
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013
927

PAPER

Development of a Robust and Compact On-Line Handwritten
Japanese Text Recognizer for Hand-Held Devices

Jinfeng GAO†a), Student Member, Bilan ZHU†, Member, and Masaki NAKAGAWA†, Fellow

SUMMARY The paper describes how a robust and compact on-line
handwritten Japanese text recognizer was developed by compressing each
component of an integrated text recognition system including a SVM clas-
sifier to evaluate segmentation points, an on-line and off-line combined
character recognizer, a linguistic context processor, and a geometric context
evaluation module to deploy it on hand-held devices. Selecting an elastic-
matching based on-line recognizer and compressing MQDF2 via a com-
bination of LDA, vector quantization and data type transformation, have
contributed to building a remarkably small yet robust recognizer. The com-
pact text recognizer covering 7,097 character classes just requires about
15 MB memory to keep 93.11% accuracy on horizontal text lines extracted
from the TUAT Kondate database. Compared with the original full-scale
Japanese text recognizer, the memory size is reduced from 64.1 MB to
14.9 MB while the accuracy loss is only 0.5% from 93.6% to 93.11%. The
method is scalable so even systems of less than 11 MB or less than 6 MB
still remain 92.80% or 90.02% accuracy, respectively.
key words: on-line recognition, handwritten text recognition, elastic
matching, MQDF, vector quantization

1. Introducton

With the development of pen-based or touch-based hand-
held devices, handwritten text recognition system running
on such hand-held devices needs to be developed. The rela-
tively small RAM of a hand-held device requires a handwrit-
ten text recognition system as small as possible that main-
tains high accuracy. This paper focuses on constructing a
compact on-line handwritten Japanese text recognition sys-
tem, running on such devices.

Handwritten character recognition mainly includes two
types of methods: on-line and off-line recognition. The on-
line method works on an input on-line handwritten charac-
ter pattern, which is a time-sequence of pen-tip coordinates,
and although it is easily made robust to stroke connection
and deformation, it is sensitive to stroke order variation. On
the other hand, the off-line method recognizes an off-line
pattern, which is a character pattern image, and although it
is insensitive to stroke order variation or duplicated strokes,
it is not very robust to stroke connection and deformation.
To overcome the disadvantage of the on-line method, the
off-line recognition method is combined with the on-line
method to form a combined recognizer since the off-line
method is made applicable to an on-line pattern by discard-

Manuscript received July 27, 2012.
Manuscript revised October 30, 2012.
†The authors are with the Graduate School of Engineering,

Tokyo University of Agriculture and Technology, Koganei-shi,
184–8588 Japan.

a) E-mail: gaojinfeng19790213@yahoo.co.jp
DOI: 10.1587/transinf.E96.D.927

ing time-sequence information [1].
Furthermore, to improve the accuracy of text recogni-

tion, text recognition systems integrate over-segmentation,
character recognition, linguistic context evaluation and ge-
ometric context evaluation [2], [3]. Moreover, Japanese is
a large character set language that uses thousands of ideo-
graphic characters of Chinese origin, two sets of phonetic
characters, alpha, numerics and symbols, so designing a
compact yet robust text recognition system running on hand-
held devices is challenging. We need to compress each com-
ponent in the text recognizer while keeping high accuracy.

For Japanese and Chinese off-line handwritten charac-
ter recognition, MQDF2 [4] has been widely used, but its
performance depends on two parameters: the size of feature
vector dimensions and the number of principal components.
The off-line recognizer with different parameter configura-
tions can obtain different performances of character recog-
nition with different memory costs and recognition speeds.
In practice, a configuration of 160 dimensions and 40 prin-
ciple components for MQDF2 is widely used to decrease the
memory cost and keep the accuracy high. However, about
90 MB is required for the configuration covering 7,097 char-
acter classes that consist of 6,715 Kanji (ideographic char-
acters) of the 1st set and the 2nd set in the Japanese Indus-
trial Standard (JIS) and 382 characters from Kana (phonetic
characters), symbols, alpha, numeric and Greek letters. This
is too large for hand-held devices, so its compression plays
a large role in construction of a compact text recognizer.

Liu et al. [5] used LVQ and converted 4-byte parame-
ters into 1-byte to build a compact classifier for printed char-
acter recognition of a large character set. Because handwrit-
ten text recognition is much more challenging than printed
character or text recognition, this approach alone cannot
ensure high accuracy of handwritten text recognition. Al-
though Long et al. built a compact MQDF2 recognizer by
vector quantization [6], it just focuses on character recog-
nition rather than text recognition and there are only 3,777
character classes.

As for on-line recognition, to achieve elastic matching
between feature points, DP-matching was introduced [7],
[8]. Thus, we proposed its greedy variation named
Linear-time Elastic Matching, which was quicker than DP-
matching with deterministic matching and limited back-
tracking. LTM was combined with structured character
pattern representation where radical patterns were shared
among character patterns with the effect of memory reduc-
tion and consistency against style variations [9].

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

928
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

HMM succeeded DP-matching in on-line handwriting
recognition just as in speech recognition [10]. Recently, we
have shown that Markov Random Field (MRF) provides bet-
ter recognition accuracy than LTM or even HMM [11]. Al-
though MRF is more accurate, it has larger memory cost
than LTM. Typically, for 7,097 character classes, the mem-
ory cost of MRF is about 20 MB, but LTM just needs less
than 300 KB. If the on-line and off-line combined recog-
nizer is used, LTM is the better choice.

In our previous work [12], we also constructed a com-
pact handwritten Japanese text recognition system by se-
lecting a small off-line recognizer to optimize tradeoff be-
tween accuracy and memory-time cost. In this paper, to
deploy the compact text recognizer on hand-held devices,
we will further compress each component of the text recog-
nition system. Specifically, the most important and chal-
lenging compression on the combined character recognizer
of integrated text recognition system is successfully done
by selecting LTM for on-line recognition and compressing
MQDF2 via a combination of LDA, vector quantization, and
data type transformation. The system has been pre-installed
into a type of smart phone.

The rest of this paper is organized as follows: Sect. 2
describes model of text recognition. Section 3 explains the
architecture and design of the text recognizer. Section 4 de-
scribes pattern databases and benchmark. Section 5 presents
the construction of the compact text recognizer. Section 6
reports experimental results and analysis. Finally, we draw
the concluding remarks.

2. Model of Text Recognition

Given a handwritten text T , the probability that T is seg-
mented to a sequence of candidate character patterns X =
x1x2, · · · , xm, and a candidate character pattern xi is recog-
nized as a character class ci, forming a recognized text string
C = c1c2, · · · , cm, is defined as the conditional probability
P(C, X|T) and is transformed as follows:

P(C, X|T) =
P(C) × P(T, X|C)

P(T)
. (1)

The goal is to find the candidate character pattern
sequence X and the character sequence C that maxi-
mize P(C, X|T) among candidate segmentations as shown
in Fig. 1 (b) and among candidate character sequences as
shown in Fig. 1 (c). Since P(T) is the probability that a hand-
written pattern T occurs regardless of X and C, we ignore it.
Hereafter, we will consider P(C) and P(T, X|C). Since char-
acter patterns cannot be reliably segmented without being
recognized so that we follow the segmentation by recogni-
tion strategy, i.e. we try to find the best segmentation and
recognition to maximize P(C)P(T, X|C).

Further, since a sequence of candidate pattern X is gen-
erated from T , we can assume P(T |X) = 1. Then, obtain the
Eq. (2).

P(C)P(T, X|C) = P(C)P(X|C)P(T |X) = P(C)P(X|C)

(2)

(a) Handwritten text.

(b) Two cases of segmentation where Xi denotes
candidate character patterns.

(c) Candidate character sequences for the segmentations
in (b).

Fig. 1 Segmentation and recognition.

The probability P(C) is evaluated by tri-gram linguistic
model and we assume that the feature vectors bi, qi, xi, pu

i ,
pb

i and g j which are used for segmentation and recognition
are independent of each others, then Eq. (3) is obtained.

P(C)P(X|C) =
m∏

i=1

P(ci|ci−2ci−1)P(bi|ci)P(qi|ci)P(pu
i |ci)

×P(xi|ci)P(pb
i |ci−1ci)P(gi|ci)

(3)

However, the probability formulation (3) is still insuf-
ficient because it does not consider different contributions
of the different feature vectors in segmentation and recogni-
tion. We take the logarithm of probability and incorporate
the weights of different feature vectors to get a generalized
evaluation model function f (X,C) expressed as Eq. (4). ti
denotes Sb or Sw which is described later.

f (X,C) =
m∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 log P(ci|ci−2ci−1) + λ2 log P(bi|ci)

+λ3 log P(qi|ci) + λ4 log P(pu
i |ci)

+λ5 log P(xi|ci) + λ6 log P(pb
i |ci−1ci)

+λ7 log P(gi|ti)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4)

By assigning different weights of start segment and
non-start segment based on their different contributions to
segmentation and recognition, we obtain Eq. (5). The detail
about the evaluation model is originally described by Zhu et
al. [13].

f (X,C) =
m∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑6
h=1 [λh1 + λh2(ki − 1)] log ph

+λ71 log P(g ji |S b)

+λ72
∑ ji+ki−1

j= ji+1 log P(g j|Sw)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ mλ.

(5)

where Ph (h = 1, · · · , 6) stand for the probabilities
of P(ci|ci−2ci−1), P(bi|ci), P(qi|ci), P(pu

i |ci), P(xi|ci) and
P(pb

i |ci−1ci), respectively. Moreover, P(g ji |S b) is the prob-
ability that spacing between character patterns (Sb) appears

GAO et al.: DEVELOPMENT OF A ROBUST AND COMPACT ON-LINE HANDWRITTEN JAPANESE TEXT RECOGNIZER FOR HAND-HELD DEVICES
929

(a) bi, pu
i and pb

i feature vectors.

(b) inner-gap feature vector qi.

Fig. 2 Geometric features of a candidate character pattern.

as g ji and P(g j|Sw) is the probability that spacing within
a character pattern (Sw) rather than between character pat-
terns appears as g j. Instead of P(g ji |S b), P(g ji |S b, ci−1, ci+1)
is more precise, but we simply omit the effect of neighbor-
ing characters. ki denotes the number of blocks separated by
Sw’s within a candidate character pattern xi.

P(ci|ci−2ci−1) is tri-gram linguistic context probability.
A smoothed tri-gram linguistic context model by interpola-
tion of uni-gram, bi-gram and tri-gram is used to evaluate
linguistic context P(ci|ci−2ci−1) as given by Eq. (6), where
λ1 = 0.7, λ2 = 0.2 and λ1 = 0.1 are used.

Ps(ci|ci−2ci−1) = λ1 × P(ci|ci−2ci−1) + λ2 × P(ci|ci−1)

+ λ3 × P(ci). (6)

The terms in Eq. (5), bi, qi, pu
i and pb

i are geometric
feature vectors derived from a candidate character pattern in
handwritten text as shown in Fig. 2. The term bi is composed
of the height and width of the bounding box of a candidate
character pattern. The term pu

i consists of two vertical dis-
tances from the horizontal central line of a text line to the top
and bottom of the bounding box. The term pb

i is composed
of a vertical distance between the top edges of the bound-
ing boxes of two adjacent candidate character patterns in a
text line and that between the bottom edges of the bound-
ing boxes. The term qi is an inner-gap vector in a candi-
date character pattern, which is obtained by projecting the
character pattern into the horizontal and vertical directions,
splitting each of their histograms into three slices, finding a
gap or gaps in each slice, summing total lengths of gaps, and
dividing it by the estimated average character size noted as
acs as shown in Fig. 2 (b).

We assume P(bi|ci), P(qi|ci), P(pu
i |ci) and P(pb

i |ci−1ci)
to be normal distributions and model their logarithms by a

Table 1 Elements of a spacing feature vector.

Element Definition Element Definition
f1 To f f f10 OB/area of Bs

f2 DB y/acs f11 OB/ area of Bp

f3 OBA/acs2 f12 OB/acs2

f4 DB x/width of Bp f13 DBx/acs
f5 DB x/width of Bs f14 DBy/acs
f6 DB x/acs f15 DBA/acs
f7 DB y/height of Bp f16 DAs/acs
f8 DB y/height of Bs f17 Lo f f /acs
f9 DB y/acs f18 sine(Lo f f)

Table 2 Features to obtain the spacing feature vector.

Feature Definition
Bp Bounding box of the immediate preceding stroke
Bs Bounding box of the immediate succeeding stroke
Bp all Bounding box of all the preceding strokes
Bs all Bounding box of all the preceding strokes
DB x Distance between Bs and Bp in x-axis
DB y Distance between Bs and Bp in y-axis
OBA Overlap area between Bp and Bs

DBx Distance between centers of Bs and Bp in x-axis
DBy Distance between centers of Bs and Bp in y-axis
DBA Absolute distance of centers of Bp and Bs

acs Average character size of text line
DBA s Vertical distance between Bp all and Bs

To f f Time lapse of the off-stroke
Lo f f Length of the off-stroke

quadratic discriminant function (QDF), which can be trained
by training patterns. They are together called geometric con-
text. On the other hand, P(pb

i |ci−1ci) requires large memory
cost, since it is two dimensional.

The term g j denotes another geometric feature vector
concerning segmentation point, which is extracted from an
off-stroke and its surroundings. We call it especially a spac-
ing feature vector. Table 1 lists 18 elements of g j and Ta-
ble 2 lists features to obtain them. Here, a bounding box
is determined from the top-left and the bottom-right coordi-
nates of a stroke or strokes. Details are described by Zhu
and Nakagawa [14].

The remaining probability P(xi|ci) in Eq. (5) is eval-
uated by the character recognizer that is described in
Sect. 3.2.2.

3. Architecture and Design of Text Recognizer

This section describes the architecture and design of the
handwritten text recognizer.

3.1 Handwritten Text Recognizer

Figure 3 shows the block diagram of the handwritten text
recognizer. First, input handwritten text composed of a
sequence of strokes is over-segmented into a sequence of
blocks (primitive segments) as shown in Fig. 4 (a). In more
detail, every off-stroke (pen lift between two consecutive
strokes) is classified by SVM into segmentation point (SP),
non-segmentation point (NSP) or undecided point (UP) ac-
cording to the features such as distance and overlap between

930
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

Fig. 3 Architecture of handwritten text recognizer.

(a) Over-segmentation lattice

(b) Candidate classes and scores asso-
ciated with the thickly marked path

(c) Candidate classes and
scores

Fig. 4 Over-segmentation and csr-lattice.

consecutive strokes, where UP is treated either as SP or
NSP [14]. We must consider that UP can be either a bound-
ary between character patterns or within a character pattern,
so we represent possible segmentations as a lattice as shown
in Fig. 4 (b) where primitive segments and consecutive prim-
itive segments beside UP form candidate character patterns
marked by boxes. Concatenation of consequent primitive
segments is limited by their total lengths.

Then, each candidate character pattern is recognized
by the character recognizer, and several pairs of a charac-
ter recognition candidate (class) and its score are associated
with each candidate character pattern. We call a candidate
segmentation lattice with candidate classes and scores asso-
ciated with each candidate character pattern a candidate seg-
mentation recognition lattice, or csr-lattice for short. Since
adding candidate classes and scores into Fig. 4 (b) compli-
cates it, we use Fig. 4 (c), which shows candidate classes and
scores to the candidate character patterns along the thickly
marked path in Fig. 4 (b).

Finally, the task of text recognition is to find the opti-
mal path in the csr-lattice. We use the beam search strategy.
Considering that character patterns cannot be reliably seg-
mented without being recognized due to the irregularity of
character size and spacing, to ensure high accuracy of text
recognition, the optimal segmentation and recognition path
is evaluated by the integrated model composed of segmenta-

tion, character recognition, linguistic context, and geometric
context with the combining parameters optimized by the ge-
netic algorithm (GA) [13] as shown in Eq. (5).

In relation to Eq. (5), UP is interpreted as either Sb or
Sw in csr-lattice. When it is between character patterns, it
is treated as Sb. When it is within a character pattern, it is
treated as Sw. On the other hand, SP is always treated as Sb
and NSP is always treated as Sw. The probabilities P(g j|S b)
and P(g j|Sw) are approximated by the SVM classifier.

3.2 Character Recognizer

Because Japanese has a large character set, two-level classi-
fication is used to reduce the time cost of recognition [15].
First, the coarse classification is performed to obtain candi-
dates, and then the fine classification is executed.

3.2.1 Coarse Classifier

First, we discard time-sequence information from an input
on-line pattern. Second, we use the pseudo 2D bi-moment
normalization (P2DBMN) [16] to absorb non-linear distor-
tion of patterns to some extent. Third, we extract 8-
directional features from 8 × 8 regions of an input pattern
and blur them by the low-pass Gaussian filter so that we can
extract a 512-directional feature vector [17]. To increase ro-
bustness against stroke connection, we extract two types of
directional features: one from strokes and the other not only
from strokes but also from off-strokes. Fourth, we transform
each element of the feature vector by the Box-Cox transfor-
mation to improve the Gaussianity of feature distribution.
Lastly, we use a simple distance measure, i.e., the Euclidian
distance, to select candidates from 7,097 categories.

The directional features are more robust but less dis-
tinctive than time-sequence features, so they are suitable for
coarse classification. Compression of the coarse classifier is
described in Sect. 4.2.

3.2.2 Fine Classifier

For the fine classification, we use an on-line recognizer and
an off-line recognizer to enhance robustness and combine
them by the sum rule.

The off-line recognizer uses the same non-linear nor-
malization and feature extraction as the coarse classifier.
The difference is the evaluation function. We use MQDF2,
which is described in Sect. 3.2.4, instead of the Euclidian
distance.

On the other hand, the on-line recognizer uses linear
normalization to keep the horizontal and vertical ratio and
extracts feature points to improve robustness and efficiency.
For each stroke, first, the start and end points are picked up
as feature points; then, the point farthest from the straight
line through adjacent feature points is selected as a feature
point while the distance is greater than a specified thresh-
old. This process continues recursively until no more fea-
ture points are selected [18]. Then, it is applied to LTM as

GAO et al.: DEVELOPMENT OF A ROBUST AND COMPACT ON-LINE HANDWRITTEN JAPANESE TEXT RECOGNIZER FOR HAND-HELD DEVICES
931

mentioned in Sect. 1.
LTM is well combined with structured character pat-

tern representation where a representation of an on-line pat-
tern by a sequence of feature points is very compact and
on-line patterns for radicals (sub-patterns) are shared among
character patterns so that the on-line recognizer only occu-
pies 252 KB for 7,097 character categories.

On the other hand, MRF is a statistical model, so shar-
ing of radical patterns is not straightforward as a result of its
larger memory size. Here, the details of LTM and MRF are
not required for the rest of this paper.

3.2.3 Classifier Combination

The two recognizers are combined as follows [19]:
A pattern s = (s1, · · · , sm)T is recognized as a charac-

ter class ci by the on-line and off-line recognizers with their
evaluation scores f ci

on and f ci

o f f , respectively. Then, the confi-
dence of the combined recognizer f ci

o f f by the sum rule with
class-independent linear combining parameters is given by
Eq. (7).

f ci
com = λ1 f ci

on + λ2 f ci

o f f . (7)

We use the MCE criterion [20] to optimize the parame-
ters. On each training pattern, a loss function is computed to
approximate the classification error and the empirical loss is
minimized to optimize the combining parameters on train-
ing patterns. The misclassification measure of a pattern
from the class ci is given by Eq. (8), where f r

com is the evalua-
tion of the closest rival class. The misclassification measure
is transformed to give the loss as given by Eq. (9).

uci = f r
com − f ci

com, (8)

lsci (s) = lsci (uci) =
1

1 + exp(−ξuci)
. (9)

On all the training patterns {(sn, cn)|n = 1, 2, · · · ,N},
the empirical loss is computed by Eq. (10) where cn is the
class label of pattern sn, I(·) is an indicator function and M
denotes the number of character classes. We minimize fL by
stochastic gradient descent to obtain the optimal parameters.

fL =
1
N
×

N∑

n=1

M∑

i=1

lsi (sn) × I(cn ∈ i). (10)

Since the LTM on-line recognizer occupies just 252 KB
but the MQDF2 off-line recognizer requires about 90 MB,
compression of the off-line recognizer is the key task for
building the compact combined recognizer, which is de-
tailed in Sect. 5.2.

3.2.4 MQDF2

MQDF2 is a smoothed version of the MQDF in which the
minor eigenvalues are replaced with a larger constant. For
an input character pattern X = (x1, . . . , xn)T , the MQDF2 for
class ωi, i = 1, 2, . . . ,N, is obtained as follows:

g2(X, wi) =
k∑

j=1

1
λi j

[ϕT
i j(X − ui)]

2 +
1
δi

Dc(X)

+

k∑

j=1

log λi j + (n − k) log λi j, (11)

where λi j and ϕi j, j = 1, 2, . . . , k, denote the eigenvalues of
covariance of classωi sorted in decreasing order and the cor-
responding eigenvectors, respectively; k denotes the number
of principal components and Dc(X) is the squared Euclidean
distance in the complement subspace given by Eq. (12); the
parameter δi can be set as a class-independent constant as
proposed by Kimura et al. [4], and tr(

∑
i) denotes the trace

of covariance.

Dc(X) = ‖x − ui‖2 −
k∑

j=1

[
ϕT

i j(x − ui)
2
]
, (12)

δi =
tr(
∑

i) −∑k
j=1 λi j

n − k
=

1
n − k

n∑

j=k+1

λi j. (13)

From the above description, the size of the off-line pro-
totype dictionary S is dependent on the data type of the pa-
rameters ui, λi j, ϕi j and δi whose sizes are noted as Tu, Tλ,
Tϕ and Tδ, respectively. In our system, Tu, Tλ, Tϕ are in-
tegers with 2 bytes; Tδ is a long integer with 4 bytes. We
can have the total size of the prototype dictionary given by
Eq. (14) where N denotes the number of the character cate-
gories.

S = N × {(n × Tu + k × Tϕ) + k × Tλ + Tδ}. (14)

3.2.5 FDA

To reduce the computation complexity and improve the ro-
bustness, Fisher discriminant analysis (FDA) is widely used
to reduce the dimensionality of feature vectors. Suppose
there are C known character classes ω1, ω2, . . . , ωC and the
ith class with Ni training samples, in total N training sam-
ples. X = {xi

j} (j = 1, 2, . . .C, i = 1, 2, . . .Nj) is a
set of samples with n-dimensions where Nj is the sample
number of jth class. The mean vector of each class and
all classes can be expressed as X̄ j = (1/Nj)

∑N j

i=1 xi
j and

X̄ = (1/N)
∑C

j=1
∑N j

i=1 xi
j, respectively. Let the between-class

matrix and within-class scatter matrix be defined as:

S b =

C∑

j=1

Nj(X̄ j − X̄)(X̄ j − X̄)T , (15)

S w =
C∑

j=1

N j∑

i=1

(xi
j − x̄ j)(xi

j − x̄ j)
T . (16)

The process to obtain the transformation matrix is max-
imizing the following quotient, called the Fisher discrimi-
nant criterion [21].

932
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

wopt = argmaxw

∣∣∣∣∣∣
wT S bw

wT S ww

∣∣∣∣∣∣ = [w1, w2, . . . wm]. (17)

where {wk |k = 1, 2, . . . ,m} are m n-dimensional eigenvectors
of S −1

w S b corresponding to the m largest eigenvalues. wopt is
a n × m matrix composed of the m n-dimensions eigenvec-
tors. By the transformation matrix wopt, we can reduce the
feature dimensions from n-dimensions to m-dimensions.

4. Pattern Databases and Benchmark

This section describes pattern databases to train and evalu-
ate the text and character recognizers. Then it presents the
implementation and performance of the full-scale text rec-
ognizer as the benchmark to evaluate the compressed recog-
nizer.

4.1 Pattern Databases

To train and evaluate the text and character recogniz-
ers and their components shown in Fig. 3, we use the
TUAT HANDS databases: Kuchibue, Nakayosi, and Tehon
databases of on-line handwritten Japanese characters, and
Kondate database of on-line handwritten text. The Kuchibue
database contains on-line handwritten character patterns of
120 writers, 11,962 patterns per writer covering 3,356 char-
acter classes with 11,962 × 120 = 1,435,440 patterns in
total. The Nakayosi database contains the samples of 163
writers, 10,403 patterns per writer covering 4,438 charac-
ter classes with 10,403 × 163 = 1,695,689 patterns in total.
Although the Tehon database is written by only one writer,
it contains all the character categories covering JIS 1st and
2nd sets of Kanji with the correct stroke number and order.
While Kuchibue and Nakayosi collected each character pat-
tern written in each writing box, Kondate sampled character
patterns written freely without any writing grids and even
without guidelines by 100 writers.

To build the text recognizer covering 7,097 categories,
Kuchibue and Nakayosi are not sufficient since they have far
fewer than 7,097 covered character categories. Therefore,
we use Tehon and distort each sample by distortion mod-
els [22] to generate 300 artificial patterns, which are merged
with the Kuchibue, Nakayosi and Tehon databases. Conse-
quently, the merged database contains 3,930,886 character
patterns, covering 7,097 character classes.

4.2 Full-Scale Text Recognizer as a Benchmark

On the basis of our previous works [3], [14], [18], [23], the
full-scale text recognizer with the same block diagram
shown in Fig. 3 was developed as the benchmark.

We use MQDF2 for the off-line character recognizer
and MRF for the on-line character recognizer. For MQDF2,
we extract a 512-dimensional directional feature vector and
reduce it to 96-dimensional one by LDA since it provides
the best recognition rate.

The coarse classifier and the character recognizer in the

Table 3 Performance of character recognizers.

Character recognizer Accuracy Time cost/character
On-line recognizer 91.16% 27.5 ms
Off-line recognizer 91.88% 6.11 ms
Combined recognizer 93.84% 3.08 ms

Table 4 Memory size and accuracy of the full-scale text recognizer.

Components Memory size
SVM classifier for segmentation 2.29 MB
Linguistic context processor 10.5 MB
Geometric context evaluation module 613 KB
Combined character recognizer 50.5 MB
Total size 64.1 MB

Accuracy 93.6%

full-scale text recognizer were trained and evaluated by the
merged database, within which 4/5 of patterns of each class
were used as training patterns noted as TrPInM and the re-
maining 1/5 of patterns were used as testing patterns noted
as TPInM.

The accuracy of the coarse classifier to nominate the
correct class within the top 20 candidates is 99.91% by 5-
fold cross-validation on the merged database.

Accuracies and time costs of the on-line, off-line,
and combined recognizers by 5-fold cross-validation on the
merged database are shown in Table 3.

Then, to train the combining parameters of each com-
ponent in the full-scale text recognizer, we extracted hori-
zontally written text lines from the Kondate database. The
text lines written by 75 writers were used as the training
patterns noted as TrPInK to train the SVM classifier and the
combining parameters of each component in the text recog-
nizer. The remaining text lines from the other 25 writers in
Kondate were applied as testing patterns noted as TPInK to
evaluate the text recognizer. Results showed that the accu-
racy reached 93.6% but the memory size needed to be about
64.1 MB.

The linguistic context model was trained by the 1993
volume of the Asahi newspaper and the 2002 volume of the
Nikkei newspaper. After pruning low tri-gram occurrences,
the linguistic context processor of 10.5 MB was obtained.

Table 4 shows the memory requirement for the com-
ponents and accuracy of the full-scale text recognizer. Al-
though the full-scale text recognizer has been used for on-
the-shelf tablet PCs, this memory cost is the biggest obstacle
to the recognizer’s use in hand-held devices.

5. Construction of Compact Text Recognizer

This section describes construction of a compact text recog-
nizer that is composed by compression of its components.

5.1 Compression of Coarse Classifier

For the Euclidean distance, the prototype of each class just
needs to store the mean vector. There are two methods to
compress its representation, i.e., vector quantization (VQ)

GAO et al.: DEVELOPMENT OF A ROBUST AND COMPACT ON-LINE HANDWRITTEN JAPANESE TEXT RECOGNIZER FOR HAND-HELD DEVICES
933

Table 5 Comparison between data scaling and VQ for coarse
classification.

Compression method Accuracy of Top 20 Time cost per character
Data scaling 99.7161% 4.7977 (ms)
VQ 99.7144% 4.7955 (ms)

or data scaling. We have compared both methods by TPInM
but could not find notable differences as shown in Table 5.

A simple data scaling method transforms the value
range of each element in the mean vector from a short in-
teger to an unsigned char. Given umax and umin as the max-
imum and minimum value of all the elements of mean vec-
tors ui = (u1

i , · · · , uk
i)

T
(i = 1, · · · ,N), all the elements in the

mean vectors can be scaled into a relative small range TR

by Eq. (18). Typically, TR takes 255 in our compact system,
because it can be stored by just unsigned char.

yk
i =

uk
i − umin

umax − umin
× TR. (18)

As described above, we extract two types of directional
features: one from strokes and the other from strokes and
off-strokes after non-linear normalization is applied. For
both types, we extract 8× 8 regions× 8 directions = 512 di-
rectional features and then reduce them into a 50-dimensinal
vector by LDA.

Consequently, two prototype dictionaries covering
7,097 classes and two corresponding transformation ma-
trixes used by LDA require a 1.56 MB memory in total.

5.2 Compression of MQDF2

From Eq. (14) in Sect. 3.2.4, we can see that the mem-
ory problem is mainly caused by eigenvectors ϕi j (i =
1, · · · ,N; j = 1, · · · , k). Typically, the required memory
size for all the eigenvectors ϕi j (i = 1, · · · ,N; j = 1, · · · , k)
reaches N × n × k × Tϕ bytes. When Tϕ denotes the size of
a short integer and N, k and n take 7,097, 160 and 40, re-
spectively, eigenvectors of MQDF2 requires about 90 MB
memory. Moreover, the mean vector ui (i = 1, · · · ,N) is
also scalable to compress, although it requires much less
memory than eigenvectors ϕi j (i = 1, · · · ,N; j = 1, · · · , k).

In the achievement of MQDF2, to reduce computation
time cost while improving the accuracy, dimensionality of
the feature vector is usually compressed from the original
512-dimensional to D-dimensional by LDA. By choosing
the top 40 dominant components (k = 40), the parameters
of eigenvectors are further compressed. Moreover, the latter
elements in dominant eigenvectors are much smoother than
the former elements, which ensures us to further reduce the
elements of each dominant eigenvector to DL (DL < D) by
substituting the latter D − DL elements by their mean value.

To compress dominant eigenvectors of each class fur-
ther while keeping high accuracy, a kind of loss data com-
pression based on the principle of block coding named
vector quantization (VQ) [24] is used. First, split all the
eigenvectors of each class into multiple sub-eigenvectors.
Typically, each DL-dimensional eigenvector ϕi j (i =

1, · · · ,N; j = 1, · · · , k) is equally divided into Q DQ-
dimensional sub-vectors ϕ1

i j, ϕ
2
i j, · · · , ϕQ

i j with DL = DQ ×Q.
Based on the method [6], we further use the LBG algorithm
by minimum squared error (MSE) measure to cluster all the
sub-vectors ϕq

i j (i = 1, · · · ,N; j = 1, · · · , k; q = 1, · · · ,Q)
into L (L � N × k × Q) clusters where cluster centers
are noted as pl (l = 1, · · · , L), which are DQ-dimensional.
When ϕq

i j (i = 1, · · · ,N; j = 1, · · · , k; q = 1, · · · ,Q) be-
ing classified to m-th cluster, it is substituted by its clus-
ter center pm during the process of VQ. Therefore, sub-
vectors in eigenvectors can be represented by indexes of
corresponding cluster centers. Furthermore, we not only
compress eigenvectors but also employ VQ to mean vec-
tors ui (i = 1, · · · ,N) of MQDF2. Because mean vectors
include a relatively small number of elements, the configu-
ration DQ = 1 and L = 256 of vector quantization is used to
mean vector compression.

After parameter compression of eigenvectors and mean
vectors, the required memory for the compressed MQDF2 is
calculated as follows: the memory for eigenvectors is com-
posed of two parts: the indices of the prototypes and the
codebook as shown by Eq. (19). The memory for mean vec-
tors is shown by Eq. (20). Therefore, the memory for the
compressed MQDF2 is given by Eq. (21).

size(ϕ) =
logL

2

8 × DQ
× DL × N × k + DQ × L × Tϕ, (19)

size(u) =
logL

2

8 × DQ
× DL × N + DQ × L × Tu, (20)

S c = size(ϕ) + size(u) + N × k × Tλ + N × Tδ. (21)

5.3 Compression of Linguistic Context

The linguistic context model for text recognizer is reduced
from 10.5 MB to 5 MB and further to 2 MB by pruning low
tri-gram occurrences in accordance with different thresh-
olds.

5.4 Compression of Geometric Context

In the geometric context, P(pb
i |ci−1ci) requires large memory

cost, since it is two dimensional. Due to the fact that many
characters share the similar geometric shape and relation to
adjacent characters, the character classes are clustered into
six groups sk (k = 1, · · · , 6) by the LBG algorithm. Given
ci−1 and ci assigned to s1 and s2, respectively, P(pb

i |ci−1ci) is
approximated by P(pb

i |s1s2). Then, the memory of geomet-
ric context is reduced to about 610 KB.

5.5 Compression of SVM Classifier for Segmentation

The SVM classifier for segmentation point discrimination
is trained by TrPInK in the same way as the full-scale text
recognizer.

To compress it, however, we only use 11 elements of
the geometric feature vector concerning segmentation point

934
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

Table 6 Size of the text recognizer except the character recognizer.

Components Memory size
SVM classifier for segmentation 319 KB
Linguistic context processor 10.5 MB, 5 MB or 2 MB
Geometric context evaluation module 610 KB
Total size 11.5 MB, 6 MB or 3 MB

g j, namely, f2, f6, f9, f10, f11, f13, f14, f15, f16, f17, f18

shown in Table 1, to reduce the memory cost from 2.3 MB
to 319 KB.

5.6 Total Effect of the Above Compression

From the above compression, the memory sizes of the com-
ponents and the total compact text recognizer except the
character recognizer are listed in Table 6. Compression of
the character recognizer is discussed in Sect. 6.

6. Experiments

Since the compressed MQDF2 character recognizer plays
the most important role, we first describe experiments on it
and its parameter selection, then compare different VQs, and
finally present the evaluation on the compact text recognizer.

6.1 Evaluation of Compressed MQDF2

Table 7 shows the recognition accuracies and the corre-
sponding memory by the different DL and k where DL takes
60, 72 or 84 and k takes 2 to 12. The last line in Table 7
(when DL is 96) shows the recognition accuracy and cor-
responding memory of the original MQDF2 recognizer de-
scribed in Sect. 3.2.4. Compared with that, the memory is
compressed from 17.2 MB to 11.4 MB when DL is 60 and
k = 12 in Table 7 (b) with accuracy loss of about 0.7% from
91.87% to 91.18% in Table 7 (a). Mean vectors and eigen-
vectors are further compressed as described in Sect. 5.2.
When DQ = 1 and L = 256, the accuracy and correspond-
ing memory size of the compressed MQDF2 recognizer on
different parameter settings are listed in Table 8. From Ta-
bles 7 and 8, the memory size is at maximum decreased by
over 1/2 (from 17.2 MB to 7.83 MB) with only 0.4% accu-
racy loss maximally after compression of MQDF2.

6.2 Comparison of Different VQs

From comparing in Tables 7 and 8, we can learn that the
memory size is apparently reduced with just a little accuracy
loss after compression to MQDF2. Moreover, the parame-
ters DQ and L of VQ may bring about many different con-
figurations in combination with DL, so that these different
parameter configurations need to be compared to obtain the
optimal configuration. The figure about tradeoff between
accuracy and memory size (accuracy-size tradeoff) of the
compressed MQDF2 with different DL, DQ and L configu-
rations is used to find which parameter configuration is opti-
mal. The smaller the number of cluster centers L, the bigger

Table 7 (a) Recognition accuracy (%) and (b) corresponding memory
size (MB) on different k and DL.

(a) Accuracies (%)

DL
Dominant eigenvector number k

2 5 8 10 12
60 89.82 90.68 90.98 91.10 91.15
72 89.84 90.91 91.29 91.44 91.53
84 89.82 91.02 91.45 91.67 91.77
96 89.75 91.03 91.52 91.78 91.92

(b) Memory cost (MB)

DL
Dominant eigenvector number k

2 5 8 10 12
60 3.01 5.52 8.04 9.72 11.4
72 3.33 6.34 9.34 11.3 13.3
84 3.66 7.15 10.6 12.9 15.3
96 3.97 7.95 11.9 14.5 17.2

Table 8 (a) Recognition accuracy (%) and (b) corresponding memory
size (MB) on different k and DL when DQ = 1 and L = 256.

(a) Accuracies (%)

DL
Dominant eigenvector number k

2 5 8 10 12
60 89.82 90.58 90.91 91.08 91.01
72 89.78 90.84 91.15 91.31 91.29
84 89.80 90.88 91.45 91.55 91.51

(b) Memory cost (MB)

DL
Dominant eigenvector number k

2 5 8 10 12
60 1.59 2.84 4.14 5.01 5.88
72 1.71 3.25 4.79 5.82 6.85
84 1.87 3.66 5.44 6.63 7.83

the distortion error, so we just take 256 for L, which can be
stored by unsigned char.

To find the optimal configuration of DL and DQ, ex-
periments were performed on different DL and DQ. Table 9
shows the recognition accuracy and corresponding memory
size for their combinations. To find which DQ is best, Fig-
ure 5 shows the accuracy-size tradeoff for the compressed
MQDF2 recognizer on different DQ while DL = 72. From
Fig. 5, we can learn that DQ = 2 is better than others, be-
cause not only its memory size is small at about 3 MB but
also the accuracy loss is very small at only about 0.86%
compared with the original MQDF2 in Table 7. Similarly,
to determine which DL is best, the accuracy-size tradeoff for
the compressed recognizer on different DL with DQ = 2 is
shown in Fig. 6, and DL = 72 is found to be better than oth-
ers.

6.3 Evaluation of Compact Text Recognizer

Since the off-line character recognizer is the key to com-
pression, we just use the parameter configuration DL, k and
DQ of the compressed off-line recognizer to label the com-
pact text recognizer. TPInK is used to evaluate the compact
text recognizer. Table 10 shows text recognition accuracy
for different parameter configuration: DL, k and DQ.

Although we have determined that the configuration
DL = 72 and DQ = 2 for the compressed off-line recognizer

GAO et al.: DEVELOPMENT OF A ROBUST AND COMPACT ON-LINE HANDWRITTEN JAPANESE TEXT RECOGNIZER FOR HAND-HELD DEVICES
935

Table 9 Recognition accuracy (%) and corresponding memory size
(MB) on different k and DL.

(a) When DQ = 2 and L = 256
Accuracy (%)

DL
Dominant eigenvector number k

2 5 8 10 12
60 89.58 90.41 90.51 90.83 90.86
72 89.66 90.66 90.86 91.02 91.01
84 89.67 90.67 90.93 91.26 91.20

Memory cost (MB)

DL
Dominant eigenvector number k

2 5 8 10 12
60 1.14 1.83 2.52 2.98 3.44
72 1.22 2.03 2.84 3.39 3.93
84 1.30 2.24 3.17 3.80 4.41

(b) When DQ = 3 and L = 256
Accuracy (%)

DL
Dominant eigenvector number k

2 5 8 10 12
60 89.73 90.21 90.09 90.29 90.26
72 89.75 90.38 90.42 90.46 90.68
84 89.38 90.52 90.68 90.66 90.79

Memory cost (MB)

DL
Dominant eigenvector number k

2 5 8 10 12
60 1.00 1.49 1.98 2.30 2.63
72 1.06 1.63 2.20 2.57 2.96
84 1.11 1.76 2.41 2.85 3.28

(c) When DQ = 4 and L = 256
Accuracy (%)

DL
Dominant eigenvector number k

2 5 8 10 12
60 89.39 89.78 90.19 89.93 89.92
72 89.45 90.11 90.08 90.18 90.14
84 89.58 90.05 90.31 90.36 90.39

Memory cost (MB)

DL
Dominant eigenvector number k

2 5 8 10 12
60 0.94 1.32 1.71 1.96 2.22
72 0.98 1.42 1.87 2.17 2.46
84 1.02 1.52 2.03 2.37 2.71

Fig. 5 Tradeoff of the compressed MQDF2 on different DQ with
DL = 72.

Fig. 6 Tradeoff of the compressed MQDF2 on different DL with DQ = 2.

Table 10 Text recognition accuracy (%) with the compressed off-line
recognizer on different k and DL.

(a) When DQ = 1 and L = 256

DL
Dominant eigenvector number k

2 5 8 10 12
60 92.84 93.06 93.03 93.04 93.05
72 92.97 93.21 93.17 93.25 93.26
84 93.03 93.44 93.34 93.37 93.40

(b) When DQ = 2 and L = 256

DL
Dominant eigenvector number k

2 5 8 10 12
60 92.85 92.97 92.97 93.05 93.06
72 92.85 93.26 93.13 93.17 93.18
84 92.99 93.38 93.26 93.35 93.34

(c) When DQ = 3 and L = 256

DL
Dominant eigenvector number k

2 5 8 10 12
60 92.74 92.98 92.95 92.93 93.01
72 92.93 93.11 93.16 93.10 93.26
84 92.92 93.34 93.19 93.27 93.32

(d) When DQ = 4 and L = 256

DL
Dominant eigenvector number k

2 5 8 10 12
60 92.73 92.81 92.85 92.75 92.73
72 92.69 92.97 93.00 93.09 93.04
84 92.80 93.10 93.24 93.08 93.11

is better than other configurations for character recognition,
DL may be reduced and DQ may be increased further be-
cause the linguistic and geometric context both push char-
acter recognition in the right direction in text recognition.
For this reason, we consider 60 besides 72 for DL and 3
and 4 besides 2 for DQ during the process of drawing trade-
off between memory size of compressed off-line recognizer
and accuracy of text recognition. If we found 60 were better
than 72 for DL, we would need to test even smaller values
for DL. Similarly, if we found 4 were better than 2 and 3 for
DQ, we would need to test even larger values for DQ.

Figure 7 plots the tradeoff between the memory size of
the compressed off-line recognizer and the accuracy of text

936
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

Fig. 7 Tradeoff between memory size (MB) of the compressed off-line
recognizer and text recognition accuracy (%).

recognition on different DQ and DL.
Figure 7 shows that parameter configuration DL = 72

and DQ = 3 of the compressed off-line recognizer is bet-
ter than other configurations for text recognition. This im-
plies that we do not need to test values smaller than 60 for
DL or larger than 4 for DQ. Therefore, the compressed off-
line recognizer where DL = 72, DQ = 3 and k = 5 with
the 1.67 MB memory shown in Table 10 (b) is selected to
build the compressed combined character recognizer. In this
case, the compressed combined character recognizer used
for text recognition requires about 3.5 MB, composed of the
coarse classifier of 1.56 MB, the LTM on-line recognizer of
252 KB, and the selected compressed off-line recognizer of
1.67 MB. Consequently, the compact text recognizer re-
quires only 14.9 MB, composed of the SVM classifier of
319 KB, the linguistic context of 10.5 MB and the geometric
context of 610 KB, all together 11.5 MB as described in Ta-
ble 6 and the selected compressed combined character rec-
ognizer of 3.5 MB. Although its size has been drastically
reduced, it keeps the accuracy of 93.11%. We call it the 15-
MB text recognizer. Compared with the full-scale text rec-
ognizer described in Sect. 4.2, the memory is reduced from
64.1 to 14.9 MB with only 0.5% accuracy loss.

By selecting the linguistic context of 5 MB while using
a slightly larger configuration (2.19 MB) for the compressed
MQDF2 with DL = 80, DQ = 2 and k = 5, with other com-
ponents unchanged, a much smaller compact text recognizer
with only 10.7 MB memory cost is obtained while keeping
the accuracy of 92.8%, which is named the 11-MB text rec-
ognizer.

Finally, similar to above, we select the linguistic con-
text of 2 MB and the compressed MQDF2 with DL = 60,
DQ = 4 and k = 2 whose size is 963 KB to construct an even
smaller compact text recognizer. The memory cost and the
accuracy are 5.6 MB and 90.02%, respectively. We call it
the 6-MB text recognizer.

From the above, Table 11 lists the accuracy and mem-
ory costs of compact text recognizers.

Table 11 Accuracy and memory cost of compact text recognizer.

Text recognition, size 15-MB 11-MB 6-MB
and accuracy recognizer recognizer recognizer

SVM classifier for
319 KB 319 KB 319 KB

segmentation
Linguistic context

10.5 MB 5 MB 2 MB
processor

Geometric context
610 KB 610 KB 610 KB

evaluation module
Coarse classifier 1.56 MB 1.56 MB 1.56 MB

On-line recognizer 252 KB 252 KB 252 KB
Off-line recognizer 1.67 MB 2.19 MB 963 KB

Total memory cost 14.9 MB 10.7 MB 5.6 MB

Accuracy 93.11% 92.80% 90.02%

Table 12 Accuracy of text recognizer with on-line or off-line recognizer
alone for character recognition in text recognition.

On-line character recognition Off-line character recognition
alone for text recognition alone for text recognition

Text recognizer Accuracy Text recognizer Accuracy
15-MB text

90.81%
15-MB text

92.97%
recognizer (13.2 MB) recognizer (14.7 MB)

11-MB text
90.44%

11-MB text
92.62%

recognizer (9.1 MB) recognizer (10.5 MB)
6-MB text

89.01%
6-MB text

89.71%
recognizer (4 MB) recognizer (5.4 MB)

Table 13 Comparison in time cost of the compact text recognizers with
full-scale text recognizer.

Text recognition system Time cost per line
Full-scale text recognizer 0.615 s
11-MB text recognizer 0.666 s
15-MB text recognizer 0.684 s
6-MB text recognizer 0.665 s

In comparison to the combined character recognizer,
Table 12 shows the accuracy when either of the on-line rec-
ognizer or the off-line recognizer is employed alone instead
of the combined character recognizer for character recogni-
tion in above described text recognizers of 6-MB, 11-MB
and 15-MB. Since the other recognizer is not combined, the
actual size is shown in parentheses.

To evaluate the speeds of 6-MB, 11-MB, 15-MB and
a full-scale text recognizer, we experimented on a notebook
PC with Intel Core 2 (1.33 GHz, 784 MHz) and 1 GB RAM.
Table 13 lists the time costs of different text recognizers
where the testing patterns in Kondate were used. We can
see the time costs are almost the same.

6.4 Analysis and Discussion

From the above experiments, DQ = 2 is optimal in the
MQDF2 compression for character recognition described in
Sect. 6.2, but DQ = 3 is the best for text recognition de-
scribed in Sect. 6.3. This is understandable, since the lin-
guistic context processor and geometric context evaluation
module in the text recognizer cooperate with the character
recognizer.

From Table 13, the time cost per text line in the com-

GAO et al.: DEVELOPMENT OF A ROBUST AND COMPACT ON-LINE HANDWRITTEN JAPANESE TEXT RECOGNIZER FOR HAND-HELD DEVICES
937

pact text recognizers increases by 0.07 s compared with the
full-scale text recognizer, but it is very tiny and can be ac-
cepted since each line contains 16.9 characters on average.

7. Conclusion

We have developed a robust and compact on-line handwrit-
ten Japanese text recognizer. To reduce the memory size of
the recognizer, we used both intrinsic and technical methods
to each component of the text recognizer and overall archi-
tecture. While the reduction of the memory is significantly
large, that in recognition accuracy is kept remarkably small.
i.e., memory reduced from 64.1 MB to 14.9 MB while accu-
racy reduced 0.5% from the best accuracy, 93.6%. The de-
veloped recognizer has been bundled into on-the-shelf smart
phone. The approach to building a compact handwritten
Japanese text recognizer can be extended to other large char-
acter set languages such as Chinese.

References

[1] H. Tanaka, K. Nakajima, K. Ishigaki, K. Akiyama, and M.
Nakagawa, “Hybrid pen-input character recognition system based
on integration of online-offline recognition,” Proc. ICDAR 99,
pp.209–212, 1999.

[2] X.-D. Zhou and C.-L. Liu, “Online handwritten Japanese charac-
ter string recognition incorporating geometric context,” Proc. 9th
ICDAR, pp.48–52, Curitiba, Brazil, 2007.

[3] M. Nakagawa, B. Zhu, and M. Onuma, “A model of on-line hand-
written Japanese text recognition free from line direction and writ-
ing format constraints,” IEICE Trans. Inf. & Syst., vol.E88-D, no.8,
pp.1815–1822, Aug. 2005.

[4] F. Kimura, K. Takashina, S. Tsuruoka, and Y. Miyake, “Modi-
fied quadratic discriminant functions and the application to Chinese
character recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol.PAMI-9, no.1, pp.149–153, 1987.

[5] C.-L. Liu, R. Mine, and M. Koga, “Building compact classifier for
large character set recognition using discriminative feature extrac-
tion,” Proc. 8th ICDAR, pp.846–850, Seoul, Korea, 2005.

[6] T. Long and L. Jin, “Building compact MQDF classifier for large
character set recognition by subspace distribution sharing,” Pattern
Recognit., vol.41, pp.2916–2925, 2008.

[7] K. Yoshida and H. Sakoe, “Online handwritten character recognition
for a personal computer system,” IEEE Trans. Consum. Electron.,
vol.CE-28, no.3, pp.202–209, 1982.

[8] K.H. Wong and F. Fallside, “Dynamic programming in the recog-
nition of connected handwritten script,” Proc. 2nd Artificial Intell.
Appl., pp.666–670, 1985.

[9] M. Nakagawa and K. Akiyama, “A Linear-time elastic matching for
stroke number free recognition of on-line handwritten characters,”
Proc. 4th IWFHR, pp.48–56, 1994.

[10] J. Hu and M.K. Brown, “HMM based online handwriting recog-
nition,” IEEE Trans. Pattern Anal. Mach. Intell., vol.18, no.10,
pp.1039–1045, 1996.

[11] B. Zhu and M. Nakagawa, “On-line handwritten Japanese charac-
ters recognition using a MRF model with parameter optimization by
CRF,” Proc. ICDAR 2011, pp.603–609, Beijing, China, 2011.

[12] J. Gao, B. Zhu, and M. Nakagawa, “Complexity reduction with
recognition rate maintained for on-line handwritten Japanese text
recognition,” Proc. SPIE, vol.8297, pp.1–8, Burlingame, USA,
2012.

[13] B. Zhu, X.-D. Zhou, C.-L. Liu, and M. Nakagawa, “A robust model
for on-line handwritten Japanese text recognition,” Int. J. Document
Analysis and Recognition, vol.13, pp.121–131, 2010.

[14] B. Zhu and M. Nakagawa, “Segmentation of on-line freely written
Japanese text using SVM for improving text recognition,” IEICE
Trans. Inf. & Syst., vol.E91-D, no.1 pp.105–113, Jan. 2008.

[15] B. Zhu and M. Nakagawa, “A coarse classifier construction method
from a large number of basic recognizers for on-line recognition
of handwritten Japanese characters,” Proc. ICDAR 2011, pp.1090–
1094, Beijing, China, 2011.

[16] C.-L. Liu and K. Marukawa, “Pseudo two-dimensional shape nor-
malization methods for handwritten Chinese character recognition,”
Pattern Recognit., vol.38, pp.2242–2255, 2005.

[17] C.-L. Liu and X.-D. Zhou, “Online Japanese character recognition
using trajectory-based normalization and direction feature extrac-
tion,” Proc. 10th IWFHR, pp.217–222, 2006.

[18] U. Ramer, “An iterative procedure for the polygonal approxima-
tion of plan closed curves,” Comput. Graph. Image Process., vol.1,
pp.244–256, 1972.

[19] B. Zhu, J. Gao, and M. Nakagawa, “Objective function design for
MCE-based combination of on-line and off-line character recogniz-
ers for on-line handwritten Japanese text recognition,” Proc. ICDAR
2011, pp.594–599, Beijing, China, 2011.

[20] B.-H. Juang, W. Chou, and C.-H. Lee, “Minimum classification error
rate methods for speech recognition,” IEEE Trans. Speech Audio
Process., vol.5, no.3, pp.257–265, 1997.

[21] M. Loog, R.P.W. Duin, and R. Haeb-Umbach, “Multiclass linear
dimension reduction by weighted pairwise Fisher criteria,” IEEE
Trans. Pattern Anal. Mach. Intell., vol.23, no.7, pp.762–766, 2001.

[22] B. Chen, B. Zhu, and M. Nakagawa, “Effects of generating a large
amount of artificial patterns for on-line handwritten Japanese char-
acter recognition,” Proc. ICDAR 2011, pp.663–667, Beijing, China,
2011.

[23] M. Nakagawa, J. Tokuno, B. Zhu, M. Onuma, H. Oda, and A. Ki-
tadai, “Recent results of online Japanese handwriting recognition
and its applications,” Arabic and Chinese Handwriting Recognition
(D. Doermann and S. Jaeger ed. selected papers from SACH 2006),
Lect. Notes Comput. Sci. (LNCS) 4768, pp.170–195, 2008.

[24] K.-W. Law and C.-F. Chan, “Split-dimension vector quantization
of Parcor coefficients for low bit rate speech coding,” IEEE Trans.
Speech Audio Process., vol.2, no.3, pp.443–446, 1994.

Jinfeng Gao received the B.Sc. degree
from University of Huanghuai, Zhumadian city,
China and M.E. degree in Computer Science and
Technology from Guizhou University, Guiyang,
China, in 2004 and 2009, respectively. He is cur-
rently pursuing a Ph.D. degree in Engineering
from Tokyo University of Agriculture and Tech-
nology (TUAT), Japan. His research interests in-
clude handwritten character recognition and text
recognition.

Bilan Zhu received M.Sc. degree from
Tokyo University of Agriculture and Technol-
ogy (TUAT), Japan in 2004. In 2007, she re-
ceived Ph.D. degree in Engineering from TUAT.
She is now an Assistant Professor at TUAT.
She is working on on-line, off-line handwriting
recognition, documents processing and context
analysis of Japanese, Chinese and English text.

938
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.4 APRIL 2013

Masaki Nakagawa was born on 31 Octo-
ber 1954 in Japan. He received B.Sc. and M.Sc.
degrees from the University of Tokyo in 1977
and 1979, respectively. During the academic
year 1977/78, he followed Computer Science
course at Essex University in England, and re-
ceived M.Sc. with distinction in Computer Stud-
ies in July 1979. He received Ph.D. in Infor-
mation Science from the University of Tokyo in
December 1988. From April 1979, he has been
working at Tokyo University of Agriculture and

Technology. Currently, he is a Professor of Media Interaction in Depart-
ment of Computer and Information Sciences.

