
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014
1017

PAPER Special Section on Knowledge-Based Software Engineering

Rule-Based Verification Method of Requirements Ontology

Dang Viet DZUNG†a), Bui Quang HUY††b), Nonmembers, and Atsushi OHNISHI†c), Member

SUMMARY There have been many researches about construction and
application of ontology in reality, notably the usage of ontology to sup-
port requirements engineering. The effect of ontology-based requirements
engineering depends on quality of ontology. With the increasing size of
ontology, it is difficult to verify the correctness of information stored in
ontology. This paper will propose a method of using rules for verification
the correctness of requirements ontology. We provide a rule description
language to specify properties that requirements ontology should satisfy.
Then, by checking whether the rules are consistent with requirements on-
tology, we verify the correctness of the ontology. We have developed a
verification tool to support the method and evaluated the tool through ex-
periments.
key words: requirements ontology, ontology verification, requirements
elicitation and analysis

1. Introduction

It is difficult to elicit correct and complete software re-
quirements because of the complexity of natural language
in human to human communication, and the tactic to ex-
tract knowledge from software stakeholders. Experiences
in requirements engineering will improve the ability of re-
quirements analysts. Nevertheless, an analyst who has
good skill of requirements techniques but does not have
domain knowledge of target system will not elicit require-
ments of high quality and will not get sufficient require-
ments. Knowledge-based approaches, especially with re-
gard to ontology-based methods, has the potential to facili-
tate requirements engineering. On using ontology to support
requirements elicitation, quality of elicited requirements and
requirements specification depends on quality of ontology.
Therefore, after construction, ontology needs to be verified
before using in requirements elicitation. Though there are
many researches about ontology-based requirements elici-
tation (Sect. 2), there is no research about verifying quality
of requirements ontology (ontology which supports require-
ments engineering). In this paper, we propose a verification
method of the correctness of requirements ontology in order
to improve the quality of the ontology.

The paper is organized as follows. The next section
discusses related researches and compares with our work.

Manuscript received June 24, 2013.
Manuscript revised October 24, 2013.
†The authors are with the Department of Computer Science,

Ritsumeikan University, Kusatsu-shi, 525–8577 Japan.
††The author is with the Rikkeisoft Co., Ltd, Hanoi, Vietnam.
a) E-mail: dungdv@selab.is.ritsumei.ac.jp
b) E-mail: huybq@rikkeisoft.com
c) E-mail: ohnishi@cs.ritsumei.ac.jp

DOI: 10.1587/transinf.E97.D.1017

After that, Sect. 3 presents our requirements ontology model
and the usage of requirements ontology to support require-
ments engineering. Then Sect. 4 describes the verification
method of requirements ontology using three types of rules.
Section 5 presents two experiments to evaluate our proposed
method, and finally, Sect. 6 arrives at a conclusion.

2. Related Works

There are several related works in requirements engineering
using ontology. Breitman and Leite used language extended
lexicon (LEL) to represent terms and phrases in application
language, and then proposed framework to construct ontol-
ogy [1]. Similarly, Zhang, Mei, and Zhao provided feature
diagram to represent domain knowledge [2]; Bao et al. pro-
posed maintenance framework for domain ontology with fo-
cus on formal representation of process changes [3]. The
above three researches focused on construction of ontology,
but they did not focus on verification of quality of ontology
with rules.

A number of researchers have explored the usage of
ontology to support requirements elicitation, notably Kaiya
and Saeki proposed ontology-based requirements elicitation
method; their method measures the quality of elicited re-
quirements [4]. Kluge et al. described business requirements
and software characteristics in terms of ontology [5]. Their
method helps business people to compare and match new
functional requirements to functions of available commer-
cial software products, and choose a suitable one. The
method by Zong-yong and colleagues divides ontology into
multiple stages: domain ontology, task ontology, and appli-
cation ontology [6]. Domain users participate in the require-
ments elicitation by fill in the questionnaires directed by on-
tology. Dobson, Hall, and Kotonya proposed non-functional
requirements ontology to be used to discover non-functional
requirements [7]. Xiang et al. divided initial requirements to
a list of goal; each goal is narrowed down to a list of sub-
goals [8]. Using relation among goals, they can refine initial
requirements. Similarly, Liu and colleagues used ontology
model consisted of actor, goal, task to do reasoning [9]. The
above researches focused on requirements elicitation using
ontology, but their methods did not support detection of er-
rors in ontology.

Some researches provided methods to detect errors in
OWL ontologies [10], [11]. In our opinion, requirements
ontology should be described in OWL format—a common
knowledge description language. Therefore, requirements

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

1018
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

ontology can be verified by methods which support rea-
soning with OWL such as in [10], [11]. In addition, some
parts of our method can also be implemented using existing
tools [12]–[15]. However, we do not focus on implementa-
tion ways; instead, our research focuses on support require-
ments engineers to improve the quality of requirements on-
tology.

In concern for improvement of quality of requirements
ontology, Huy and Ohnishi proposed a verification method
of the correctness of requirements ontology using three
types of rules [16]. A rule language and prototype system in
Japanese was provided, but evaluation was not done. This
paper extends Huy and Ohnishi’s paper [16] with develop-
ment of verification tool based on English and providing
evaluation with the tool.

3. Requirements Ontology and Its Usage

This section will introduce requirements ontology model
and describe ontology-based requirements elicitation
method with a simple example.

3.1 Requirements Ontology

Domain ontology is an ontology of a certain domain knowl-
edge. Requirements ontology is a type of domain ontol-
ogy, but it is specialized for supporting requirements elicita-
tion. It consists of functions structure and attributes of func-
tions of software systems. Our requirements ontology meta-
model is illustrated in Fig. 1. Each functional requirement
that includes one verb and several nouns becomes a node in
requirements ontology, and relations including inheritance
and aggregation can be represented with a functional struc-
ture of systems of a certain domain. We provide other four
relations: complement, supplement, inconsistency, and re-
dundancy which are explained below.

• Complement: If functional requirements A and B have
a relation of complement, when A is deleted, B also
has to be deleted. In addition, when A is added, it is
necessary to add B. The opposite also holds.
• Supplement: If functional requirement A supplements

functional requirement B, when B is deleted, A also has
to be deleted. In addition, B can appear independently
in requirements specification, while A cannot appear
independently.

Fig. 1 Meta-model of requirements ontology.

• Inconsistency: When functional requirements A and B
are inconsistent, both A and B should not exist in a soft-
ware requirements specification (SRS). In other words,
if A exists in an SRS, then B should not exist in the
SRS and vice versa. Using this relation, we can detect
inconsistent requirements.
• Redundancy: When functional requirements A and B

are redundant, both A and B can exist in an SRS, but
modification of only A may lead to be inconsistent be-
tween modified A and B. So, we can detect potential
inconsistency with this relation between two functional
requirements and modification of just one of them.

Functional requirements can include other factors such
as the agent of the function (who), location of the func-
tion (where), time (when), reason (why), and method (how).
These factors (who, where, when, why, how) are called
4W1H attributes of functional requirements. The 4W1H at-
tributes are illustrated in bottom of Fig. 1.

Figure 2 shows an example of requirements ontology
of library systems. In Fig. 2 we omit 4W1H attributes for
space limitations. The ontology represents that a library
system has several functions: searching books, borrowing
books, returning books and so on. The function searching
books has sub-functions, such as searching new available
books, searching books by specified author name, etc. The
function borrowing books and function returning books are
complementary. In addition, the function renewing books
supplements the function borrowing books.

Requirements ontology, such as in Fig. 2, can be built
by analyzing manual documents of existing software sys-
tems in the application domain. User-guide documents usu-
ally includes list of functions of software systems and guide-
line about how to use the functions, so we can extract from
these documents list of functions and usage context of func-
tions: agent, method, time, location, reason. This informa-
tion is used to build requirements ontology. As described
above, a functional requirement in requirements ontology
can be expressed with verb (action) and nouns (objects of
the action). Specific nouns in manual documents cannot be

Fig. 2 A part of requirements ontology of library system.

DZUNG et al.: RULE-BASED VERIFICATION METHOD OF REQUIREMENTS ONTOLOGY
1019

Fig. 3 Screenshot of requirements ontology editor.

adopted as nouns in functional requirements, because spe-
cific nouns may not be applied to another SRS. For example,
“station staff” cannot be used except for a specific system’s
requirements; however, non-specific noun such as “opera-
tor” can be used. Hence, we introduce abstraction for spe-
cific nouns and abstracted nouns are used in functional re-
quirements in ontology [17]. For instance, the noun “station
staff” of “train ticket reservation system” can be abstracted

such as “operator”, so it can be reused in development of
requirements ontologies for “reservation system”.

To support construction and management of require-
ments ontology, an ontology editor tool has been developed.
This tool was written with Java, and was two person-months
product; the number of source code lines was 7,576. Re-
quirements ontology is described with OWL [14]. Figure 3
shows a screenshot of the ontology editor which allows cre-

1020
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Fig. 4 An example of checking requirements with ontology.

ating and managing requirements ontology. In the figure,
the visual view of requirements ontology is on the left, and
the attributes of functions and relations among functions are
on the right.

3.2 Usage of Requirements Ontology

Requirements ontology can be used to support requirements
elicitation or requirements verification. Elicited require-
ments or requirements specification are compared with re-
quirements ontology to find lacking functions or incorrect
descriptions of functions. Based on detected errors, analysts
can revise and improve quality of software requirements.

The reasoning process of errors in software require-
ments is as follows. Firstly, we map requirements to func-
tion nodes in ontology. For examples, a requirement “User
can borrow books through Internet” is mapped to the node
“Borrow books” in the ontology model, as illustrated in
Fig. 4. After mapping, we use relations in ontology for
reasoning errors in requirements list. In Fig. 4, using the
relation of complement, the function “Borrow books” and
the function “Return books” should be added to require-
ments list. Similarly, through relation of supplement, the
function “Renew books” is optionally added. For optional
functions, requirements team can discuss with customers
whether adding them to requirements specification. After
doing so, the requirements list will be more complete. In
this way, we can detect lack of indispensable requirements
in requirements elicitation and improve the correctness of
software requirements specifications [18], [19].

Requirements ontology supports improving quality of
software requirements, so quality of software requirements
depends on quality of requirements ontology. After require-
ments ontology is built, it needs to be checked for correct-

ness. The next section will present a method of verification
of the correctness of requirements ontology.

4. Verification of Requirements Ontology with Rules

Requirements ontology is a representation of domain knowl-
edge about requirements, so requirements ontology should
be consistent with domain rules. Domain rules specify con-
straints and conditions that requirements belonging to each
domain should follow. The increasing size of requirements
ontology makes it difficult to guarantee the correctness of it
(For example, in a team where each person develops a part
of ontology, and then they merge ontology parts together).
A verification method of requirements ontology and a sup-
porting tool are a solution for this problem.

In this research, we propose a method of verification
of the completeness and the consistency of a requirements
ontology by checking the consistency between the require-
ments ontology and rule descriptions that specify the cor-
rectness of the ontology. Firstly, we describe our rule lan-
guage to specify the correctness of a requirements ontology.

4.1 Rules Description Language

Requirements ontology consists of: functional require-
ments, attributes of functional requirements, and relations
among functional requirements. Therefore, there are several
types of errors that might occur with requirements ontol-
ogy: (1) lack of functional requirements, (2) lack or wrong
descriptions of attributes, (3) lack or wrong relations. To
verify the correctness of requirements ontology, we provide
three types of rules: attributes rules, relations rules, and in-
ference rules. The first type of rule statement is to specify
the correctness of attributes of functional requirements in an
ontology. The second type is to specify the correctness of
relations between functional requirements. The last type is
to specify inference between functional requirements.

The first type of rules (attribute rules) specifies the cor-
rectness of attributes of functional requirements. The gram-
mar of the first type of rules is shown below. Labels of bold
fonts correspond to reserved words, while labels of italic
fonts correspond to identifiers. “[A|B|C]” means selection
of items.

Attribute-name [should| should not] be [where| who|
why| when| how] information of function

For example, a rule description, “Users should be who
information of borrow books” (#1) (examples of rules are
shown in Table 1), specifies agent of the functional require-
ments of the borrowing books. With this type of rules we
can detect both wrong attributes and lack of attributes of
functional requirements in an ontology.

The second type of rules (relation rules) specifies the
correctness of relations between functional requirements in
an ontology. The grammar of the second type of rule is
shown below.

DZUNG et al.: RULE-BASED VERIFICATION METHOD OF REQUIREMENTS ONTOLOGY
1021

Table 1 Examples of rules.

R# Rule Rule type
#1 Users should be who information of borrow books first type
#2 There exists a relation of complement between borrow

books and return books
second type

#3 If complement(X, Y) and complement(Y, Z) then
ADD complement(X, Z)

third type

#4 If complement(X, Y) and supplement(X, Y) then RE-
MOVE supplement(X, Y)

third type

#5 Student should not be who information of * scores first type
#6 There exists a relation of complement between regis-

ter * and cancel *
second type

#7 There exists a relation of complement between regis-
ter X and cancel X

second type

There exists a relation of [complement| supplement|
inconsistent| redundant] between function1 and func-
tion2

For example, a rule description, “There exists a relation
of complement between borrow books and return books”
(#2), specifies a complement relation between the two func-
tional requirements “borrow books” and “return books”.
With this type of rules we can detect wrong relations and
lack of relations between functional requirements in an on-
tology.

The third type of rules (inference rules) specifies con-
ditions and actions on relations among functional require-
ments. The grammar of the third type of rules is shown be-
low.

If [complement| supplement| inconsistent| redundant]
(variable1, variable2) and [complement| supplement|
inconsistent| redundant] (variable3, variable4) then
[ADD| REMOVE] [complement| supplement| incon-
sistent| redundant] (variable5, variable6)

For example, a rule description, “If complement(X, Y)
and complement(Y, Z) then ADD complement(X, Z)” (#3),
specifies that the complement relation is transitive. Another
rule description, “If complement(X, Y) and supplement(X,
Y) then REMOVE supplement(X, Y)” (#4), means that re-
lation of supplement between two functional requirements
which are having relation of complement will be deleted.
With this type of rules we can detect lack of relations and
remove wrong relations in an ontology.

We can use wildcard symbols in rules. For example,
a rule description, “Student should not be who information
of * scores” (#5), specifies the wrong agent of the group
of functions accessing scores. Another rule description,
“There exists a relation of complement between register *
and cancel *” (#6), specifies a complementary relation be-
tween the two groups of functions: registration of something
and cancellation of something. However, rule (#6) might re-
quest complementary relation of unrelated functions, e.g.,
“register account” and “cancel order”. To fix this problem,
we can use variables in rules (#5) and (#6). For exam-
ple, rule (#6) can be rewritten such as “There exists a rela-
tion of complement between register X and cancel X” (#7).

Fig. 5 Flow of checking first type of rules (Flows of checking second &
third types of rules are similar).

This revised rule specifies complementary relation between
functions “register account” and “cancel account”, between
functions “register order” and “cancel order”, and so on.

When rules writers detect an error in a requirements
ontology, they can define a new rule to detect similar errors.
For example, when users can wrongly register books in a
requirements ontology of library system, the rules writers
can write a rule such as “Users should not be who informa-
tion of register *.” (It means that users should not register
anything.) To support definition of rules, we provide exam-
ples of three types of rules, and these examples are easy to
understand how to detect errors in an ontology, then rules
writers can revise the examples to make their own rules. Of
course, rules writers can also define new rules based on the
rules grammars.

4.2 Verification of the Correctness of Requirements On-
tology

We compare each rule with information in requirements on-
tology, and check the consistency between them. If con-
sistent, we inform that the requirements ontology satisfies
the rule. If inconsistent, we inform that the ontology does
not satisfy the rule and counter example will be shown. The
counter examples are useful to correct wrong parts of the on-
tology. Verification procedures are different for three types
of rules.

The verification procedure for the first type of rules is
described below, and is illustrated in Fig. 5.

1. Check whether functions specified in a rule exist in re-

1022
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Fig. 6 Screenshot of rules definition tool.

quirements ontology. If not exist, error message will be
given and verification will be ended unsuccessfully.

2. If exist, corresponding attribute of the functional re-
quirements in the ontology will be derived and com-
pared with specified attribute in the rule.

3. If same, verification will be ended successfully with a
message: “successfully verified.”

4. If different, transform the attribute in the rule using a
thesaurus, then compare the transformed attribute with
the corresponding attribute in the ontology.

5. If still different, error message and two different at-
tributes will be given. If the rule is correct and the
ontology seems wrong, the ontology will be automati-
cally corrected after user’s approval.

As for the second type of rules, the verification proce-
dure is as follows.

1. Check whether two functions specified in a rule exist in
requirements ontology. If not exist, error message will
be given and verification will be ended unsuccessfully.

2. If the two functions exist, check whether relation be-
tween the two requirements in the ontology is same as
the relation in the rule.

3. If same, verification will be ended successfully with a
message: “successfully verified.”

4. If different, error message and two different relations
will be given. If the rule is correct and the ontology
seems wrong, the ontology will be automatically cor-
rected after user’s approval.

The verification procedure the third type of rules is

shown below.

1. Check whether functional requirements satisfied the
two relations specified in the conditional part of a rule
exist in requirements ontology. If not exist, error mes-
sage will be given and verification will be ended unsuc-
cessfully.

2. If exist, then list all of the functional requirements sat-
isfied with the relation in the part of the rule. If “ADD”
is specified in the rule, relations that do not exist in the
ontology will be automatically added after user’s ap-
proval. If “REMOVE” is specified in the rule, relations
that exist in the ontology will be automatically deleted
after user’s approval.

4.3 A Supporting Tool for Verification of Requirements
Ontology

We have developed a supporting tool for verification of re-
quirements ontology with the three types of rules above.
Figure 8 shows configuration of the verification tool. The
requirements ontology editor and the verification tool co-
operate through a shared memory. The requirements on-
tology editor builds an ontology tree in memory and the
verification tool can access that ontology tree to traverse
through the tree; retrieve functions, attributes; and updates
functions and attributes if users approve. The verification
tool was written with Java on an Eclipse 3.5.2, and was one
person-month product; the number of source code lines was
3,652. The verification tool provides six functions, namely

DZUNG et al.: RULE-BASED VERIFICATION METHOD OF REQUIREMENTS ONTOLOGY
1023

Fig. 7 Verification of “who information” of a functional requirement.

Fig. 8 Configuration of the verification tool.

to say, (1) input/saving of rule description files, (2) editing
thesaurus, (3) editing rule descriptions and rule attributes,
(4) analyzing rules, (5) retrieving rules, and (6) verifying re-
quirements ontologies with rules. All implementations of
the above functions are newly developed.

Figure 6 shows an image of rules definition interface.
Rules can be described gradually by the rule grammar: each
non-terminal symbol can be replaced by a selection from a
list of expressions, according to the production rules defined
in rule grammar. For example, in Fig. 6, in the rule which is
defining, the symbol <attributes> is going to be replaced by
the symbol “who”. Users can also copy and revise existing
rules to make new rules.

We will explain more about processing of rules by the
rules interpreter (a module in Fig. 8). Firstly, a selected rule
is classified into one of the three types of rules. Secondly,
functions, attributes, and variables are extracted from the
rule with regular expressions. Thirdly, the rules interpreter
traverses through requirements ontology tree to compare
functions, attributes in the tree with functions, attributes,
and variables in the rule. The traversal and comparison are
separated for each type of rules: for example, steps for the
first type of rules are as in Fig. 5. The rules interpreter was
written with Java, in 1,396 lines of code.

Figure 7 shows verification with a type 1 rule. At-
tributes of a functional requirement specified in a rule will
be compared with attributes of the requirements in the ap-
plied ontology. In Fig. 7, the highlighted rule in the left
box states that agent of the group of function of “* scores”
should not be “student”. In the right box, verifier shows a
verification result that the ontology is inconsistent with the
rule, because in the ontology, the function “Change scores”
has a wrong Who attribute such as “student”. The verifica-
tion tool also suggests to delete that wrong information from
ontology.

5. Evaluation

To evaluate the effect of using verification tool to sup-
port rule-based verification method of requirements ontol-

1024
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

ogy (VRRO method), we conducted two comparative ex-
periments. The subjects in the experiments were four stu-
dents who studied information science. All subjects have
been trained with errors types in requirements ontology and
introduced with VRRO method. In each experiment, sub-
jects were asked to check a same requirements ontology and
submit results. Four subjects were divided into two groups,
each group had two people; one group checked by tool (with
tool) and the other group checked by hand (without tool).
The group checking by hand was provided with ontology
editor which allows to view functions structure, search for
functions, and display attributes of functions. The group
checking by tool was provided with ontology editor, and
verification tool which allows to define checking rules and to
verify automatically using rules. Both groups were provided
with samples of checking rules for corresponding domains
(pre-defined rules). The working method of two groups ex-
changed in the second experiment: the group using tool in
the first experiment checked by hand in the second experi-
ment and vice versa.

The major difference between using tool and not using
tool is the capability to detect similar errors with a known
error. All of the subjects know the correctness and the in-
correctness of requirements ontology. For example, indis-
pensable functional requirements should exist in ontology,
wrong attributes of a functional requirement should not be
specified, and wrong relationships should not be specified,
and so on. Subjects with tool check requirements ontology
and when they found an error, they can write a rule to detect
similar errors. For example, if user is wrongly specified as
an actor of a function of management of rental object, they
specify a rule that actor of functions of managing something
should be staff. Then the tool can detect similar errors if ex-
ist. By contrast, subjects without tool check ontology and
when they found an error, they correct the error, but they
cannot easily detect similar errors without the tool. This is
the major difference between subjects with/without tool. In
other words, subjects with tool can easily detect similar er-
rors using the tool, but subjects without tool detect similar
errors with effort.

We used two metrics to compare the results:

• Recall: the number of correctly detected errors / the
number of errors.
• Precision: the number of correctly detected errors / the

number of detected errors.

In the first experiment, two groups of subjects checked
a requirements ontology for “hotel reception desk software”.
The requirements ontology included 80 function nodes; sub-
jects were allowed 30 minutes to check and find errors in the
requirements ontology. Table 2 summarizes the recall and
precision metrics of the results by two groups. We denote
subjects as A, B, C, and D. Table 2 shows that all of the re-
call metrics and precision metrics of the results by the group
with tool are higher than those by the group without tool.

In the second experiment, subjects checked a require-
ments ontology for “asset management software”. The re-

Table 2 Precision and recall metrics in the first experiment.

Group Subject
Precision Recall

Metrics % Metrics %

with A 11 / 15 73.33% 11 / 26 42.31%
tool B 13 / 16 81.25% 13 / 26 50.00%

without C 6 / 13 46.15% 6 / 26 23.08%
tool D 8 / 20 40.00% 8 / 26 30.77%

Table 3 Precision and recall metrics in the second experiment.

Group Subject
Precision Recall

Metrics % Metrics %

without A 9 / 14 64.29% 9 / 34 26.47%
tool B 8 / 14 57.14% 8 / 34 23.53%

with C 11 / 14 78.57% 11 / 34 32.35%
tool D 14 / 16 87.50% 14 / 34 41.18%

Fig. 9 Distribution of precision metrics and recall metrics in two experi-
ments in 100% scale.

Table 4 Averages of metrics in two experiments (higher is better).

with tool without tool
Recall 41.46% 25.96%
Precision 80.16% 51.90%

quirements ontology included 51 function nodes; subjects
were also allowed 30 minutes to check the requirements on-
tology. Table 3 summarizes the recall and precision metrics
of the results by two groups. The table shows that all of
the recall metrics and precision metrics of the results by the
group with tool are higher than those by the group without
tool, though two groups have exchanged working method.

To illustrate the recall and precision metrics more vi-
sually, we show these values in 100% scale in Fig. 9. The
figure displays that in all cases in the two experiments, the
precision metrics and recall metrics of the results by group
with tool were higher than metrics of the results by group
without tool. The averages of the recall metrics and preci-
sion metrics of the results by using tool, as shown in Ta-
ble 4, were 41.46% and 80.16%, respectively, higher than
those average metrics by not using tool which were 25.96%
and 51.90%, respectively.

DZUNG et al.: RULE-BASED VERIFICATION METHOD OF REQUIREMENTS ONTOLOGY
1025

Fig. 10 No. errors found by subjects with tool.

The recall metrics of results by subjects using tool were
not high (the average was 41.46%). To find the reason, we
classify the correctly detected errors into three sources: (1)
errors detected by pre-defined rules, (2) errors detected by
definition of new rules, (3) errors detected by hand. Fig-
ure 10 shows the portions of sources of errors found by sub-
jects with method. Majority of errors were detected by using
pre-defined rules, and only minority of errors were detected
by definition of new rules and by hand (subject C in the ex-
periment 2). On the errors detected by pre-defined rules, the
subjects with tool also did not utilize all the errors that the
tool could detect. It was because of their unfamiliarity with
VRRO method and tool, and because of limited time. The
verification tool only suggested potential issues, and sub-
jects evaluated whether these issues were errors. In the fu-
ture, if subjects could master VRRO method and have more
time to define new rules, the recall metrics would be higher.

There were errors detected by subjects with tool but
not detected by subjects without tool. For example, in the
experiment 1 about “hotel reception desk software”, there
was an error of lacking of supplement relation between two
functions: “split group receipt” and “process guest check
out.” The group using tool detected this error by a rule of
the third type: “If complement(x, y) and supplement(y, z)
then ADD supplement(x, z)” (The reasoning was as fol-
lows: Because there existed a relation complement (split
group receipt, merge group receipt) and a relation supple-
ment (merge group receipt, process guest check out), so we
should add a relation supplement (split group receipt, pro-
cess guest check out)). However, not having support by rea-
soning engine of the verification tool, subjects without tool
did not detect this error. Another example was that in the
experiment 2 about “asset management software,” subject
C (using tool) defined a new rule of the first type: “Sys-
tem should be who information of * session parameters.”
Using this rule, subject C detected an error of wrong who
attribute of function “set session parameters” in the require-
ments ontology, which was previously described as “staff.”
Nevertheless, subjects without tool did not detect this error.

On the other hand, there were errors which were not
detected by tool, but detected by hand. For example, in the
experiment 2, there existed an error of lacking of supple-

Table 5 The no. of pre-defined rules and the no. of new rules defined by
subjects with tool.

Rules sources no. of rules
Exp. 1 pre-defined rules 17

new rules by A 0
new rules by B 0

Exp. 2 pre-defined rules 18
new rules by C 3
new rules by D 0

Table 6 New rules defined by subject C.

R# Rule Rule type
#RC1 System should be who information of * session pa-

rameters
first type

#RC2 There exists a relation of supplement between Print
X and Create X

second type

#RC3 There exists a relation of complement between Al-
locate * and Update *

second type

ment relation between functions “view unused assets” and
“view list of assets.” This error was detected by the group
without tool, but was not detected by the group with tool.
Though this error can be detected with VRRO method by
definition of a rule of the second type, subjects with tool did
not find this error by mistake. In addition, detection of this
error required knowledge of the domain “asset management
software.” One solution is to provide a customization mech-
anism or rules to automatically apply the customized rules
to ontologies in future work.

Table 5 summaries the number of pre-defined rules and
new rules which were defined by subjects using tool. Mostly
pre-defined rules were used, but three new rules were de-
scribed by subject C in the experiment 2 (The three new
rules are shown in Table 6). One reason that new rules were
not defined so much was that subjects were allowed a short
time in each experiment (30 minutes). All the three new
rules by subject C were syntactically and semantically cor-
rect. In definition of new rules, subjects were guided with
examples of rules, and they used these examples to construct
new rules.

Using precision metrics and recall metrics separately
is not always appropriate to show performance of an er-
rors retrieval method. When recall tends to increases, pre-
cision would be decreased, and vice versa [20]. Harmonic
mean is another metrics that combined both recall and pre-
cision [21]. Harmonic mean is computed as in Eq. (1). It
aslo has value from 0 to 1; the bigger it is, the better the
method is.

HarmonicMean =
2 ∗ Recall ∗ Precision

Recall + Precision
(1)

Figure 11 displays the distribution of harmonic mean
metrics in scale of 100%. It shows that in results of all sub-
jects, the harmonic mean metrics by using tool were higher
than the harmonic mean metrics by not using tool.

In summary, the recall, precision, and harmonic mean
metrics of results by using tool were higher than those of re-

1026
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Fig. 11 Harmonic mean metrics in two experiments in 100% scale.

sults by not using tool. It suggests that using the verification
tool with checking rules has positive effect in verification
of requirements ontology, and helps improve the percentage
and total of correctly detected errors in verification of re-
quirements ontology. Based on errors found, requirements
engineers will revise and improve the quality requirements
ontology.

6. Conclusion

We proposed a rule-based verification method of the cor-
rectness of requirements ontology. We have developed a
supporting tool for ontology verification on the basis of the
method and illustrated the behaviors of the tool with exam-
ples. The experiments show that our method enables to de-
tect incorrect components of requirements ontologies and
improve the quality of requirements ontologies. Using a re-
quirements ontology of good quality, we can elicit require-
ments with good quality [18], [19]. In the future, we plan
to provide a customization mechanism of rules to apply the
rules to ontologies. The rule-based verification method of
requirements ontology has potential to support verification
of other ontologies.

References

[1] K. Breitman and J. do Prado Leite, “Ontology as a requirements
engineering product,” Proc. 11th IEEE Int. Conf. on Requirements
Engineering (RE’03), pp.309–319, Sept. 2003.

[2] W. Zhang, H. Mei, and H. Zhao, “A feature-oriented approach to
modeling requirements dependencies,” Proc. 13th IEEE Int. Conf.
on Requirements Engineering (RE’05), pp.273–282, Sept. 2005.

[3] A. Bao, L. Yao, W. Zhang, and J. Yuan, “Approach to the formal
representation of owl-s ontology maintenance requirements,” Proc.
9th Int. Conf. on Web-Age Information Management (WAIM ’08),
pp.56–61, July 2008.

[4] H. Kaiya and M. Saeki, “Using domain ontology as domain knowl-
edge for requirements elicitation,” Proc. 14th IEEE Int. Require-
ments Engineering Conference, RE ’06, pp.186–195, 2006.

[5] R. Kluge, T. Hering, R. Belter, and B. Franczyk, “An approach for
matching functional business requirements to standard application
software packages via ontology,” Proc. 32nd IEEE Int. Conf. on

Computer Software and Applications (COMPSAC ’08), pp.1017–
1022, Aug. 2008.

[6] L. Zong-yong, W. Zhi-xue, Y. Ying-ying, W. Yue, and L. Ying, “To-
wards a multiple ontology framework for requirements elicitation
and reuse,” Proc. 31st IEEE Int. Conf. on Computer Software and
Applications (COMPSAC ’07), pp.189–195, July 2007.

[7] G. Dobson, S. Hall, and G. Kotonya, “A domain-independent on-
tology for non-functional requirements,” Proc. IEEE Int. Conf. on
e-Business Engineering (ICEBE’07), pp.563–566, Oct. 2007.

[8] J. Xiang, L. Liu, W. Qiao, and J. Yang, “Srem: A service require-
ments elicitation mechanism based on ontology,” Proc. 31st IEEE
Int. Conf. on Computer Software and Applications (COMPSAC
’07), pp.196–203, July 2007.

[9] L. Liu, Q. Liu, C. hung Chi, Z. Jin, and E. Yu, “Towards a service
requirements ontology on knowledge and intention,” Proc. 6th Int.
Conf. on Quality Software (QSIC’06), pp.452–462, Oct. 2006.

[10] A. Kalyanpur, B. Parsia, E. Sirin, and J.A. Hendler, “Debugging
unsatisfiable classes in owl ontologies,” J. Web Semantics: Science,
Services and Agents on the World Wide Web, vol.3, no.4, pp.268–
293, 2005.

[11] H. Wang, M. Horridge, A.L. Rector, N. Drummond, and J. Seiden-
berg, “Debugging owl-dl ontologies: A heuristic approach,” Inter-
national Semantic Web Conference, pp.745–757, 2005.

[12] Protege: http://protege.stanford.edu/
[13] Pellet: http://clarkparsia.com/pellet/
[14] OWL Web Ontology Language Overview:

http://www.w3.org/TR/-owl-features/
[15] SWRL: A Semantic Web Rule Language:

http://www.w3.org/Subm-ission/SWRL/
[16] B.Q. Huy and A. Ohnishi, “A verification method of the correctness

of requirements ontology,” Proc. of the 10th Joint Conference on
Knowledge-Based Software Engineering (JCKBSE 2012), pp.1–10,
2012.

[17] M. Satonaka, Y. Iyoda, and A. Ohnishi, “A supporting method of ab-
straction of software documents,” IEICE Technical Report, SS2012-
53, Jan. 2013 (in Japanese).

[18] D.V. Dzung and A. Ohnishi, “Ontology-based reasoning in require-
ments elicitation,” Proc. 7th IEEE Int. Conf. on Software Engineer-
ing and Formal Methods (SEFM’09), pp.263–272, Nov. 2009.

[19] D.V. Dzung and A. Ohnishi, “A verification method of elicited soft-
ware requirements using requirements ontology,” Proc. 19th Asia
Pacific Software Engineering Conference (APSEC 2012), pp.553–
558, Dec. 2012.

[20] R.A. Baeza-Yates and B. Ribeiro-Neto, “Retrieval evaluation,” in
Modern Information Retrieval, p.81, Addison-Wesley, 1999.

[21] W.S. Jr, R. Burgin and P. Howell, “Performance standards and eval-
uations in ir test collections: Cluster-based retrieval models,” Infor-
mation Processing and Management, vol.33, no.1, pp.1–14, 1997.

Dang Viet Dzung received B. of Engi-
neering degree from Hanoi University of Sci-
ence and Technology in 2003, and M. of Engi-
neering degree from Ritsumeikan University in
2009. He was a Researcher at Vietnam National
University from 2003 to 2007, and from 2009
to 2011. Currently he is a doctor course student
at Ritsumeikan University. His current research
interests include requirements engineering, and
ontology-based verification. Dzung is a student
member of IEEE.

DZUNG et al.: RULE-BASED VERIFICATION METHOD OF REQUIREMENTS ONTOLOGY
1027

Bui Quang Huy received B. of Engineer-
ing from Ritsumeikan University in 2011. Cur-
rently, he is one of co-founders of Rikkeisoft
Co., Ltd, Hanoi, Vietnam.

Atsushi Ohnishi received B. of Engineer-
ing, M. of Engineering, and Dr. of Engineering
degrees from Kyoto University in 1979, 1981,
and 1988, respectively. He was a Research As-
sociate of Kyoto University from 1983 to 1989
and an Associate Professor of Kyoto University
from 1989 to 1994. Since 1994 he has been a
Professor at Department of Computer Science,
Ritsumeikan University. He was a visiting sci-
entist at UC Santa Barbara, California, U.S.A.
from 1990 to 1991 and also a visiting scientist at

Georgia Institute of Technology, Georgia, U.S.A. in 2000. His current re-
search interests include requirements engineering, object oriented analysis,
and software design techniques. Dr. Ohnishi is a member of IEEE Com-
puter Society, ACM, IEICE, Information Processing Society (IPS) Japan,
and Japan Society for Software Science and Technology (JSSST).

