
1084
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

PAPER Special Section on Knowledge-Based Software Engineering

Method for Consistent GUI Arrangements by Analyzing Existing
Windows and Its Evaluation

Junko SHIROGANE†a), Member, Seitaro SHIRAI††, Hajime IWATA†††, Nonmembers,
and Yoshiaki FUKAZAWA††, Member

SUMMARY To realize usability in software, GUI (Graphical User In-
terface) layouts must be consistent because consistency allows end users
to operate software based on previous experiences. Often consistency can
be achieved by user interface guidelines, which realize consistency in a
software package as well as between various software packages within a
platform. Because end users have different experiences and perceptions,
GUIs based on guidelines are not always usable for end users. Thus, it
is necessary to realize consistency without guidelines. Herein we propose
a method to realize consistent GUIs where existing software packages are
surveyed and common patterns for window layouts, which we call layout
rules, are specified. Our method uses these layout rules to arrange the win-
dows of GUIs. Concretely, source programs of developed GUIs are ana-
lyzed to identify the layout rules, and then these rules are used to extract
parameters to generate source programs of undeveloped GUIs. To evaluate
our method, we applied it to existing GUIs in software packages to extract
the layout rules from several windows and to generate other windows. The
evaluation confirms that our method easily realizes layout consistency.
key words: GUI, usability, consistency, layout

1. Introduction

Consistency is a crucial factor for usability of software GUIs
(Graphical User Interfaces) [1], [2]. Generally, consistency
means that the layouts of all windows in a software pack-
age, including widget size, position, arrangement, etc., are
unified, the same terminology is used for the same meaning
text, operations of functions are standardized, etc. Because
consistency allows software to be easily operated through
practice, end users can employ their experiences to manip-
ulate various functions of GUIs in a software package, even
if they are unfamiliar with a specific GUI. Typically user
interface guidelines (hereafter, guidelines) are developed to
realize consistency for a specific platform, such as Windows
User Experience Interaction Guidelines [3] and Mac OS X
Human Interface Guidelines [4].

These guidelines include numerous detailed elements,
such as widget arrangements, label names in widgets, etc.
Developing GUIs via guidelines, which define detailed GUI
layouts and terminology, realizes consistency not only in a

Manuscript received June 26, 2013.
Manuscript revised October 29, 2013.
†The author is with Tokyo Woman’s Christian University,

Tokyo, 167–8585 Japan.
††The authors are with Waseda University, Tokyo, 169–8555

Japan.
†††The author is with Kanagawa Institute of Technology, Atsugi-

shi, 243–0292 Japan.
a) E-mail: junko@lab.twcu.ac.jp

DOI: 10.1587/transinf.E97.D.1084

software package but also between different software pack-
ages. However, following guidelines does not always de-
velop suitable GUIs for end users. For end users, GUIs
are often developed by layout strategies other than guide-
lines. Conversely, guidelines have numerous detailed ele-
ments, and developers must create numerous GUI windows.
Thus, that they cannot be economically and efficiently ap-
plied to all guideline elements to all windows.

User interface patterns have been developed for user
interface designs [5], [6]. Patterns define solutions to cer-
tain usability problems and usable layouts for various situ-
ations of users’ actions and data representations. Because
patterns are individually developed, combining them may
not realize consistent GUIs and determining the appropriate
patterns for each situation is difficult.

Thus, our research focuses on creating consistent win-
dow layouts. We have proposed a method to develop consis-
tent GUIs. Our method assumes that undeveloped windows
are generated based on the layout of developed windows.
An “undeveloped window” means that although developers
have considered the widget list in a window, the source pro-
grams have yet to be developed, whereas a “developed win-
dow” means a window layout and its source programs are
complete. Actual windows in the target and other software
programs as well as sample windows for typical strategies of
widget arrangements are acceptable as developed windows.

Our previous paper analyzed source programs and ex-
tracted layout rules [7]. The layout rules, which indicate the
arrangement method for windows in the GUIs (e.g., widget
combinations, size, position, etc.), were classified into posi-
tion and combination rules, and undeveloped windows were
generated by applying the layout rules. Our previous paper
focused on position rules, but did not provide details for the
combination rules or evaluate our method.

Our current research has refined the position rules and
defined the combination rules. Specifically, the number of
widget-applying position rules has increased, the position
rules are extracted and applied in more detail, and combi-
nation rules are classified into four sub-rules. Herein we
described our overall method and evaluate its applicability.

Our method targets multi-window style GUIs in which
widgets can be arranged flexibly in a window (e.g., wid-
gets can be arranged by specifying the size and coordinates).
A typical target is GUIs for desktop applications on per-
sonal computers where function is often realized via win-
dow switching.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

SHIROGANE et al.: METHOD FOR CONSISTENT GUI ARRANGEMENTS BY ANALYZING EXISTING WINDOWS AND ITS EVALUATION
1085

Fig. 1 Example of windows with inconsist layouts.

For high usability, simple and natural interactions, low
error rates, etc. must be considered. Consistency is one of
the most crucial and basic factors of usability [1]. Because
our research aims to support the development of “consistent
GUIs”, “usability” is synonymous with consistency.

Although consistency includes various factors, in our
method consistency means that window layouts, including
widget size, position, and arrangement, are unified, while
“consistent GUIs” means that the windows in a software
program satisfy consistency. Other definitions of consis-
tency, such as operations of functions, color usages, and
sounds, are beyond scope of our method.

Figure 1 shows an example of three windows, which
have the same content but different layouts. Thus, consis-
tency is not realized in terms of layouts. All of these win-
dow layout strategies are used in an actual software package.
The most crucial problem is that the locations of the “OK”
and “Cancel” buttons differ in each window. These buttons
are used to complete the task of a window. When the but-
ton locations differ in each window, end users may have to
search for the buttons because the actual and assumed po-
sitions conflict. This is why window layout is an important
factor for usability.

Although our method is currently implemented to ana-
lyze and generate GUI source programs written in Java pro-
gramming language, it can be applied to other programming
languages. The developed GUIs can be either actual win-
dows in the software or sample windows consisting of typ-
ical widget arrangements. Then the extracted layout rules
are used to generate the source programs of the undeveloped
GUIs.

This paper is organized as follows. Section 2 describes
related works, while Sect. 3 highlights the features of our
method. Section 4 shows the layout rules defined in our
method. Section 5 provides a detailed description of our
method. Section 6 evaluates our method, and Sect. 7 con-
cludes our paper.

2. Related Works

Arranging the layouts of numerous windows with complex
GUI structures is a heavy burden on developers. Because

GUI layouts directly reflect end user’s perceptions of soft-
ware usability, many works have proposed methods to de-
velop and apply guidelines [8], [9]. However, except for our
method, few have aimed to realize consistent GUIs.

For example, Bendsen proposed a method to automat-
ically generate GUI layouts [10] for business applications
with numerous windows. Class structures are represented
as models, which are transformed into abstract layers. Then
GUIs with the appropriate layouts for various platforms are
generated. Although their method adopts a simpler strategy,
our method focuses on GUIs with more complex layouts.

Lutteroth et al. proposed a method to arrange layouts
based on the Auckland Layout Model (ALM) [11], [12].
Codes to extract GUI data are added to the source programs
to generate abstract GUIs. Although this method can flexi-
bly generate GUIs by platform, it modifies the source pro-
grams and does not always produce consistent GUIs. In con-
trast, our method focuses on consistency without modifying
the developed GUIs.

Raneburger et al.’s method groups widgets by contain-
ers, which are structured in the form of a tree within a win-
dow (e.g., panel widgets) [13]. A container can include sub-
containers and multiple widgets, which are arranged from
right to left and from top to bottom. Designers can add ex-
tra rules to arrange the widgets. When child containers are
placed into a parent container, the parent container is di-
vided into several regions. Then the appropriate regions for
the child containers are determined. Widget sizes are calcu-
lated automatically based on the size of the root container.
Although this method easily arranges widgets, it does not
always realize consistent GUIs.

Feuerstack et al. proposed a method to arrange layouts
based on existing models that can realize user interface de-
signs, such as task trees and dialog models [14]. In this
method, designers interpret these models to describe lay-
out models, which consist of ordered statements with six
properties. Designers specify the layout characterization by
interpreting existing models to generate statements. Both
intended and unintended user interface designs can be real-
ized. However, because designers interpret various existing
models and specify the user interface design from numerous
model elements, this method can be burdensome.

3. Features of Our Method

Easily realized consistent GUIs

Because guidelines contain numerous detailed elements, ap-
plying all elements to numerous windows in software is
challenging, and combining user interface patterns does not
assure consistent GUIs because these patterns are individ-
ually developed. Additionally, software packages contain
many windows, and each window has different content,
which makes arranging window layouts a challenge.

To resolve the guideline issue, our method allows de-
velopers to easily obtain consistent GUIs because it auto-
matically extracts layout rules, arranges consistent GUI lay-

1086
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

outs, and generates source programs by surveying the guide-
lines to determine analysis targets of developed GUIs. It
should be noted that we limited the scope of elements in
our survey because many elements are beyond consistency.
Then the process to extract layout rules includes the analysis
targets. Thus, only developers create a few developed win-
dows applying guidelines, and our method extracts guide-
line elements as layout rules and generates undeveloped
windows applying the guidelines.

For user interface patterns, we assume that developed
GUIs are consistent, even if individual patterns are com-
bined. Thus, our method realizes consistency in the gen-
erated GUIs by analyzing some developed windows and ex-
tracting layout rules.

Also, it is difficult to arrange GUI layouts, because
each window has different contents. However, arrange-
ment strategies are often determined in every widget usages.
These arrangement strategies for every widget usages are
defined as layout rules, thus, making GUIs consistent can
be realized by automatically applying layout rules.

Support to develop guidelines

Our method automatically extracts layout rules, both in-
tended and unintended by the developers, using developed
GUIs. These extracted rules are the basis for the guide-
lines, which are applied to various software packages to
realize consistent GUI layouts in the package and between
different software packages within a platform. Finally, our
method generates the source programs for the undeveloped
windows. Typically detailed programming techniques are
necessary to apply the items in the layout rules, but because
our method automatically arranges GUI layouts, such de-
tailed techniques are not required.

4. Layout Rules

Layout rules, which indicate the arrangement of windows in
GUIs, consist of a “position rule” and “combination rules”.
Combination rules consist of four sub-rules for a total of five
layout rules.

Although layout rules except these five rules are used in
actual software, such layout rules are used in few windows
of software of a certain vendor or a certain software pack-
age. We intend that our current method is proposed not for
special use to software of a certain vendor or a certain soft-
ware package but for general use, and our proposed method
derives layout rules for general use in various software pack-
ages. Here we describe the concept of our extracted layout
rules, including order, coordinates of widgets, and arrange-
ments of widgets.

4.1 Position Rules

Position rules are applied to widgets with specific label
names (i.e., “OK”, “Cancel”, “Help”, “Next”, “Close”,

Table 1 Number and appearance rate of widgets.

Label name Number Appearance rate
Cancel 178 85%

OK 124 59%
Help 37 18%
Next 21 10%
Close 17 8%
Back 10 5%

Complete 9 4%
Previous 7 3%

“Back”, “Complete”, and “Previous”). In many cases, but-
tons with these label names are commonly arranged at spe-
cific positions in every window. For example, the “OK” and
“Cancel” buttons are often at the bottom of a window. These
buttons usually trigger (or cancel) a process. Thus, the label
name, order, and position of these buttons within a window
are fixed in the software package or platform. Position rules
unify the locations of the above eight label names in every
window, and concrete positions of these buttons are deter-
mined by analyzing developed GUIs.

To determine the target label names of the buttons for
this position rule, we surveyed 209 windows in 28 com-
mon software packages in Windows and Mac OS, such as
web browsers (e.g., Internet Explorer† and Mozilla Fire-
fox††) and image processing tools (Adobe Photoshop††† and
iPhoto††††). Table 1 shows the results where “Label name”
indicates the label names of buttons at the bottom of a win-
dow. “Number” denotes the number of windows in which
the buttons are placed, and “Appearance rate” indicates the
rate of windows where the buttons are placed.

According to Table 1, positions of buttons with certain
label names are determined based on label names. Thus,
these button positions are defined as position rules.

4.2 Combination Rules

Some widgets are grouped together to indicate a pur-
pose within a window. We surveyed the groups in
270 windows of 12 common software packages, such as
web browsers (e.g., Internet ExplorerInternet Explorer†
and Mozilla Firefox††) and word processors (Microsoft
Word††††† and OpenOffice.org Writer††††††). Four fre-
quently used sub-rules are defined as combination rules (i.e.,
“widgets grouped by a border”, “widgets with instructions”,
“grouped widgets with instructions”, and “parent and child
widgets”). Table 2 shows the survey results where “Win-
dows” indicate the number of windows that each sub-rule is
used. Because some sub-rules are used more than once in
a window, “Number” indicates the total number of appear-

†Internet Explorer: http://windows.microsoft.com/ja-JP/
internet-explorer/download-ie
††Firefox: http://www.mozilla.org/firefox/
†††Adobe Photoshop: http://www.adobe.com/products/

photoshop.html
††††iPhoto: http://www.apple.com/ilife/iphoto/
†††††Microsoft Office: http://office.microsoft.com/
††††††OpenOffice.org: http://www.openoffice.org/

SHIROGANE et al.: METHOD FOR CONSISTENT GUI ARRANGEMENTS BY ANALYZING EXISTING WINDOWS AND ITS EVALUATION
1087

Table 2 Number and rate of sub-rules.

Sub rules Windows Number
Widgets with instructions 218 1942
Grouped widgets with instructions 91 342
Parent and child widgets 67 287
Widgets grouped by border 71 573

Fig. 2 Examples of widgets with instructions.

Fig. 3 Example of grouped widgets with instructions.

ances of each sub-rule. When a window includes plural tabs
that switch the window content, it is counted as one window.

4.2.1 Widgets with Instructions

The “widget with instructions” sub-rule is applied to two
widgets where one is a type of widget, usually a text field
or a combo box, and the other is a label widget for the for-
mer widget’s instruction when a label widget and a type of
widget are present and both of their variable names include
common keywords. In many cases, this sub-rule arranges
the label widget to the left or upper side of the type of wid-
get. However, actual arrangement strategies are determined
by analyzing developed GUIs. Figure 2 shows examples us-
ing four sets of widgets; the second set is a combination of
label and combo box widgets, while the other three are com-
binations of label and text field widgets.

4.2.2 Grouped Widgets with Instructions

This sub-rule is similar to the “widgets with instructions”,
except that multiple widgets use a single label widget. The
“grouped widgets with instruction” sub-rule is applied when
multiple widgets use a single label widget for instruction
and all their variable names include common keywords. In
many cases, this sub-rule arranges the label widget at the
left top or upper side of other widgets. However, actual
arrangement strategies are determined by analyzing devel-
oped GUIs. Figure 3 shows an example using a label and
three checkbox widgets where the label widget “E-mail” is
the instruction for the checkbox widgets.

4.2.3 Parent and Child Widgets

Parent widgets are selection widgets (i.e., radio button and
checkbox). Once the parent is selected, some other wid-
gets are enabled. The other widgets are child widgets. The

Fig. 4 Examples of parent and child widgets.

Fig. 5 Example of widgets grouped by border.

“parent and child” sub-rule is applied when there are some
radio button or check box (parent) widgets and other (child)
widgets in a group that developers specify. Figure 4 shows
an example using a set of widgets, which are all checkbox
widgets, and selecting the parent widget, “Newsletter of this
site”, enables the child widgets, “Weekly” and “Monthly”.

4.2.4 Widgets Grouped by Border

The “widgets grouped by border” sub-rule places a group of
widgets within a border and adds instructions to the border.
Any widget type in the group is available. When developed
windows include this sub-rule, this rule is applied to a group
that developers specify. Figure 5 shows an example where
five widgets are placed within a border, and a “Contact to”
label is added as the instruction.

5. Process of Our Method

Our method analyzes developed GUI source programs, ex-
tracts the layout rules, and generates the undeveloped GUIs
automatically. Figure 6 shows the system architecture, while
Fig. 7 details the flow of the “grouping widgets” and “ex-
tracting layout rules” in Fig. 6.

5.1 Extracting GUI Data

GUI data, including widget size, positions, and combina-
tions, are required to arrange the layout. By analyzing the
developed GUI programs, our method extracts this informa-
tion in two phases (i.e., static and dynamic analyses).

Static analysis

The developed GUI programs are statically analyzed using a
parser generated by JavaCC (Java Compiler Compiler) [15].
In this phase, a widget ID is assigned to each widget and
window. Then the parser extracts the variable name and type
for each widget.

1088
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Table 3 Example of widget values.

Variable Type Width Height Position (x, y) Label Parent
Window n/a JFrame 300 200 n/a n/a n/a

“OK” okBut JButton 51 26 (128, 146) OK WindowA:butPanel
“Cancel” cancelBut JButton 73 26 (199, 146) Cancel WindowA:butPanel

Fig. 6 System architecture.

Fig. 7 Flow of analyzing layout rules.

Dynamic analysis

The developed GUI programs are executed, and GUI data
are extracted. Because functions to extract GUI data are
generated and added to the GUI programs by AspectJ [16]
using the GUI data extracted in the static analysis, functions
can be added without modifying the developed GUI pro-
grams. These functions extract following additional GUI

Fig. 8 Example of dynamic analysis.

data:

• Window width (windowW) and height (windowH)
• x-coordinate (x) and y-coordinate of widget
• Widget width (widgetW) and height (widgetH)
• Label name displayed on widgets
• Parent widget ID (ID on which widgets are place)

Thus, dynamic analysis extracts concrete GUI data.
Figure 8 shows an example for a window where two button
widgets (“OK” and “Cancel”) are on a panel widget. Ac-
cording to the analyses, all the values of the GUI data are
extracted. Table 3 shows examples of the GUI data values
in Fig. 8.

5.2 Analyzing Layout Rules

Using the GUI data extracted in 5.1, the implemented layout
rules are analyzed. The observed pixels/ratios are calculated
using the GUI data and the widgets are grouped based on
GUI data. Finally, the layout rules are extracted.

5.2.1 Calculating Observed Pixels/Ratios

Although GUI data extracted in 5.1 can be extracted directly
from a program, the following must be calculated using the
formulae below and the extracted GUI data to derive the lay-
out rules. Figure 9 shows an example calculation.

center x-Coordinate of the center of a widget
Formula: center = x + widgetW ÷ 2

right x-Coordinate of the right edge of a widget
Formula: right = x + widgetW

xfr Distance between the right edge of a window and left
edge of a widget
Formula: x f r = windowW − x

dfr Distance between the right edge of a window and the
right edge of a widget
Formula: d f r = windowW − right

dfc Distance in the x direction between the center of a win-
dow and the center of a widget

SHIROGANE et al.: METHOD FOR CONSISTENT GUI ARRANGEMENTS BY ANALYZING EXISTING WINDOWS AND ITS EVALUATION
1089

Fig. 9 Example calculation of observed pixels/ratios.

Formula: d f c = windowW ÷ 2 − center
xP Ratio of the x-coordinates of a widget to the window

width
Formula: xP = x ÷ windowW

dfrP Ratio of dfr of a widget to the window width
Formula: d f rP = d f r ÷ windowW

dfcP Ratio of dfc of a widget to the window width
Formula: d f cP = d f c ÷ windowW

middle y-Coordinate of the center of a widget
Formula: middle = y + widgetH ÷ 2

bottom y-Coordinate of the bottom edge of a widget
Formula: bottom = y + widgetH

yfb Distance between the bottom edge of a window and top
edge of a widget
Formula: y f b = windowH − y

dfb Distance between the bottom edge of a window and the
bottom edge of a widget
Formula: d f b = windowH − bottom

dfm Distance in the y direction between the center of a win-
dow and the center of a widget
Formula: d f m = windowH ÷ 2 − middle

yP Ratio of the y-coordinates of a widget to the window
height
Formula: yP = y ÷ windowH

dfbP Ratio of dfb of a widget to the window height
Formula: d f rP = d f r ÷ windowW

dfmP Ratio of dfm of a widget to the window height
Formula: d f mP = d f m ÷ windowH

5.2.2 Grouping Widgets

Widgets are grouped using three strategies (label names,
keywords, and parent widgets) based on the extracted and
observed pixels/ratios. Each widget can belong to multiple
groups.

Grouping by label names

Widgets can be grouped by their label names (e.g., “OK”
and “Cancel”) based on 4.1. Table 4 shows widgets grouped

Table 4 Example of grouping by label names.

Label name Window name Variable name
OK Window A okButton

Window C ok
Window D ok

Cancel Window A cancelButton
Window B cancelBut
Window D cancel
Window E cancelButton

Fig. 10 Example of variables with common keywords.

Table 5 Example of grouping by keywords of variable names.

Keyword Variable name
name nameLabel, nameField
country countryLabel, countryCombo
address addressLabel, addressField
tel telLabel, telField

Fig. 11 Example of arranging widgets using panel widgets.

by label names where “Label name” indicates the name of
the grouped widgets. “Window name” denotes the name
of the window in which the grouped widgets are placed,
and “Variable name” represents the variable name of the
grouped widget.

Grouping by keywords in the variables

Often keywords, which represent the meaning, are used as
variables. In the naming rules of the Java programming lan-
guage, the first keyword should be all lower case, but the
first letter in subsequent words should be upper case. Using
these naming rules, keywords in variables can be extracted.

Additionally, common keywords are often used for re-
lated variables. For example, a text field widget and label
widget are used for the instruction of a text field widget.
Figure 10 shows an example where the label widgets on the
left represent the instruction widgets on the right, while Ta-
ble 5 shows an example grouping.

Grouping by parent widgets

To arrange GUI layouts in Java, related widgets are placed
in a panel widget and grouped. Figure 11 shows an example

1090
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Table 7 Example of widget position dteremination.

“OK” Value items based on x-coordinate Value items based on y-coordinate
buttons x center right xfr dfr dfc xP dfrP dfcP y middle bottom yfb dfb dfm yP dfbP dfcP

A 214 250 286 196 124 45 0.52 0.3 0.11 234 243 252 66 48 93 0.78 0.16 0.31
B 394 430 466 196 124 135 0.67 0.21 0.23 488 497 506 66 48 220 0.88 0.09 0.4
C 570 613 656 210 124 223 0.73 0.16 0.29 666 676.5 687 69 48 309 0.91 0.07 0.42
D 202 245 288 210 124 39 0.49 0.3 0.09 428 437 446 90 72 178 0.83 0.14 0.34
E 8 102.5 197 727 538 265 0.01 0.73 0.36 318 329 340 97 75 121.5 0.77 0.18 0.29
F 268 311 354 173 87 90.5 0.61 0.2 0.21 216 227 238 65 43 86.5 0.77 0.15 0.31

Table 6 Example of grouping by panel widgets.

Panel widget Variable name
namePanel nameLabel, nameField
countryPanel countryLabel, countryCombo
addressPanel addressLabel, addressField
telPanel telLabel, telField
butPanel okBut, cancelBut

of arranging widgets using panel widgets. The related wid-
gets often have meaningful relationships. For example, the
“namePanel” widget includes a label widget and text field
widget to input a name. Table 6 shows an example of group-
ing by this strategy.

5.2.3 Extracting Layout Rules

Position and combination rules are extracted using widget
groups.

Extracting position rules

The position rules are applied to buttons with specific label
names described in 4.1 to uniformly coordinate the positions
of these buttons in every window. Because the position rules
are applied widgets with specific label names, widgets must
be classified by label names and position in a window.

To extract position rules, groups by label names in
5.2.2 are used. For each group of widgets, the determination
strategy of widget position is described below using values
of the “OK” button in six windows as an example (Table 7).

Step 1
Widgets from a group are classified by 18 value items (x-
coordinate, center, right, xfr, dfr, dfc, xP, dfrP, dfcP, y-
coordinate, middle, bottom, yfb, dfb, dfm, yP, dfbP, and
dfmP) to create sub-groups. Sub-groups are created by clas-
sifying widgets in a group by the same values of these 18
value items. Table 8 shows examples of the sub-groups cre-
ated using Table 7 where “Sub-group” indicates the numbers
of sub-groups and “Widget list” indicates the lists of “OK”
buttons included in the sub-groups. “Value item (Value)”
indicates whether widgets in the sub-groups have the same
value, and their values are shown in parentheses.

Step 2
The sub-group with the most widgets and its value item is
specified. For example, according to Table 8, the sub-group
with the most widgets is sub-group 3 and the value item is

Table 8 Example of sub-group classification.

Sub-group Widget list Value item (Value)
1 A, B xfr (196)
2 C, D xfr (210)
3 A, B, C, D dfr (124)
4 A, B yfb (66)
5 A, B, C dfb (48)
6 E, F yP (0.77)
7 A, F dfmP (0.31)

Table 9 Example of sub-sub group classification.

Sub-sub group Widget list Value item (Value)
1 A, B yfb (66)
2 A, B, C dfb (48)

dfr.

Step 3
When the specified value item in step 2 is based on x-
coordinate (y-coordinate), widgets in the sub-group are clas-
sified by the same value items based on the y-coordinate (x-
coordinate). By classifying widgets in the sub-group, sub-
sub groups are created. For example, widgets of sub-group
3 are classified by value items based on the y-coordinate be-
cause the specified sub-group in step 2 is sub-group 3, which
has a value item (dfr) based on the x-coordinate. Table 9
shows the sub-sub groups from sub-group 3 in Table 7. The
meanings are the same as Table 8.

Step 4
For the sub-sub group with the most widgets, its value item
is extracted. For example, in Table 9, sub-sub group 2 has
the most widgets, and its value item is dfb.

Step 5
The values of the value items extracted in steps 2 and 4 are
defined as position rules. For the “OK” buttons used as an
example, the extracted position rule is a dfr value of 124 and
a dfb value of 48.

Extracting combination rules

To extract combination rules, groups by variable keywords
and by parent widgets described in 5.2.2 are used.

Extracting “widgets with instructions” and “grouped
widgets with instructions”

Combination sub-rules for “widgets with instructions” and

SHIROGANE et al.: METHOD FOR CONSISTENT GUI ARRANGEMENTS BY ANALYZING EXISTING WINDOWS AND ITS EVALUATION
1091

Table 10 Example of calculated distances between the label and other widgets.

Horizontal distances Vertical distances
Label Other dll drl dcc drr dlr dtt dbt dmm dbb dtb
Name text field (Name) 39 0 200 361 400 0 27 0 0 27
Country combo box (Country) 50 0 200 350 400 0 27 0 0 27
Address text field (Address) 54 0 200 346 400 0 27 0 0 27
Tel text field (Tel) 23 0 200 377 400 0 27 0 0 27

“grouped widgets with instructions” are the label widgets
used as instructions for other widgets. A label widget and
another widget are a set in the sub-rule “widgets with in-
structions”, and the label widget and some other widgets are
a set in the sub-rule “grouped widgets with instructions”.
To extract these sub-rules, it is necessary to identify sets of
label and other widgets.

These combination sub-rules are extracted in the fol-
lowing manner.

Step 1
From the groups by variable keywords in 5.2.2, groups with
two or more widgets and groups in which only one of the
widgets is a label widget are extracted. If groups satisfy
both of these conditions, then widgets may be arranged by
the sub-rule “widgets with instructions” or “grouped wid-
gets with instructions”.

Step 2
For the extracted groups, the distances between the label
and other widgets within the groups are extracted. Distances
consist of the following and can be calculated by formulae
below and the extracted GUI data. In these formulae, “label”
indicates a label widget, while “other” indicates other wid-
get. Additionally, the spacing is called the “distance value”.
When there are multiple widgets in a group, these widgets
are arranged vertically and the left edges are unified in many
cases. Thus, distances are calculated between a label widget
and the most upper and left other widget as well as between
adjacent other widgets.

dll Horizontal distances between the left edge of the label
widget the left edge of the other widget
Formula: dll = |x(other) − x(label)|

drl Horizontal distances between the right edge of the label
widget and the left edge of the other widget
Formula: drl = |x(other) − right(label)|

dcc Horizontal distances between the center of the label
widget and the center of the other widget
Formula: dcc = |center(other) − center(label)|

drr Horizontal distances between the right edge of the label
widget and the right edge of the other widget
Formula: drr = |right(other) − right(label)|

dlr Horizontal distances between the left edge of the label
widget and the right edge of the other widget
Formula: drr = |right(other) − x(label)|

dtt Vertical distances between the top edge of the label wid-
get and the top edge of the other widget
Formula: dtt = |y(other) − y(label)|

dbt Vertical distances between the bottom edge of the label

widget and the top edge of the other widget
Formula: dbt = |y(other) − bottom(label)|

dmm Vertical distances between the center of the label wid-
get and the center of the other widget
Formula: dcc = |middle(other) − middle(label)|

dbb Vertical distances between the bottom edge of the label
widget and the bottom edge of the other widget
Formula: dbt = |bottom(other) − bottom(label)|

dtb Vertical distances between the top edge of the label
widget and the bottom edge of the other widget
Formula: dbt = |bottom(other) − y(label)|
Table 10 shows an example of the calculated distances

between label widgets and other widgets in Fig. 2. “Label”
indicates the label names of label widgets, while “Other”
indicates widget types of the other widgets, and label names
of their label widgets are shown in parentheses.

Step 3
The most common distances between the label and other
widgets are defined by the sub-rules “widget with instruc-
tions” and “grouped widgets with instructions”. Distances
between other widgets are defined similarly.

For example, according to Table 10, the most common
value is drl for the horizontal distance and dtt for the vertical
distance. Thus, the horizontal distance between the label
widget and other widget is defined as 0, while the vertical
distance is defined as 0.

Extracting “parent and child widgets”

In the “parent and child widgets” sub-rule, parent widgets
represent the selection, such as a radio button or checkbox
widget, which make child widgets available. In many cases,
child widgets are arranged immediately below and indented
relative to the parent widget. To extract this rule, it is neces-
sary to identify selection widgets and indented widgets im-
mediately below the selection widgets.

This combination sub-rule is extracted using the fol-
lowing steps.

Step 1
In many cases, parent widgets of “parent and child widgets”
are radio button or checkbox widgets. Groups that satisfy
either of the two following conditions are extracted:

• For groups by parent widgets, widgets are only radio
button or checkbox widgets
• For widgets arranged immediately above and below,

one widget is not indented and the others are indented

1092
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Table 11 Example of calculated distances for the “parent and child wid-
gets” sub-rules.

Labe 1 Labe 2 ind Label 1 Label 2 ver
Newsletter Dayly 36 Newsletter Dayly 0
Newsletter Weekly 36 Dayly Weekly 2
Newsletter Monthly 36 Weekly Monthly 2

Table 12 Example of distances of groups for “parent and child widgets”
sub-rules.

Group ind ver
1 36 2
2 36 0
3 36 4
4 30 2

Step 2
The following distances among the widgets are calculated
using the extracted GUI data described in 5.1 and 5.2.1.
These distances are calculated for each group. The values
of all the widget combinations using each formula are calcu-
lated, and the smallest values are adopted for each distance.

ind Distances between the left edge of a non-indented wid-
get (widget A) and the left edge of indented widget
(widget B)
Formula: ind = |x(widgetB) − x(widgetA)|

ver Distances between the bottom edge of a widget (widget
C) and the top edge of the widget immediately above
widget D
Formula: dv = |y(widgetD) − bottom(widgetC)|
Table 11 shows an example of the calculated distances

widget groups in Fig. 4. “Label1” and “Label2” indicate
the label names of the widgets used to calculate distances
(“Newsletter” indicates the label name of “Newsletter of this
site” checkbox).

Step 3
For each group, the most common distances of “ver” and
“ind” are defined as the distance of each group. For exam-
ple, according to Table 11, the most common value of “ind”
is 36 and “ver” is 2.

Step 4
The most common distances in each group are defined as
the rule “parent and child widgets”. For example, Table 12
shows examples of the distances for each group of widgets.
Because the most common values are 36 for “ind” and 2 for
“ver”, these values are the defined as the rule.

Extracting “widgets grouped by a border”

The combination sub-rule “widgets grouped by a border” is
a set of widgets arranged on a panel widget to which a bor-
der with an instruction is added. To extract this sub-rule, the
widgets on the panel widgets with borders and instructions
must be identified. This combination sub-rule is extracted
following steps.

Table 13 Example of calculated distances for “widgets grouped by a
border” sub-rules.

Labe 1 Labe 2 dv
Home Cell phone 9
Cell phone Company 9
Campany Other 9
Other (text field) 6

Table 14 Example of distances of groups for “widgets grouped by a
border” sub-rules.

Group dv
1 9
2 6
3 6
4 6

Step 1
If groups by parent widgets and groups described in 5.2.2
with more than two widgets in a panel are extracted, they
can be arranged by the rule “widgets grouped by a border”.

Step 2
The following distances among the widgets are calculated
using the extracted GUI data described in 5.1 and 5.2.1.
These distances are calculated for each group. The values of
all widget combinations using each formula are calculated,
and the smallest values are adopted for each distance.

dh Distances between the right edge of a widget (widget
A) and the left edge of the widget (widget B) when
the widgets are arranged horizontally and widget B is
arranged at immediately left of widget A.
Formula: |x(widgetB) − right(widgetA)|

dv Distance between the bottom edge of a widget (widget
C) and the top edge of the widget (widget D) imme-
diately above widget B when the widgets are arranged
vertically
Formula: |y(widgetD) − bottom(widgetC)|
Table 13 shows an example of the calculated distances

widget groups in Fig. 5. Because widgets in this group are
arranged vertically, only the “dv” values are described. “La-
bel 1” and “Label 2” indicate the label names of widgets
used to calculate distances. (Because the text field widget
in Fig. 5 does not have the label name, it is represented by
“text field”).

Step 3
For each group, the most common distances of “dv” is de-
fined as the distance for each group. For example, according
to Table 13, the most common “dv” value of 9 is defined as
the value for the group of widgets.

Step 4
The most common distance in each group is defined as the
rule “widgets grouped by a border”. Table 14 shows ex-
amples of distances for each group of widgets. The most
common value of 6 for “dv” is defined as this sub-rule.

SHIROGANE et al.: METHOD FOR CONSISTENT GUI ARRANGEMENTS BY ANALYZING EXISTING WINDOWS AND ITS EVALUATION
1093

Fig. 12 Example of generated window.

5.3 Generating Programs

After the layout rules are defined, the source programs of the
undeveloped GUIs are generated. Developers input items,
such as the types of widgets, variable names of widgets, la-
bel names for each window, and widget grouping. Then the
inputted data is compared to the layout rules. Window lay-
outs are arranged when the layout rules are applicable to the
widgets, and the source programs of the window are gen-
erated. Figure 12 shows an example arrangement when a
developer inputs the following for a window:

Widget 1: Type: label widget, variable name: nameLabel,
label name: Name

Widget 2: Type: text field widget, variable name: name-
Text, label name: n/a

Widget 3: Type: label widget, variable name: phoneLa-
bel, label name: Phone

Widget 4: Type: text field widget, variable name: phone-
Text, label name: n/a

Widget 5: Type: button widget, variable name: ok, label
name: OK

Group 1: Widgets 1 and 2
Group 2: Widgets 3 and 4

6. Evaluation

The evaluation consists of extracting and applying the layout
rules. Three software packages are employed [i.e., a word
processor (Microsoft Word†, software A), a photo manager
(iPhoto††, software B), and an ftp client (FileZilla†††, soft-
ware C)].

6.1 Extracting Layout Rules

To confirm the efficiency of extracting layout rules, we eval-
uated the number of developed windows that our method
requires to extract layout rules using three software pack-
ages. Although there are numerous windows in a software

†Microsoft Office: http://office.microsoft.com/
††iPhoto: http://www.apple.com/jp/creativity-apps/mac/
†††FileZilla: http://filezilla-project.org/

Table 15 Results of extracting layout rules.

Layout rule Software A Software B Software C

Widgets with instructions 1.5 4 1
Position rule 3 4.5 4

Table 16 Results of applying layout rules to windows in software.

Widgets with inst. Position rule
Window A-1 Partical Same
Window A-2 Different Same
Window A-3 Same Same
Window B-1 Different Same
Window B-2 Partial Same
Window B-3 Same Same
Window C-1 Different Different
Window C-2 Partial Different
Window C-3 Partial Different

program, if the number of required developed windows is
small, most undeveloped windows can be generated by our
method.

In the analysis, the GUIs are implemented in the same
way as the original software. Table 15 shows the minimum
number of required windows to extract the layout rules from
the left side of the menu items and the average value for each
rule. For example, the position rules for some target widgets
are for buttons such as “OK” and “Cancel”, and their values
are the average of the minimum number of windows neces-
sary to extract the position rules.

The layout rules for the GUIs of software A, which
is arranged strictly based on Windows User Experience In-
teraction Guidelines [3], show consistency, but the GUIs of
software B and C do not. Some buttons with certain label
names in software C are arranged in different positions. In
addition, except for the rules in Table 15, the layouts are
inconsistent in the three software packages. Because the ex-
pected results were not obtained, even for software A, more
detailed layout rules need to be extracted to improve our
method.

On the other hand, less than five windows are required
to extract the layout rules for the “position rules” and “wid-
gets with instructions” for all three test cases. Because the
typical software package contains many windows, this is a
small number. Although the effectiveness of our method is
limited, it can easily extract the layout rules from developed
GUIs.

6.2 Applying the Layout Rules

To confirm the appropriateness of the extracted layout rules
in 6.1, we evaluated whether the layouts of the generated
windows are the same as the actual windows.

We selected three windows for each software packages
(nine total windows) and applied the extracted layout rules.
Then we compared the generated windows to the actual win-
dows (Table 16).

In this table, “Window X-n” indicates a window in soft-
ware X. “Same” indicates that the arranged layout of the

1094
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Fig. 13 Example of “Partial”.

Fig. 14 Example of “Different”.

generated window is almost identical to the actual window.
“Partial” indicates that the order and arrangement strategy
in the generated windows are the same as the actual win-
dows, but the distances among widgets differ. “Different”
indicates that the order or arrangement strategy of a set of
widgets in the generated window is inconsistent with that of
the actual window.

Figure 13 shows an example of “Partial”. For a set of
widgets in both the generated and actual window, the la-
bel widget is on the left and the text field widget is the on
right (order), and these widgets are arranged horizontally
(arrangement strategy). Thus, the order and the arrangement
strategy are the same. However, the distance between the
widgets differs, although the dll values should be unified.

Figure 14 shows an example of “Different”. The set of
widgets is arranged horizontally in the generated windows,
but the widgets are arranged vertically in the actual win-
dows.

The arrangements of GUIs in software A are more ap-
propriate than those in software packages B and C because
the GUIs in software A are consistently arranged, whereas
those in software packages B and C are not. When GUI lay-
outs are inconsistently arranged, extracting the layout rules
is difficult, which likely affects the results for software pack-
ages B and C. Additionally, for the “widget with instruc-
tions” rule, the layouts of the seven windows are all “Partial”
or “Different”, suggesting that except for label widgets, the
arrangement strategies may differ based on the widget type
(e.g., text field and combo box widgets). To resolve these
problems, grouping widgets in more detail (i.e., by widget
type and window structure) may be more effective. How-
ever, Table 16 confirms that layout rules can be extracted
almost appropriately using our method when the developed
GUIs are consistent.

6.3 Comparing with Guidelines

The purpose of our method is to support the development
of consistent GUIs. Developing GUIs using guidelines real-
izes consistent GUIs [1], [2]. To confirm the generated GUIs
are consistent, we compared them to those generated using

guidelines.
Because software A is arranged strictly based on Win-

dows User Experience Interaction Guidelines [3], the win-
dows of software A are compared with the guidelines. Al-
though the guidelines have numerous elements, we ex-
tracted elements in terms of the meanings of consistency in
our method and compared them to the generated windows.
Examples of the extracted elements are as follows:

• Buttons that complete tasks (e.g., “OK” and “Cancel”
buttons) should be arranged at the right bottom of win-
dow
• Width of buttons should be unified
• Checkboxes should be arranged vertically
• Widgets should be arranged by left alignment, etc.

Because software B and C are not strictly arranged by
existing guidelines, we developed individual guidelines for
software B and C. Concretely, guideline elements in terms
of the meanings of consistency in our method are extracted
from Windows User Experience Guidelines and Mac OS X
Human Interface Guidelines [4], and all windows of soft-
ware B and C are surveyed manually. Then the arrangement
strategies of each guideline element are modified based on
the surveying results. In cases where multiple arrangement
strategies exist for a certain element, the most frequent strat-
egy is adopted. Examples of the guideline element are as
follows:

• For a set of label and other widgets, the label widgets
should be arranged by right alignment and the others
should be arranged by left alignment (Software B)
• Parent and child widgets should arranged horizontally,

or when child widgets are arranged vertically, they
should be indented from the parents (Software B)
• UI elements that complete tasks (e.g., “OK” and “Can-

cel” buttons) should be centered at the bottom of the
window (Software C)
• Child widgets should be arranged vertically and in-

dented from the parent widgets (Software C)

Figure 15 shows sample windows for this evaluation.
The left window is the identical window strictly based on
guidelines, while the right window is the window generated
using our method. Although these windows are from the
generic proxy configuration of FileZilla†, we developed ac-
tual windows using Java Swing Packages for the compari-
son. The numbers in this figure are examples of guideline
elements that should be applied; (2) (“radio buttons should
be arranged vertically”) is applied, while (1) (“size of boxes
should be adjusted so that end users can input text without
scrolling”) and (3) (“UI elements that complete tasks should
be centered at the bottom of the window”) are not applied.

In Table 17, “Total” indicates the number of guideline
elements that can be applied to each window. Because there
are various types of elements, such as specific types of wid-
gets and widget combinations, all elements cannot always

†FileZilla: http://filezilla-project.org/

SHIROGANE et al.: METHOD FOR CONSISTENT GUI ARRANGEMENTS BY ANALYZING EXISTING WINDOWS AND ITS EVALUATION
1095

Fig. 15 Example of identical and generated windows.

Table 17 Results of the guideline comparison.

Window Total Applied Not
Window A-1 54 38 16
Window A-2 44 34 10
Window A-3 48 34 14
Window B-1 34 26 8
Window B-2 38 29 9
Window B-3 39 33 6
Window C-1 41 31 10
Window C-2 32 23 9
Window C-3 35 31 4

be applied to each window. “Applied” indicates the number
of elements that are applied to each window, while “Not”
indicates the number of elements that are not applied.

“Not” elements can be classified as either applicable el-
ements if our method is improved or inapplicable elements
regardless of our method. Examples of applicable elements
include “related controls should be arranged horizontally”
and “the group with the longest content should be arranged
at the horizontal center of the window”. Although the for-
mer elements should be applied to sets of labels, buttons,
and other widgets, the combination sub-rule “widgets with
instructions” is applied to the label and other widgets, and
the buttons are arranged vertically. Thus, our current combi-
nation rules are insufficient, but this issue can be resolved by
increasing the number of combination sub-rules. For the lat-
ter elements, although the widget positions within a window,
except for buttons in 4.1, are not considered in our current
method, expanding the scope of method and extending the
position rules will resolve this type of applicability issue.

Examples of inapplicable elements are “size of boxes
should be adjusted so that end users can input text with-
out scrolling” and “buttons that complete tasks (“OK” and
“Cancel” buttons) should be arranged at the bottom center of
the window”. For the former element, it is impossible to rec-
ognize the volume of text in a box. Thus, our method cannot
appropriately adjust the box size. For the latter, elements
defined manually differ from the extracted layout rules (po-
sition rules). The buttons are arranged at the right bottom
of the generated windows. This problem is due to the fact
that the software program has an inconsistent layout strat-
egy, and the layout rules are extracted using some but not
all of the windows in the program. Although this problem
may be resolved if more windows are used to extract layout
rules, it is difficult in practice.

However, according to Table 17, 76% of the total ele-
ments are applied to the generated windows. Thus, we con-
firm that our method can generate consistent GUIs similar
to applying guidelines.

7. Conclusion

Herein we proposed a method to automatically generate
source programs of undeveloped GUIs by analyzing the
source programs of developed GUIs and extracting layout
rules. We surveyed existing software packages to identify
common layout rules. Then source programs of GUIs were
analyzed using various parameters based on the identified
layout rules. Next the extracted rules were used to arrange
undeveloped GUIs. Although the evaluation revealed some
issues with our method, we confirmed that the layout rules
could be extracted using only a few windows and that unde-
veloped GUIs are generated appropriately.

Our future research interests include improving the in-
put widgets of undeveloped windows, increasing extractable
and realizable layout rules, and arranging widgets across
windows. In addition, we plan to group widgets and ana-
lyze layout rules in more detail.

References

[1] J. Nielsen, Usability Engineering, Morgan Kaufmann, 1994.
[2] J. Nielsen, Coordinating User Interfaces for Consistency, Academic

Press, 1989.
[3] Windows User Experience Interaction Guidelines,

http://msdn.microsoft.com/en-us/library/windows/desktop/
aa511258.aspx

[4] Mac OS X Human Interface Guidelines,
https://developer.apple.com/library/mac/#documentation/
UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html#
//apple ref/doc/uid/20000957

[5] J. Tidwell, Designing Interfaces, O’Reilly Media, 2010.
[6] J. Janeiro, S.D. Barbosa, T. Springer, and A. Schill, “Enhancing user

interface design patterns with design rationale structures,” Proc. 27th
ACM International Conference on Design of Communication (SIG-
DOC ’09), pp.9–16, 2009.

[7] S. Shirai, J. Shirogane, H. Iwata, and Y. Fukazawa, “Automatic
generation of consistent GUI by analyzing developed windows,”
Procs. of IADIS International Conference Information Systems
2012, pp.446–448, 2012.

[8] A. Sajedi, M. Mahdavi, A. Pourshirmohammadi, and M.M. Nejad,
“Fundamental usability guidelines for user interface design,” Proc.
of Computational Sciences and Its Applications (ICCSA ’08),
pp.106–113, 2008.

[9] M.Z.A. Obeidat and S.S. Salim, “Integrating user interface design
guidelines with adaptation techniques to solve usability problems,”
Proc. 2010 3rd International Conference on Advanced Computer
Theory and Engineering (ICACTE 2010), pp.V1280–V1284, 2010.

[10] P. Bendsen, “Model-driven business UI based on maps,” Proc. of the
2004 ACM SIGMOD international conference on Management of
data, pp.887–891, 2004.

[11] C. Lutteroth, “Automated reverse engineering of hard-coded GUI
layouts,” Proc. Ninth Conference on Australasian User Interface
(AUIC ’08), vol.76, pp.65–73, 2008.

[12] C. Lutteroth, R. Strandh, and G. Weber, “Domain specific high-
level constraints for user interface layout,” Constraints, vol.13, no.3,
pp.307–342, 2008.

[13] D. Raneburger, R. Popp, and J. Vanderdonckt, “An automated layout

1096
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

approach for model-driven WIMP-UI generation,” Proc. 4th ACM
SIGCHI Symposium on Engineering Interactive Computing Sys-
tems (EICS ’12), pp.91–100, 2012.

[14] S. Feuerstack, M. Blumendorf, V. Schwartze, and S. Albayrak,
“Model-based layout generation,” Proc. Working Conference on Ad-
vanced Visual Interfaces (AVI ’08), pp.217–224, 2008.

[15] JavaCC Home, http://javacc.java.net/
[16] The AspectJ Projec, http://www.eclipse.org/aspectj/

Junko Shirogane received B.E., M.E., and
D.E. degrees in information and computer sci-
ence from Waseda University, Tokyo, Japan, in
1997, 1999, and 2002, respectively. She joined
the Media Network Center of Waseda Univer-
sity as a Research Assistant in 2000 and the De-
partment of Communication of Tokyo Woman’s
Christian University as a Lecturer in 2003. Cur-
rently, she is an Associate Professor of the
School of Arts and Sciences, Tokyo Woman’s
Christian University. Her research interests in-

clude support tools for software development with GUIs. She is a member
of IPSJ, IEICE Japan, JSSST, HIS, IEEE, and ACM.

Seitaro Shirai received B.E. and M.E. de-
grees in information and computer science from
Waseda University, Tokyo, Japan, in 2010 and
2012, respectively. His research interests in-
clude support tools for software development
with usable GUIs.

Hajime Iwata received B.E., M.E., and D.E.
degrees in information and computer science
from Waseda University, Tokyo, Japan, in 2002,
2004, and 2008, respectively. He joined the Me-
dia Network Center of Waseda University as a
Research Assistant in 2005 and Department of
Network and Communication of Kanagawa In-
stitute of Technology as an Assistant Professor
in 2008. His research interests include support
tools to learn application operating methods. He
is a member of IPSJ and ACM.

Yoshiaki Fukazawa received B.E., M.E.,
and D.E. degrees in electrical engineering from
Waseda University, Tokyo, Japan, in 1976,
1978, and 1986, respectively. He joined the De-
partment of Computer Science of Sagami Insti-
tute of Technology as a Lecturer in 1983 and the
Department of Electrical Engineering of Waseda
University as an Associate Professor in 1987.
Currently, he is a Professor of the Department
of Information and Computer Science, Waseda
University. His research interests include soft-

ware engineering, program optimization, and computer aided design. He is
a member of IPSJ, IEICE Japan, JSSST, ACM, and IEEE.

