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PAPER

Portfolio Selection Models with Technical Analysis-Based Fuzzy
Birandom Variables

You LI†a), Bo WANG†b), Nonmembers, and Junzo WATADA†c), Member

SUMMARY Recently, fuzzy set theory has been widely employed in
building portfolio selection models where uncertainty plays a role. In these
models, future security returns are generally taken for fuzzy variables and
mathematical models are then built to maximize the investment profit ac-
cording to a given risk level or to minimize a risk level based on a fixed
profit level. Based on existing works, this paper proposes a portfolio selec-
tion model based on fuzzy birandom variables. Two original contributions
are provided by the study: First, the concept of technical analysis is com-
bined with fuzzy set theory to use the security returns as fuzzy birandom
variables. Second, the fuzzy birandom Value-at-Risk (VaR) is used to build
our model, which is called the fuzzy birandom VaR-based portfolio selec-
tion model (FBVaR-PSM). The VaR can directly reflect the largest loss
of a selected case at a given confidence level and it is more sensitive than
other models and more acceptable for general investors than conventional
risk measurements. To solve the FBVaR-PSM, in some special cases when
the security returns are taken for trapezoidal, triangular or Gaussian fuzzy
birandom variables, several crisp equivalent models of the FBVaR-PSM
are derived, which can be handled by any linear programming solver. In
general, the fuzzy birandom simulation-based particle swarm optimization
algorithm (FBS-PSO) is designed to find the approximate optimal solution.
To illustrate the proposed model and the behavior of the FBS-PSO, two
numerical examples are introduced based on investors’ different risk atti-
tudes. Finally, we analyze the experimental results and provide a discussion
of some existing approaches.
key words: portfolio selection, technical analysis, fuzzy birandom vari-
able, Value-at-Risk, fuzzy birandom simulation, particle swarm optimiza-
tion

1. Introduction

Portfolio selection theory aims at allocating capital to spe-
cific securities, so the investment can maximize profit or
minimize risk. In 1952, Markowitz [1] used a single period
variance of security returns as a risk measurement to develop
techniques for portfolio optimization. Since then, various
studies have been proposed in this field [2], [17], [25], [26].

The existing studies have mainly improved
Markowitz’s method in two aspects: the technique used to
describe future security returns and the technique used to
measure investment risk. The security returns in conven-
tional models are generally determined by stochastic analy-
sis based on precise historical data. However, on one hand,
such precise data are not always available, e.g. for an IPO
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(initial public offerings) share. On the other hand, the vari-
ous inputs such as company performance, the market forces
of supply and demand, positive and negative news about a
company, and political factors, are necessary to form the ba-
sis for future return forecasting and are often assessed with
some uncertainty. This type of uncertainty is usually non-
statistical, e.g. linguistic knowledge. In addition, forecasted
values need to be adjusted by experts based on their confi-
dence and knowledge about the future. These human esti-
mations can also involve imprecise information. The proba-
bility theory is used for analyzing a greater amount of data,
while fuzzy logic is used for the representation and use of
linguistic knowledge. Therefore, many recent works (e.g.
[2], [3], [9], [14], [17]) consider fuzzy set theory to be an al-
ternative tool to stochastic theory when handling a security
return forecast.

Risk measurements are of great importance in portfo-
lio selection models, and various techniques have been de-
veloped to evaluate risk from different aspects. For exam-
ple, the variance [1], Value-at-Risk (VaR) [6] and Chance-
Constraints [18] are applied in stochastic portfolio selec-
tion problems. Mean-variance [9], mean-semivariance [3],
mean-entropy [2] and the fuzzy VaR [17] are designed to
build fuzzy portfolio selection models. These risk measure-
ments can be divided into two types: The first type is used
to enhance the stability of a portfolio, and it includes most
of the existing approaches, such as variance, mean-variance
and mean-entropy. The second type is designed to measure
the exact loss of a portfolio, e.g. the VaR and fuzzy VaR.
In our previous study [17], the VaR metric has been proven
to be more effective and acceptable than other methods, be-
cause it can provide a more sensitive analysis of risk for
investors and thus help them make decisions more easily.
In this study, we extend the fuzzy VaR to a fuzzy birandom
case, which is used as the risk measurement to build our
model. We will provide a more in-depth explanation of this
point in the following sections.

Peng [19] introduced the concept of a birandom vari-
able in a stochastic environment. A birandom variable is
defined as a binary random variable taking random values.
In fuzzy set theory, the fuzzy birandom variable can be con-
sidered as a special case of the fuzzy random variable [20],
when it includes only two fuzzy values.

Using the above knowledge, the technical analysis is
applied in this study to forecast future security returns as
fuzzy birandom variables. In finance, technical analysis is
a security analysis discipline used for forecasting the direc-
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tion of prices through the study of past market data, pri-
marily price and volume [22]. Related research [21] indi-
cates that investors should identify recurring technical pat-
terns, find laws and use this information to choose stocks.
This methodology can greatly improve the performance of
a portfolio. Therefore, in this research, we observe the his-
torical prices of each stock studied and consider the times
in a certain trading period at which prices fall and rise as a
technical pattern. We first calculate the probabilities of up-
ward and downward price changes, and we then forecast the
future security returns for these stocks as fuzzy birandom
variables.

The remainder of this paper is organized as follows:
Section 2 introduces some basic information on fuzzy set
theory, focusing on the fuzzy birandom variable and fuzzy
birandom VaR. Section 3 explains the motivations be-
hind our research. In Sect. 4, the fuzzy birandom Value-
at-Risk-based portfolio selection model (FBVaR-PSM) is
proposed, and some properties of the FBVaR-PSM are in-
troduced. Section 5 introduces a general solution method
to the FBVaR-PSM, called the fuzzy birandom simulation-
based particle swarm optimization algorithm (FBS-PSO).
In Sect. 6, we apply the proposed algorithm to solve two
numerical examples and analyze the optimal results of the
FBVaR-PSM. Finally Sect. 7 summarizes our conclusions.

2. Preliminaries

The fuzzy set theory has been applied in various fields to
treat the endogenous fuzzily uncertainty. In this section, we
first introduce some basic knowledge on the fuzzy variable
and the fuzzy random variable, including the possibility, the
necessary and credibility formulations. Then, the concept
of the fuzzy birandom variable and the fuzzy birandom VaR
are provided.

The fuzzy variable and fuzzy random variable are fun-
damental mathematical tools for describing fuzzy uncer-
tainty.

Definition 2.1 ([8]). Suppose ξ is a fuzzy variable
whose membership function is μξ and r is a real number.
Then, the credibility function of event ξ ≤ r can be expressed
as follows:

Cr{ξ ≤ r} = 1
2
[
Pos{ξ ≤ r} + Nec{ξ ≤ r}] , (1)

where Cr denotes the credibility of event ξ ≤ r, Pos and Nec
are the possibility and necessity measurements in possibility
theory [4], defined as follows:

Pos{ξ ≤ r} = sup
t≤r
μξ(t), (2)

Nec{ξ ≤ r} = 1 − sup
t>r
μξ(t). (3)

The credibility measurement is a self-dual set func-
tion [8], i.e., Cr{ξ ≤ r} = 1 − Cr{ξ > r}, which describes
the credibility of the events of fuzzy variables. If ξ is taken
as the fuzzy return of a security and Cr{ξ ≥ 5} = 0.8, then

we can say that the credibility of the event that the future
return is no less than 5 is 0.8.

Definition 2.2 ([13]). Suppose L is a fuzzy variable
that represents the loss of one investment, then, the Value-
at-Risk of L with a confidence of (1 − β) can be written as
follows:

VaR1−β = sup{λ|Cr(L ≥ λ) ≥ β}, (4)

where β ∈ (0, 1).
Equation (4) tells us that the greatest loss of L at con-

fidence level (1 − β) is λ.
Definition 2.3 ([20]). A fuzzy random vector is a map

ξ = (ξ1, ξ2, · · · , ξn) : Ω → F n
v such that for any closed sub-

set F ⊂ Rn, Pos{γ|ξ(ω, γ) ∈ F} is a Σ-measurable function
of ω ∈ Ω, i.e., for any t ∈ [0, 1], we have

{ω ∈ Ω|Pos{γ|ξ(ω, γ) ∈ F} ≤ t} ∈ Σ. (5)

(Ω,Σ,Pr) is a probability space and F n
v is a collection

of fuzzy vectors defined on a possibility space (Γ,A,Pos), ξ
is called a fuzzy random variable when n=1.

Definition 2.4 ([20]). Assume that ξ is a fuzzy ran-
dom variable defined on a probability space (Ω,Σ,Pr), the
expected value of ξ is defined as follows

E[ξ] =∫
Ω

[
∞∫
0

Cr{ξ(ω) ≥ r}dr −
0∫
−∞

Cr{ξ(ω) ≤ r}dr]Pr(dω),
(6)

where Pr is the probability measurement and E is the ex-
pected value operator.

Definition 2.5 ([23]). Let ξ be a fuzzy random variable,
and B a Borel subset of R. The mean chance of an event
ξ ∈ B is defined as

Ch{ξ ∈ B} =
1∫

0

Pr{ω ∈ Ω|Cr{ξ(ω) ∈ B} ≥ r}dr, (7)

where Ch is the mean chance measurement.
Definition 2.6 ([12]). Suppose L is a fuzzy random

variable that represents the loss of one investment, then, the
VaR of L with a confidence of (1 − β) (in the sense of mean
chance) is given by:

VaR1−β = sup{λ ∈ R|Ch(L ≥ λ) ≥ β}, (8)

where β ∈ (0, 1), and Ch is the mean chance measurement
in Eq. (7).

Equation (8) tells us that the greatest loss of L under
mean chance (1 − β) is λ.

Based on Definition 2.3, we can obtain the concept of
fuzzy birandom variable easily, detailed as follows:

Definition 2.7 A fuzzy birandom variable is a map ξ =
(ξ1, ξ2) : Ω → F n

v such that for any closed Borel subset
F ⊂ Rn, Pos{γ|ξ(ω, γ) ∈ F} is a Σ-measurable with respect
to ω. As n=1, ξ is called a fuzzy birandom variable.

Then, the expected value, mean chance and Value-at-
Risk of the birandom variable can be obtained easily based
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Table 1 The comparisons of the fuzzy VaR and existing risk measurements.

Methods Name Risk Measurement Function Purpose
Describe the credibility values of

Mean-risk [11] Cr{b − (x1ξ1 + x2ξ2 + · · · + xnξn) ≥ r} ≤ α(r) the bad events,which should lower
than the given tolerance levels

Reflects an average deviation level
Mean-variance [9] V[x1ξ1 + x2ξ2 + · · · + xnξn] ≤ r from the expected value, which

is limited by the given vale
Measures only the

Mean-semivariance [3] SV[x1ξ1 + x2ξ2 + · · · + xnξn] ≤ r lower deviation from
the expected return

Minimize the entropy can reduce
Entropy optimization [2] H[x1ξ1 + x2ξ2 + · · · + xnξn] ≤ r the uncertainty of a portfolio and

make the prediction easily
V[x1ξ1 + x2ξ2 + · · · + xnξn] ≤ α Reflects an average deviation

Mean-variance-skewness [14] level from the expected value
S[x1ξ1 + x2ξ2 + · · · + xnξn] ≥ β with asymmetry fuzzy returns

Directly reflect the loss
Fuzzy Value-at-Risk [17] VaR1−β = sup{λ|Cr(L ≥ λ) ≥ β} of one selection case under

given confidence level

on Definition 2.4, 2.5 and 2.6. We use the following exam-
ple to help readers understand this point.

Example 2.1. LetΩ = (ω1, ω2), Pr(ω1) = P1, Pr(ω2) =
P2 and P1 + P2 = 1. Assume that ξ1,2 is a fuzzy birandom
variable defined on a possibility space (Γ,A,Pos), then,

ξ(ω) =

{
ξ1, i f ω = ω1

ξ2, i f ω = ω2
(9)

where, ξ1 and ξ2 are fuzzy variables.
Now, we calculate the expected value, mean chance

and Value-at-Risk of ξ1,2. Results are listed as follows:

E[ξ1,2] =

P1 ∗ [
∫ ∞

0
Cr{ξ1 ≥ r}dr − ∫ 0

−∞ Cr{ξ1 ≤ r}dr]

+P2 ∗ [
∫ ∞

0
Cr{ξ2 ≥ r}dr − ∫ 0

−∞ Cr{ξ2 ≤ r}dr],

(10)

Ch{ξ1,2 ∈ B} = P1 ∗ {ω1 ∈ Ω|Cr{ξ1(ω1) ∈ B} ≥ r}
+P2 ∗ {ω2 ∈ Ω|Cr{ξ2(ω2) ∈ B} ≥ r}, (11)

VaR1−β = P1 ∗ sup{λ1|Ch(ξ1 ≥ λ1) ≥ β}
+P2 ∗ sup{λ2|Ch(ξ2 ≥ λ2) ≥ β}. (12)

3. Motivations

3.1 The Advantages of Fuzzy VaR

The VaR of an investment is the likelihood of the greatest
loss at a given confidence level [5]. It is defined with re-
spect to a specific portfolio of financial assets with a speci-
fied probability over a specified time horizon. Recently, the
VaR has been introduced to the fuzzy environment to build
a fuzzy portfolio selection model [17].

Some other methods have been used to build fuzzy
portfolio selection models such as mean-variance, mean-
semivariance and mean-entropy. Table 1 lists these risk
measurements along with the fuzzy VaR.

From Table 1, we can find the difference between the

fuzzy VaR and other approaches. Most of the existing mod-
els find an optimal solution by minimizing the variance or
entropy, thus maximizing the stability of a portfolio. These
models do not focus on the risk of exact future loss, which
is sensitive consideration for general investors. However,
the fuzzy VaR can identify how much return the investors
can expect and how much future loss they may suffer in the
worst case scenario.

One example explains the difference clearly. In the
mean entropy optimization model, if the risk level r (entropy
value) is modified from 1.6 to 1.7, then investors can obtain
a selection case with a higher expected return. In this case,
however, it is quite difficult for them to determine which
portfolio to select. Because investors cannot identify how
much higher the future risk becomes as the entropy increases
by 0.1, they cannot balance the higher expected return with
the higher risk; however with the fuzzy VaR, investors can
determine the confidence level and the expected return with
more precision, and any change in these values will be di-
rectly reflected by the greatest possible loss obtained from
the fuzzy VaR. Therefore, from this perspective, the port-
folio selection model based on the fuzzy VaR can provide
more sensitive information for measuring the future risk for
investors and help them make decisions more easily.

Recently, the theory of Value-at-Risk has been applied
to many engineering problems to build the fuzzy optimiza-
tion models, to which the readers may refer [10], [12], [13],
[15], [16].

3.2 Describing the Future Security Returns as Fuzzy Bi-
random Variables

In this study, we first observe the historical prices of each
stock selected, considering the times at which prices rise and
fall in a certain trading period as a technical pattern. We then
calculate the probabilities of the rises and falls, and forecast
the security future returns as fuzzy birandom variables. This
processes can be summarized by the following steps:
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[Step 1]. Observe the historical prices of each candi-
date stock and record the rising and falling times separately
for each stock.

[Step 2]. Calculate the probabilities of the fall (P1) and
rise (P2) for each stock.

[Step 3]. Forecast the future prices as two fuzzy vari-
ables based on the historical data: One is a loss variable (ξ1)
which is the price decreasing interval. Another is a profit
variable (ξ2) which indicates the stock price will increase
within this interval.

[Step 4]. Use the security future return as a fuzzy bi-
random variable, which includes two fuzzy variables ξ1 and
ξ2 with probabilities of P1 and P2.

[Step 5]. Adjust the forecast data using expert opin-
ions from the related fields, if possible. An expert can revise
the fall/rise probabilities or the fuzzy loss/profit variables
according to his attitudes to the social policies, industry per-
formance, company news and other factors which will affect
the future return of the security.

The advantage of this approach is two-folded. First,
compared with existing fuzzy portfolio selection models,
this method uses technical analysis to divide conventional
fuzzy variable into two vectors. This behavior can enhance
the accuracy of forecasting, as each vector represents only
the increment or decrement of the security return. Second,
the proposed method can simplify the complexity of the
fuzzy random optimizations, for both forecasting and solv-
ing.

4. The Fuzzy Birandom Value-at-Risk-Based Portfolio
Selection Model

4.1 Conventional Models with Fuzzy VaR

The VaR has been applied to build the fuzzy portfolio selec-
tion model, in which the future security returns are described
as fuzzy variables [17]. Supposing p

′
i is the estimated clos-

ing prices of the securities i(i = 1, 2, · · · , n) in the future,
pi are the closing prices at present, and di are the estimated
dividends of securities i for an indefinite period of time, then
the return of security i is defined by the fuzzy variable ξi as
ξi = (p

′
i +di− pi)/pi. The mathematical model is introduced

as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E[x1ξ1 + x2ξ2 + · · · + xnξn]
Subject to

VaR1−β = sup{λ|Cr(L ≥ λ) ≥ β} ≤ S
x1 + x2 + · · · + xn = 1,
xi ≥ 0, i = 1, 2, · · · , n

(13)

or, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min VaR1−β = sup{λ|Cr(L ≥ λ) ≥ β}
Subject to

E[x1ξ1 + x2ξ2 + · · · + xnξn] ≥ R
x1 + x2 + · · · + xn = 1,
xi ≥ 0, i = 1, 2, · · · , n

(14)

where S is the largest loss that an investor can accept, R

Fig. 1 Frequently-used fuzzy birandom variables.

is the given level of return, VaR1−β indicates the greatest
loss at (1 − β) confidence level, E[x1ξ1 + x2ξ2 + · · · + xnξn]
is the expected return and L is the loss function as L =
−(x1ξ1 + x2ξ2 + · · · + xnξn). Model (13) is developed for
risk-averters and model (14) is built for risk-lovers.

4.2 The FBVaR-PSM

The security returns in this research are used as fuzzy bi-
random variables, and the proposed model FBVaR-PSM is
obtained as below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E[x1ξ
1,2
1 + x2ξ

1,2
2 + · · · + xnξ

1,2
n ]

Subject to
VaR1−β = sup{λ|Ch(L ≥ λ) ≥ β} ≤ S
x1 + x2 + · · · + xn = 1,
xi ≥ 0, i = 1, 2, · · · , n

(15)

or, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min VaR1−β = sup{λ|Ch(L ≥ λ) ≥ β}
Subject to

E[x1ξ
1,2
1 + x2ξ

1,2
2 + · · · + xnξ

1,2
n ] ≥ R

x1 + x2 + · · · + xn = 1,
xi ≥ 0, i = 1, 2, · · · , n

(16)

Models (15) and (16) are built for risk-averters and
risk-lovers respectively. The future return of each security i
includes two fuzzy variables ξ1i and ξ2i , the probabilities of
which are determined by the rise and fall times of a stock
historically. The fuzzy birandom VaR is calculated using
the mean chance measurement (Ch) instead of the credibil-
ity measurement (Cr).

4.3 Some Properties of FBVaR-PSM

In special situations, when the portfolio returns can be used
to represent the same distributed fuzzy birandom variables,
such as trapezoidal, triangular or Gaussian fuzzy birandom
variables, as listed in Fig. 1, the following theorems enable
us to solve the models easily.

Theorem 1. Supposing the security returns are inde-
pendent Gaussian fuzzy birandom variables with member-
ship function μξ1,2i

(x) = Exp{−[(xi − a1,2
i )/σ1,2

i ]2}, denoted
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as ξ1,2i = FN(a1,2
i , σ

1,2
i ), and a1

i ≤ a2
i . The probability of

each birandom variable is P1,2
i , the investment proportions

of each security i is xi. Then for any portfolio selection prob-
lem, the model (16) is transformed to (17) and (18):

Proof. Equations (19) and (20) calculate the possibility of
ξ1,2i :

Therefore, from Eqs. (1) and (6) we obtain the credibil-
ity and expected value of ξ1,2i = FN(a1,2

i , σ
1,2
i ) with proba-

bilities of P1
i and P2

i , as in Eqs. (21) and (22):
According to Eqs. (8) and (21), the VaR1−β can be com-

puted in Eq. (24):
In fuzzy set theory, Eq. (25) is given for nth indepen-

dent normal distribution fuzzy variables:
Therefore, we obtain the conclusions of Eqs. (26) and

(27).
According to different confidence levels, the FBVaR-

PSM has the forms (17) and (18), respectively.
The proof is completed. �

Theorem 2. Supposing all the portfolios’ returns can
be taken for the independent trapezoidal fuzzy birandom
variables as ξ1,2i = (a1,2

i , b
1,2
i , c

1,2
i , d

1,2
i ), the probability of

each birandom variable is P1,2
i , and denote the investment

proportions of each security i as xi, then for any portfolio
selection, the model (16) results in (28) and (29):

Proof. Considering the portfolio returns are independent,
then we have Eq. (30).

Based on Eq. (10), the expected value of any fuzzy bi-
random variable can be calculated by Eq. (31).

Therefore, we are able to compute the expected value

of
n∑

i=1
xiξ

1,2
i , as in Eq. (32).

Now we compute the VaR1−β. This calculation is simi-
lar as in the proof of theorem 1, and the result is obtained as
follows:

According to Eqs. (11) and (12), the VaR function of
L = −(x1ξ

1,2
1 + x2ξ

1,2
2 + · · ·+ xnξ

1,2
n ) is described in Eq. (33):

Considering different confidence levels, the FBVaR-
PSM has the forms (28) and (29), respectively.

The proof is completed. �

Remark 1: In Theorem 2, when b1,2
i = c1,2

i , these trape-
zoidal independent fuzzy variables change to a triangular
one. Therefore, for any triangular independent fuzzy values
ξi = (a1,2

i , b
1,2
i , c

1,2
i ), the model (16) equals to (34) or (35)

The updated models (17), (18), (28), (29), (34) and
(35) are linear programming problems that can be solved
directly. Similarly, after some considerations, we can also
obtain similar theorems on model (15).

5. Solution

This section provides the solution method FBS-PSO for the
proposed models. In Eq. (12), we discussed the calculation
of the VaR of a single fuzzy birandom variable. However,
our research must address a series of differently distributed

fuzzy birandom variables, such as ξ = (ξ1,21 , ξ
1,2
2 , · · · , ξ1,2n ),

the potential fuzzy loss of which should be considered as
L = −[x1ξ

1,2
1 + x2ξ

1,2
2 + · · ·+ xnξ

1,2
n ], and in which it is impos-

sible to solve such a problem VaR1−β(xi) = sup{λ|Ch(L ≥
λ) ≥ β} by definition. Therefore, we employ a fuzzy biran-
dom simulation to calculate the VaR and combine the cal-
culation with particle swarm optimization algorithm to find
the approximate optimal solution. The proposed method is
called the fuzzy birandom simulation-based particle swarm
optimization algorithm (FBS-PSO).

5.1 The Fuzzy Birandom Simulation

The fuzzy birandom simulation is an extended version of the
fuzzy simulation developed by Liu [24]. This method plays
a pivotal role in solving the difficulty discussed above for
solving VaR when there are differently distributed fuzzy bi-
random varaibles. Employing this technique, the theoretical
calculation of fuzzy birandom VaR can be briefly summa-
rized as follows:

Suppose ξ = (ξ1,21 , ξ
1,2
2 , · · · , ξ1,2n ) is a series of fuzzy

birandom variables with support
n∏

i=1
[aL1,L2

i , aU1,U2
i ], where

aL1,L2
i and aU1,U2

i are the lower and upper supports of ξ1,2i .
ai and bi are the probabilities of fuzzy variables ξ1i and ξ2i .

First, we divide each fuzzy birandom variable into l
parts ζr1

i , ζr2
i which are constructed in Eq. (36):

⎧⎪⎪⎨⎪⎪⎩
ζr1

i = aL1
i +

r1
l (aU1

i − aL1
i )

ζr2
i = aL2

i +
r2
l (aU2

i − aL2
i ),

(36)

where, r1, r2 and l are integers, and 0 ≤ r1 ≤ l, 0 ≤ r2 ≤ l.
Second, we approximate the membership function of

μξ by a sequence of discrete fuzzy vectors (a ∗ ζr1
i + b ∗ ζr2

i ).
Third, the loss variable L = −(x1ξ

1,2
1 + x2ξ

1,2
2 + · · · +

xnξ
1,2
n ) can also be simulated by the fuzzy vectors (a ∗ ζr1

i +

b ∗ ζr2
i ).
Forth, based on the approximate membership func-

tion of L, the mean chance measurements Ch(L ≥ λ) and
Ch(L < λ) can be calculated according to Eq. (7).

Finally, we can obtain an approximate value of fuzzy
birandom VaR using the Eq. (8).

Based on the above procedures, we can say that a larger
value of l results in a more accurate result, but a longer com-
putation time. Therefore, it can be concluded that the value
of l should vary based on the optimization problems being
considered.

5.2 The Improved Particle Swarm Optimization Algo-
rithm

The fuzzy birandom simulation is combined with the par-
ticle swarm optimization algorithm (PSO) to solve the
FBVaR-PSM. The PSO algorithm was initially proposed
by Kennedy and Eberhart [7] in 1995. This algorithm uses
collaboration among a population of simple search agents
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

i=1
xi[(P1

i ∗ a1
i + P2

i ∗ a2
i ) + (P1

i ∗ σ1
i + P2

i ∗ σ2
i )
√

ln(1/2β)]

Subject to
n∑

i=1
xi(P1

i ∗ a1
i + P2

i ∗ a2
i ) ≥ R

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, · · · , n.

(17)

β > 0.5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

i=1
xi{(P1

i ∗ a1
i + P2

i ∗ a2
i ) + (P1

i ∗ σ1
i + P2

i ∗ σ2
i )
√

ln[1/(2 − 2β)]}
Subject to

n∑
i=1

xi(P1
i ∗ a1

i + P2
i ∗ a2

i ) ≥ R

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, · · · , n.

(18)

Pos(xi ≥ r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 r< a1

i

P1
i ∗ Exp{−[(r − a1

i )/σ1
i ]2} + P2

i a1
i ≤ r≤ a2

i

P1
i ∗ Exp{−[(r − a1

i )/σ1
i ]2} + P2

i ∗ Exp{−[(r − a2
i )/σ2

i ]2} r>a2
i

(19)

Pos(xi < r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 r> a2

i

P1
i + P2

i ∗ Exp{−[(r − a2
i )/σ2

i ]2} a1
i ≤ r≤ a2

i

P1
i ∗ Exp{−[(r − a1

i )/σ1
i ]2} + P2

i ∗ Exp{−[(r − a2
i )/σ2

i ]2} r<a1
i

(20)

Cr{ξ1,2i ≥ r} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 − 1

2 (P1
i ∗ Exp{−[(r − a1

i )/σ1
i ]2} + P2

i ∗ Exp{−[(r − a2
i )/σ2

i ]2}) r<a1
i

1
2 (1 + P2

i − P1
i + P1

i ∗ Exp{−[(r − a1
i )/σ1

i ]2} − P2
i ∗ Exp{−[(r − a2

i )/σ2
i ]2}) a1

i ≤r≤ a2
i .

1
2 (P1

i ∗ Exp{−[(r − a1
i )/σ1

i ]2} + P2
i ∗ Exp{−[(r − a2

i )/σ2
i ]2}) r>a2

i .

(21)

E[ξ1,2i ] = P1
i ∗ [
∫ ∞

0
Cr{ξ1i ≥ r}dr − ∫ 0

−∞ Cr{ξ1i ≤ r}dr] + P2 ∗ [
∫ ∞

0
Cr{ξ2i ≥ r}dr − ∫ 0

−∞ Cr{ξ2i ≤ r}dr]. (22)

E[ξ] = P1
i ∗ a1

i + P2
i ∗ a2

i (23)

VaR1−β =

⎧⎪⎪⎨⎪⎪⎩
(P1

i ∗ a1
i + P2

i ∗ a2
i ) + (P1

i ∗ σ1
i + P2

i ∗ σ2
i )
√

ln(1/2β) 0 < β ≤ 0.5

(P1
i ∗ a1

i + P2
i ∗ a2

i ) + (P1
i ∗ σ1

i + P2
i ∗ σ2

i )
√

ln[1/(2 − 2β)] 0.5 < β ≤ 1.
(24)

n∑
i=1

xiFN(a1,2
i , σ

1,2
i ) = FN

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

xi(P
1
i ∗ a1

i + P2
i ∗ a2

i ),
n∑

i=1

xi(P
1
i ∗ σ1

i + P2
i ∗ σ2

i )

⎞⎟⎟⎟⎟⎟⎠ . (25)

E

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

xiFN(a1,2
i , σ

1,2
i )

⎤⎥⎥⎥⎥⎥⎦ =
n∑

i=1

xi(P
1
i ∗ a1

i + P2
i ∗ a2

i ). (26)

VaR1−β
[

n∑
i=1

xiFN(a1,2
i , σ

1,2
i )

]
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
i=1

xi[(P1
i ∗ a1

i + P2
i ∗ a2

i ) + (P1
i ∗ σ1

i + P2
i ∗ σ2

i )
√

ln(1/2β)] 0 < β ≤ 0.5

n∑
i=1

xi{(P1
i ∗ a1

i + P2
i ∗ a2

i ) + (P1
i ∗ σ1

i + P2
i ∗ σ2

i )
√

ln[1/(2 − 2β)] 0.5 < β ≤ 1.
(27)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

i=1
xi[(2β − 1)(P1

i ∗ a1
i + P2

i ∗ a2
i ) − 2β(P1

i ∗ b1
i + P2

i ∗ b2
i )]

Subject to
n∑

i=1
xi

(P1
i ∗ a1

i + P2
i ∗ a2

i ) + (P1
i ∗ b1

i + P2
i ∗ b2

i ) + (P1
i ∗ c1

i + P2
i ∗ c2

i ) + (P1
i ∗ d1

i + P2
i ∗ d2

i )

4
≥ R

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, · · · , n.

(28)

β > 0.5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

i=1
xi[(2β − 2)(P1

i ∗ c1
i + P2

i ∗ c2
i ) − (2β − 1)(P1

i ∗ d1
i + P2

i ∗ d2
i )]

Subject to
n∑

i=1
xi

(P1
i ∗ a1

i + P2
i ∗ a2

i ) + (P1
i ∗ b1

i + P2
i ∗ b2

i ) + (P1
i ∗ c1

i + P2
i ∗ c2

i ) + (P1
i ∗ d1

i + P2
i ∗ d2

i )

4
≥ R

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, · · · , n.

(29)

n∑
i=1

xiξ
1,2
i =

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

xi(P
1
i ∗ a1

i + P2
i ∗ a2

i ),
n∑

i=1

xi(P
1
i ∗ b1

i + P2
i ∗ b2

i ),
n∑

i=1

xi(P
1
i ∗ c1

i + P2
i ∗ c2

i ),
n∑

i=1

xi(P
1
i ∗ d1

i + P2
i ∗ d2

i )

⎞⎟⎟⎟⎟⎟⎠ (30)

E[ξ1,2i ] =
(P1

i ∗ a1
i + P2

i ∗ a2
i ) + (P1

i ∗ b1
i + P2

i ∗ b2
i ) + (P1

i ∗ c1
i + P2

i ∗ c2
i ) + (P1

i ∗ d1
i + P2

i ∗ d2
i )

4
. (31)

E

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

xiξ
1,2
i

⎤⎥⎥⎥⎥⎥⎦ =
n∑

i=1

xi
(P1

i ∗ a1
i + P2

i ∗ a2
i ) + (P1

i ∗ b1
i + P2

i ∗ b2
i ) + (P1

i ∗ c1
i + P2

i ∗ c2
i ) + (P1

i ∗ d1
i + P2

i ∗ d2
i )

4
. (32)

VaR1−β =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
i=1

xi[(2β − 1)(P1
i ∗ a1

i + P2
i ∗ a2

i ) − 2β(P1
i ∗ b1

i + P2
i ∗ b2

i )] 0 < β ≤ 0.5

n∑
i=1

xi[(2β − 2)(P1
i ∗ c1

i + P2
i ∗ c2

i ) − (2β − 1)(P1
i ∗ d1

i + P2
i ∗ d2

i )] 0.5 < β ≤ 1.
(33)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

i=1
xi[(2β − 1)(P1

i ∗ a1
i + P2

i ∗ a2
i ) − 2β(P1

i ∗ a1
i + P2

i ∗ a2
i )]

Subject to
n∑

i=1
xi

(P1
i ∗ a1

i + P2
i ∗ a2

i ) + 2(P1
i ∗ b1

i + P2
i ∗ b2

i ) + (P1
i ∗ c1

i + P2
i ∗ c2

i )

4
≥ R

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, · · · , n.

(34)

β > 0.5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
n∑

i=1
xi[(2β − 2)(P1

i ∗ b1
i + P2

i ∗ b2
i ) − (2β − 1)(P1

i ∗ c1
i + P2

i ∗ c2
i )]

Subject to
n∑

i=1
xi

(P1
i ∗ a1

i + P2
i ∗ a2

i ) + 2(P1
i ∗ b1

i + P2
i ∗ b2

i ) + (P1
i ∗ c1

i + P2
i ∗ c2

i )

4
≥ R

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, · · · , n.

(35)
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to find the optimal solution in a possible space. If the posi-
tion of a given particle can produce a better result, the other
particles will approach the given particle.

The PSO algorithm can find the optimal solution in
fewer iterations than other algorithms, but the PSO algo-
rithm suffers from the local convergence problem. There-
fore, in our previous study [17], we developed the concepts
of escape speed (ES) and particle restart position (PRP)
and used them to improve the original PSO algorithm. In
this study, we maintain these improvements to mitigate the
local convergence problem. You may refer to [17] for de-
tailed information.

Suppose that there is a k-security portfolio selection
problem and that the swarm of PSO has n particles with i
and j denoting the ith particle and the jth security. Then,
the FBS-PSO algorithm of this research can be summarized
as follows:

[Step 1]. Initialize the investment proportions: The ini-
tial values of the investment proportions of each security are
set at random in this system. We generate a group of random
values (a1, · · · , ae, · · · , ak) that comprise a total value called
the ‘sum’, and divide each of the random values by the sum.
As a result, we obtain a set of values (x1, · · · , xe, · · · , xk)
that are computed from xe = ae/sum. Clearly, xe is always
within (0,1) and the sum is identically equal to 1.

[Step 2]. Check the profit and risk levels: The xe val-
ues obtained in Step 1 may not satisfy the profit or risk con-
straints of models (15) and (16). For example in model (16),
the expected value of security returns E[x1ξ

1,2
1 + · · ·+ xeξ

1,2
e +

· · · + xnξ
1,2
n ] must not be less than R; if the result is smaller

than our goal, we repeat the above processes until the coef-
ficients satisfy all of the conditions. These accepted coef-
ficients are then taken as the initial particles position. The
position for particle i is recorded in the array particle[i][j].

[Step 3]. Initialize the personal best (pbest[i][j]) and
the global best (gbest[t][j]), where t denotes the current it-
eration of the swarm. After initializing each particle, set
pbest[i][j]=particle[i][j]. Then, calculate the VaR of each
particle using the fuzzy birandom simulation and save these
values in the array VaR[0][i]. Suppose particle ‘b’ mini-
mizes the VaR; then, set gbest[0][j]=particle[b][j]. After
generating the particles’ velocities v[i][j], the initialization
process is complete.

[Step 4]. Particle iterations: The particle positions are
updated using the following equation,

v[i][ j] = w ∗ v[i][ j]
+c1 ∗ random(0, 1) ∗ (pbest[i][ j] − particle[i][ j])
+c2 ∗ random(0, 1) ∗ (gbest[t][ j] − particle[i][ j]),

particle[i][ j] = particle[i][ j] + v[i][ j]. (37)

In Eq. (37), c1 and c2 are learning rates, which are nor-
mally set to 2, and w is the speed weight.

[Step 5]. Check the feasibility of the new positions.
The initialization task in Step 1 should be maintained here to
check the feasibility: Take the sum of particle[i][j] as sum =

k∑
j=1

particle[i][ j], particle[i][ j] = particle[i][ j]/sum; then

check whether the expected value is acceptable. If so, com-
pute the VaR values and compare them (the smaller the bet-
ter). Apply a transverse comparison to update pbest[i][j]
and use the total comparison to modify gbest[t][j]. Again, t
denotes the iteration.

[Step 6]. Iterations: Run the particles for T iterations,
where the final optimal solution is gbest[T][j], which indi-
cates how much should be invested for each security. Over
the course of these iterations, we use the improvements in a
previous study [17] to mitigate the local convergence prob-
lem.

6. Numerical Examples

We provide the following numerical example to illustrate the
proposed model and the solution algorithm. All of the ex-
periments were implemented with C code on a Dell E8500
3.16 GHz-CPU personal computer. We also discuss the re-
sults of the FBVaR-PSM with some previous methods.

6.1 The Performance of the FBVaR-PSM and FBS-PSO

Suppose that there are 20 securities whose possible returns
are measured by fuzzy birandom variables. We employ dif-
ferent distributed fuzzy variables to describe these securi-
ties, since their returns are affected by different factors and
could be in different distributions. In this paper, we assume
that the first 10 security returns are triangular distribution
as (a, b, c) while the other 10 are Gaussian distribution as
FN(μ, σ2). The rise and fall probabilities of each security
are obtained based on historical data listed in Table 2.

Example 6.1 For risk-lovers [model (16)], supposing
the expected value of the investment should not be less than
0.35 and β = 0.1. Consequently, the following special case
is formed:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min VaR0.9 = sup{λ|Ch(L ≥ λ) ≥ 0.1}
Subject to

E[x1ξ
1,2
1 + x2ξ

1,2
2 + · · · + x20ξ

1,2
20 ] ≥ 0.35

x1 + x2 + · · · + x20 = 1
xi ≥ 0, i = 1, 2, · · · , 20.

Respectively, L = −(x1ξ
1,2
1 + x2ξ

1,2
2 + · · · + x20ξ

1,2
20 ) and

the confidence level is 0.9.
Then, we use the FBS-PSO algorithm to find the

optimal solution. The parameters are set as follows:
particle No. = 10, w=0.5, c1=2, c2=2. After 300 itera-
tions, the greatest loss under confidence level 0.9 is 0.068
while the expected return is 0.369, and the invested money
is allocated as in Fig. 2.

Example 6.2 For risk-averters [model (15)], supposing
the VaR is not larger than 0.35 and confidence level is still
taken as 0.9. We can obtain the following specific case:
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Table 2 Security return.

Security No. Probability Return Security No. Probability Return
1 P1

1: 0.56 (-0.7, -0.3, 0) 11 P1
11: 0.57 FN(-0.3, 0.5)

P2
1: 0.44 (0, 0.6, 1.8) P2

11: 0.43 FN(0.8, 0.4)
2 P1

2: 0.38 (-0.8, -0.4, 0) 12 P1
12: 0.46 FN(-0.3, 0.6)

P2
2: 0.62 (0, 0.4, 2.0) P2

12: 0.54 FN(0.9, 0.5)
3 P1

3: 0.50 (-1.1, -0.6, 0) 13 P1
13: 0.39 FN(-0.4, 0.3)

P2
3: 0.50 (0, 0.8, 2.8) P2

13: 0.61 FN(0.9, 0.4)
4 P1

4: 0.33 (-1.6, -0.8, 0) 14 P1
14: 0.45 FN(-0.3, 0.4)

P2
4: 0.67 (0, 0.9, 3.2) P2

14: 0.55 FN(0.8, 0.5)
5 P1

5: 0.28 (-1.4, -0.8, 0) 15 P1
15:0.48 FN(-0.2, 0.7)

P2
5: 0.72 (0, 0.8, 3.9) P2

15: 0.52 FN(1.0, 0.8)
6 P1

6: 0.55 (-0.9, -0.6, 0) 16 P1
16: 0.49 FN(-0.5, 0.3)

P2
6: 0.45 (0, 0.8, 2.2) P2

16: 0.51 FN(0.3, 0.6)
7 P1

7: 0.45 (-1.2, -0.7, 0) 17 P1
17: 0.38 FN(-0.3, 0.7)

P2
7: 0.55 (0, 0.9, 1.9) P2

17: 0.62 FN(0.8, 0.7)
8 P1

8: 0.49 (-1.4, -0.6, 0) 18 P1
18: 0.50 FN(-0.4, 0.5)

P2
8: 0.51 (0, 1.1, 3.2) P2

18: 0.50 FN(0.7, 0.4)
9 P1

9: 0.29 (-1.5, -0.4, 0) 19 P1
19: 0.43 FN(-0.3, 0.6)

P2
9: 0.71 (0, 0.9, 2.8) P2

19: 0.57 FN(0.8, 0.6)
10 P1

10: 0.44 (-1.0, -0.3, 0) 20 P1
20: 0.46 FN(-0.4, 0.6)

P2
10: 0.56 (0, 0.8, 2.5) P2

20: 0.54 FN(0.8, 0.7)

Fig. 2 Optimal solution of the risk-lovers model.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E[x1ξ
1,2
1 + x2ξ

1,2
2 + · · · + x20ξ

1,2
20 ]

Subject to
VaR0.9 = sup{λ|Ch(L ≥ λ) ≥ 0.1} ≤ 0.35
x1 + x2 + · · · + x20 = 1
xi ≥ 0, i = 1, 2, · · · , 20.

Then, after 300 iterations, the largest expect return un-
der confidence level 0.9 is 0.732 while the largest investment
loss is 0.272, and invest money should be allocated as Fig. 3
shows.

6.2 Discussion on the Optimal Results of the FBVaR-PSM

6.2.1 Experimental Results Analysis

Based on Example 6.1, we first analyze the relationship be-
tween the investment profit and the investment risk. Figure 4
shows the sensitivity of the fuzzy birandom VaR to different
expected values.

Fig. 3 Optimal solution of risk-averters model.

When we increase the expected value, the VaR be-
comes larger. This is reasonable: higher returns are always
accompanied by higher risk. If we use a high expected level,
then the final optimal solution for a portfolio must focus on
some securities with higher returns, which always include
higher risk. For example, in Fig. 4, the potential risk of a
profit level of 0.45 is much higher than the risk for lower
profit levels. Therefore, the investor should set an appropri-
ate expected value that can be satisfied without causing too
much potential loss.

6.2.2 Discussions of Previous Portfolio Selection Methods

Compared with previous research, this study differs in two
ways: First, the selection results here are obtained using a
technical analysis based on fuzzy birandom variables, while
the fuzzy variables are generally used in conventional meth-
ods. Second, the fuzzy birandom VaR is applied to measure
the exact potential loss as the investment risk, while most of
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Fig. 4 The sensitivity between VaR and expected value.

the previous investment risk measurements aim to enhance
portfolio stability.

From a forecasting perspective, we can see that the se-
curity returns of Table 2 are provided based on the historical
rising and falling probabilities, and the possibility distribu-
tions of the past transaction prices. This feature helps in-
vestors distinguish the advanced securities (the probability
of a rising price is higher than that of a falling price) among
a series of candidates and makes the forecasting more ap-
proximate to real values than using only the fuzzy variables.

From the selection results perspective, the fuzzy biran-
dom VaR is a more sensitive analysis for general investors
than other measurements. It is known that investors are
well-informed of the purposes of the existing risk measure-
ments, such as mean-variance, mean-semivariance or en-
tropy; minimizing these values can improve selection sta-
bility. However, general investors cannot identify the po-
tential risk included in these numerical values. As we have
explained in Sect. III A, these approaches are not sensitive to
measuring future risk, as a result,investors cannot clearly de-
termine the parameters of these approaches and thus cannot
evaluate the results of these models. However,in our study,
investors can determine the confidence levels and the ex-
pected returns as they see fit, and any change in these values
will be reflected by the numerical values of the fuzzy biran-
dom VaR. Therefore, the proposed model FBVaR-PSM can
provide investors with more effective information and help
them make decisions easier than non-VaR approaches.

7. Conclusion

In this paper, a technical analysis based on fuzzy birandom
variables was employed to build a new portfolio selection
model, called FBVaR-PSM. The quantitative risk measure-
ment VaR was extended to a fuzzy birandom case to mea-
sure the exact loss of a portfolio. Compared to most of the
existing fuzzy portfolio selection models, the FBVaR-PSM
is superior to conventional approaches for both forecasting
and risk measurement. To solve the model, we provided sev-
eral theorems and a fuzzy birandom simulation-based PSO

algorithm, called the FBS-PSO. The improvement of the
PSO algorithm proposed in our previous study was main-
tained here to mitigate the local convergence problem. The
FBVaR-PSM and FBS-PSO were applied to solve two nu-
merical examples based on different risk attitudes. Finally,
we analyzed the selection results and discussed this research
with reference to previous studies. In future work, we will
extend the FBVaR-PSM to the multi-objective problem, and
we will apply the model and solution method to some real-
world applications. In addition, the fuzzy birandom method
discussed in this paper is applicable to other investment
problems.
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