre of the tumour. The last group consists
of other features, such as the output of a Sobel filter and
a matched filter. The matched filter is designed in terms of
the CT value profile of the tumour whose size is estimated
by a C.I. filter [3].

AdaBoost, MadaBoost and MBRη-Boost comprise
a class of U-Boost; each has a different loss function U(z),
as shown in Table 2, resulting in different properties against
outliers and mislabelling of liver tumour labels. Since the
loss function of AdaBoost is exponential, it is sensitive to
data contaminated by outliers and/or mislabelling. In con-
trast, MadaBoost minimises the gross error sensitivity [12],
[14], and thus minimises the influence of outliers on input
feature vectors. MBRη-Boost is robust against not only out-
liers, but also mislabelling [11]. In general, a class label is
determined by an observer with varying degrees of uncer-
tainty, resulting in mislabelling around a tumour boundary.
In this boosting, a contamination model was introduced to
describe the occurrence of mislabelling, where a conditional
probability P(l | �x ) is contaminated as

(1 − η)P(l | �x ) + ηP(−l | �x ) (2)

where a parameter η represents the probability of
mislabelling.

2.2 Extension of the Loss Functions

In this study, we modified the loss functions of MBRη-Boost
and MadaBoost.

First, η of MBRη-Boost is extended to a function η(�x )
at location �x. With this we can set the possibility of misla-
belling to be high at a tumour boundary, where mislabelling

Table 2 Loss functions of the ensemble learning algorithms compared
in this study.

Fig. 2 Example of extended function η for liver tumour segmentation.
Voxels with high η, coloured in yellow or red, correspond to the tumour
boundary.
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is expected to occur. Figure 2 shows an example of the ex-
tended function η(�x ) for liver tumour segmentation, which
is computed by the following equation.

η(�x ) = 0.5 − |0.5 −Gσ ∗ I(�x )| (3)

Gσ is a Gaussian function with standard deviation σ; ∗ is
a convolution operation and I(�x ) is a binary image in which
tumour voxels have a value of 1 and others have 0. The
maximum of η(�x ) is 0.5 at the tumour boundary, and the
minimum is 0 inside or outside of the tumour. In principle,
mislabelling might be more likely to occur at the tumour
boundary than in other regions. Setting the η(�x ) of vox-
els near the boundary to be large will improve segmentation
performance. This boosting algorithm is named “modified
MBRη-Boost” in this paper.

Second, a voxel-wise cost is introduced in the loss
function of MadaBoost. A cost-sensitive boosting was pre-
sented in [15] and the cost is extended to voxel-wise cost
in this paper. We set the cost of the tumour boundary ac-
cording to Eq. (4) to a small value, such that the undesirable
fluctuation of samples in the feature space does not cause
the learned ELBS algorithm to suffer from over-learning.
The loss function U of MadaBoost is multiplied by the cost
C(�x ), which derives “cost-sensitive MadaBoost”.

C(�x ) = 1 − 2η(�x ) (4)

3. Experiments

3.1 Materials

The materials for validation were 40 contrast-enhanced CT
volumes of 40 patients, including a total of 133 metastatic
tumours. Mean number of tumours per patient scan is 3.3.
Volumes were obtained using multi-detector row CT, which
provided several hundred 512 × 512 pixel slice images with
12-bit accuracy. The voxel size of the CT volume was
0.542–0.865 mm in the axial plane and 0.5–5 mm in the z di-
rection. Mode of voxel size in the z direction is 1 mm and
the mean is 1.37 mm. Tumours were divided into two groups
according to mean radius: tumours larger than 24 mm radius
on average and smaller tumours. The reason of the group-
ing is that gray value characteristics of a small tumour differ
from those of a larger one. For example, a small tumour has
a uniform gray value while a larger one has higher diversity
in gray value. Consequently different ELBS algorithms are
required for different size of tumours [7]. The large tumour
group included 22 tumours, and the small tumour group con-
sists of 111 tumours. ELBS algorithms were trained and
validated for each group. True tumour regions for the train-
ing and validation were manually labelled by an author and
approved by a radiologist.

3.2 Results

The performance of the five ELBS algorithms trained

by AdaBoost, MadaBoost, MBRη-Boost, cost-sensitive
MadaBoost (CS-MadaBoost) and modified MBRη-Boost
(M-MBRη-Boost) were evaluated by a 10-fold CV test for
each group, the large tumour and small tumour groups. The
maximum number of weak segmentation processes was set
to 200 for the large tumour group, and 1,000 or 1,500 for the
small tumour group, σ of the Gaussian for η(x) was 1.8 mm,
η for MBRη-Boost was an average of η(x) used in its ex-
tended version, or 0.0331 for large tumours and 0.0512 for
small tumours, and minimisation in the computation process
of confidence αt of step 3 in Fig. 1 was performed using the
Brent algorithm [16].

Figure 3 (a) shows the transition of error rates for
large tumours evaluated by 10-fold CV. The minimum er-
ror rates are marked by red circles. AdaBoost is inferior
to MadaBoost and MBRη-Boost, whose performances are
comparable to each other. The two extensions proposed in
this paper yielded different results. M-MBRη-Boost failed
to reduce its error due to a local minimum of the loss func-
tion, resulting in a high error rate, while CS-MadaBoost was
confirmed as the best, slightly better than its original en-
semble learning algorithm; it achieved the minimum error
among all the algorithms.

Figure 4 presents the regions extracted by AdaBoost,
MadaBoost and CS-MadaBoost, where the number of weak
segmentation processes was set to an optimal level, accord-
ing to the red circles labelled a, b and c in Fig. 3 (a). Semi-
transparent coloured regions correspond to the extracted re-

(a)

(b)

Fig. 3 Error rate transition for (a) the large tumour group and (b) the
small tumour group as the number of weak segmentation processes in-
creases. Red circles indicate the number with minimum error rates; the
results of three algorithms denoted by a, b and c will be presented in Fig. 4
and 5.
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Fig. 4 Results of the segmentation processes trained by (a) AdaBoost,
(b) MadaBoost and (c) CS-MadaBoost. White lines are manually labelled
true boundaries, and semi-transparent coloured regions are extracted re-
gions. Yellow arrows indicate a false positive in AdaBoost that was elimi-
nated by both MadaBoost and CS-MadaBoost.

gions, and manually defined true boundaries are shown in
white. A difference was observed in the region indicated
by yellow arrows, where false positives were eliminated by
MadaBoost and CS-MadaBoost.

To evaluate the segmentation performance quantita-
tively, we computed the Jaccard Index (JI) between an ex-
tracted region and a true region, which was manually la-
belled by an author and approved by a radiologist. The JI
of AdaBoost was improved by 1.2 pt with MadaBoost and
2.8 pt with CS-MadaBoost. The average improvement in JI
for all materials was 0.092 pt by MadaBoost and 0.51 pt by
CS-MadaBoost.

Figure 3 (b) presents the transition of error rates for
small tumours evaluated by 10-fold CV. Minimum error
rates were achieved at the positions marked by red circles.
This figure shows that AdaBoost is the worst, while the ex-
tension of MBRη-Boost is better than its original version
and achieved the best performance.

Figure 5 demonstrates that MBRη-Boost and M-
MBRη-Boost could extract a tumour missed by AdaBoost
when the number of weak segmentation processes was set
as optimal. The JI of AdaBoost was greatly improved by

Fig. 5 Segmentation results of the three ELBS algorithms trained by
(a) AdaBoost, (b) MBRη-Boost and (c) M-MBRη-Boost. White lines show
true boundaries of tumours, and semi-transparent coloured regions are ex-
tracted regions. MBRη-Boost and M-MBRη-Boost succeeded in extracting
the tumour missed by AdaBoost.

MBRη-Boost and M-MBRη-Boost. The average improve-
ment in JI for all materials was 2.0 pt by MBRη-Boost and
2.9 pt by M-MBRη-Boost, respectively.

We focus on AdaBoost as well as the best ensemble
learning algorithm for each type of tumours and its origi-
nal version, whose minimum error rates are annotated by
a, b and c in the Fig. 3. A Wilcoxon test was carried out
to evaluate the difference in performance statistically. The
null hypothesis H0 is that no significant difference exists be-
tween the two distributions of error in a CT volume. In
the large tumour group, the results told us that the differ-
ence between AdaBoost and MadaBoost, and that between
AdaBoost and CS-MadaBoost were statistically significant
with risk p < 0.01. A possible reason for their superiority
to AdaBoost is their robustness against outliers and/or mis-
labelling of tumours. It was also found that extending the
loss functions could boost segmentation performance, due
mainly to the fact that outliers and/or mislabelling tend to
happen more often around tumour boundaries than in other
positions.

Similar findings were also observed in the small
tumour group. The difference between AdaBoost and
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MBRη-Boost, and that between AdaBoost and M-MBRη-
Boost whose error was minimum were statistically signifi-
cant with risk p < 0.01 tested by a Wilcoxon test. More-
over, the difference between the JI values of MBRη-Boost
and M-MBRη-Boost was statistically significant with risk
p < 0.05. The result suggests that extending the loss func-
tion has the potential to improve the performance, particu-
larly in small tumours.

4. Conclusions

The five different loss functions for ensemble learning based
liver tumour segmentation were presented in the form of
U-Boost. The performance of segmentation algorithms
trained by the different loss functions were compared and
optimal one was determined for each tumour group, or small
tumour group and large one.
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