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Multiple Kernel Learning for Quadratically Constrained MAP
Classification

Yoshikazu WASHIZAWA†,††a), Member, Tatsuya YOKOTA††,†††, Student Member,
and Yukihiko YAMASHITA†††, Member

SUMMARY Most of the recent classification methods require tuning of
the hyper-parameters, such as the kernel function parameter and the regu-
larization parameter. Cross-validation or the leave-one-out method is often
used for the tuning, however their computational costs are much higher than
that of obtaining a classifier. Quadratically constrained maximum a poste-
riori (QCMAP) classifiers, which are based on the Bayes classification rule,
do not have the regularization parameter, and exhibit higher classification
accuracy than support vector machine (SVM). In this paper, we propose a
multiple kernel learning (MKL) for QCMAP to tune the kernel parameter
automatically and improve the classification performance. By introduc-
ing MKL, QCMAP has no parameter to be tuned. Experiments show that
the proposed classifier has comparable or higher classification performance
than conventional MKL classifiers.
key words: quadratically constrained MAP, multiple kernel learning, sup-
port vector machine, Bayes classification rule

1. Introduction

Multiple kernel learning (MKL) methods for classification
problems have been researched to tune the kernel parameter
automatically as well as to obtain an optimal kernel function
from a set of kernel functions [1]. Most of them use a linear
combination of positive definite kernels k1, . . . , kL, and the
discriminant function is given by

f (x) =
M∑

i=1

αikη(zi,x) + β =
M∑

i=1

αi

L∑
l=1

ξlkl(zi,x) + β,

(1)

where z1, . . . ,zM are basis samples (so-called support
vectors in SVM), αi and β are the weight parameters,
kη(x,x′) =

∑L
l=1 ξlkl(x,x′) is the kernel function, and ξl ≥ 0

is a kernel weight for the lth kernel. Learning αi and β has
been researched as kernel machines, and MKL learns ξl si-
multaneously. The kernel alignment function A(K,yy�) =
〈K,yy�〉F/(M‖K‖F) and/or the structural risk minimiza-
tion (i.e., maximum margin criterion with regularization) is
used as the criteria of MKL [1], where y = {−1,+1}M is
the training label vector, K is the kernel Gram matrix, and
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〈·, ·〉F and ‖ · ‖F are the Schmidt inner product and the Frobe-
nius norm respectively. By introducing kernel weight learn-
ing, MKL obtains optimal ξl automatically, however, we still
have to tune the regularization parameter.

Quadratically constrained MAP (QCMAP) classifica-
tion, which has no regularization parameter, was devel-
oped [2]. QCMAP is based on the Bayes classification rule
and has reported higher classification accuracies than sup-
port vector machine (SVM). In QCMAP classifier, we only
have to tune the kernel function for each classification prob-
lem. We explain QCMAP in Sect. 2 in detail.

In this paper, we therefore propose MKL for QCMAP
(MKQCMAP) classifier to realize a hyper-parameter free
classifier and improve classification performance. Unlike
SVM, the optimization criterion of QCMAP is not defined
in the feature space induced by the kernel function, but in the
weight parameter space. Thus, the same optimization crite-
rion can be used for both the weight parameter (αi and β)
and the kernel weight parameter ξl. We introduce two MKL
methods for QCMAP in accordance with the optimization
criterion.

If we directly apply the MKL methods to QCMAP,
kernel functions that reduce the empirical error tend to be
chosen, and this results in the over-fitting problem since
QCMAP uses the empirical error minimization with no reg-
ularization. For example, if we use Gaussian kernel func-
tions kl(x,x′) = exp(−γl‖x−x′‖2), only the largest γl (cor-
responds to the smallest variance) is chosen. In order to
avoid this problem, we introduce the cross-learning method.

We compared two proposals, MKGQCM1 and
MKGQCM2, with six conventional classifiers in Sect. 4.
The proposed methods exhibit comparable or higher clas-
sification performance than the conventional methods.

2. Quadratically constrained MAP classification

Let y ∈ {−1,+1} be the category for binary classification
from a pattern x ∈ Rd. In the Bayesian classification rule,
x is classified in accordance with the maximum a posteriori
(MAP) criterion,

ŷ = argmax
y∈{−1,+1}

P(y|x) = argmax
y∈{−1,+1}

P(y)p(x|y), (2)

where ŷ is the estimated label. QCMAP introduces the
equivalent optimization problem for a discriminant function
W(x),
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Fig. 1 Example of QCMAP.

max
∑

y∈{−1,+1}

∫
F

P(x, y) min(yW(x), 1)dx

subject to
∫

F
Q(x)|W(x)|2dx ≤ 1,

(3)

where F is the data domain, Q(x) is an arbitrary weight
function that satisfies,

∫
F Q(x)dx = 1 and Q(x) > 0 for

all x ∈ F . Even if |W(x)| is grater than 1 at fixed x,
the objective function never increases compared to the case
|W(x)| = 1. Therefore, for arbitrary Q(x), one of the the
solutions is

W(x) =

{
1, if P(+1|x) > P(−1|x)
−1, if P(+1|x) < P(−1|x),

(4)

that is W(x) = ŷ. An example for one dimensional case is
shown in Fig. 1. The decision boundary is the intersection
of two PDFs.

The model of the decision function W(x) is given by,

W(x) =
M∑

i=1

αik(zi,x) + β = 〈w,φ(x)〉, (5)

where {zi}Mi=1 is the basis vectors, k(·, ·) is the kernel func-
tion, w = [α1, . . . , αM , β]�, φ(x) = [k(z1,x), . . . , k(zM ,x),
1]�. Usually all training vectors are used for the basis vec-
tors. However we discriminate them. This is equivalent to
the case L = 1 in Eq. (1). We replace the expectation for
x and y in the objective function (3) to the empirical aver-
age for the training samples x1, . . . ,xN . The optimization
problem is given as,

max
N∑

i=1

min(yn〈w,φ(xi)〉, 1)

subject to w�Hw ≤ 1,

(6)

where H is an (N + 1) × (N + 1) matrix whose i, j element
is
∫
F Q(x)φi(x)φ j(x)dx. φi(x) denotes the ith element of

φ(x). Since min(x, 1) = −max(1 − x, 0) + 1, the objective
function equivalent to minimization of the sum of the hinge
loss,

f (w)=
N∑

i=1

h(yn〈w,φ(xi)〉), h(x)=max(1−x, 0). (7)

Yokota and Yamashita used the relaxed hinge loss func-
tion ht(x) = 1

t log(1 + exp(t(1 − x))), with t = 2 and the
primal-dual interior point (PDIP) method to solve the prob-
lem (6) [3]. The optimization algorithm is shown in Al-
gorithm 1. As for the weight function Q(x), three weight
functions are introduced in [2]. In this paper, we focus on

Algorithm 1 PDIP algorithm for optimization problem (6)
Require: training samples {xi, yi}Ni=1, kernel function k, and weight func-

tion Q(x)
Ensure: optimal weight vectorw for the problem (6)
1: Obtain H, (H)i, j =

∫
F Q(x)φi(x)φ j(x)dx, Set initial valuesw = 1,

z = 1.
2: Let Lagrangian; L = f (w) − z(1 −w�Hw) and its gradient ∇w ,zL.
3: repeat
4: Obtain updating directions:

Δw =(∇w f (w) + 2zH +
4z
c
Hww�H)−1(∇w f (w) + 2azHw)

Δz =z − az + z/c2w�HΔw,

where a = min(
√‖∇w ,zL‖/(M + 1), 0.5), c = 1 −w�Hw

5: Determine updating factor α, (w, z)← (w, z)+α(Δw,Δz), by using
the back tracking search or line search.

6: until ‖∇w ,zL‖ converges

the Gaussian weight function because the other weight func-
tions have hyper-parameters. The mean vector and covari-
ance matrix of the Gaussian function are set to be the mean
and the covariance for all training samples, respectively.

The optimization problem (6) is naturally introduced
from the Bayesian classification rule. In [2], the problem (3)
is used to obtain optimal w. In this paper, we use the same
optimization problem to solve both w and ξl.

3. Multiple Kernel Learning for QCMAP

We propose two MKL methods for QCMAP, they are named
MKGQCM1 and MKGQCM2 (Multiple kernel Gaussian
quadratically constrained MAP).

3.1 Extended Basis

MKGQCM1 simply extends the basis function,

W(x) =
L∑

l=1

M∑
i=1

αi,lkl(zi,x) + β = 〈w,φ(x)〉 (8)

w = [α1,1, . . . , αM,1, α1,2, . . . , αM,2, . . . , αM,L, β]
�

φ(x) = [k1(z1,x), . . . , k1(zM ,x),

k2(z1,x), . . . , k2(zM ,x), . . . , kL(zM ,x), 1]�.

In this case, the decision function does not have the form
Eq. (1). When we use the boosting for several kernel ma-
chines such as LPboost [4], the decision function has the
same form as Eq. (8). When we use the Gaussian weight
function Q(x) = N(x|μ,Σ) and Gaussian kernel functions,
H is given by

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1,1 . . . H1,L u1
...

. . .
...

...
HL,1 . . . HL,L uL

u�1 . . . u�L 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(LM+1)×(LM+1), (9)

where the (i, j) element of the sub-matrixHl,m ∈ RM×M and
the ith element of the vector ul ∈ RM are respectively given
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by

(Hl,m)i, j =

∫
F
N(x|μ,Σ)kl(zi,x)km(z j,x)dx (10)

(ul)i =

∫
F
N(x|μ,Σ)kl(zi,x)dx, (11)

where (·)i, j and (·)i are the (i, j) element of a matrix and the
ith element of a vector respectively. Since the multiplication
of Gaussian functions is also a Gaussian function, these val-
ues can be analytically calculated by the Gaussian integral
formula.

The problem can be solved by the same algorithm as
Algorithm 1. The number of parameters is LM + 1 that is
much larger than that of the original QCMAP. When L or M
is large, its computational complexity is also high.

3.2 Alternating Optimization

MKGQCM2 alternately optimizes w and ξ = [ξ1, . . . , ξL]�
in Eq. (1). For fixed ξ, the optimization problem for
α1, . . . , αM and β has the same form as the problem (6),
where φ(x) = [kη(z1,x), . . . , kη(zM ,x)]�. This can be
solved by the same PDIP algorithm 1. When we use the
Gaussian weight function Q(x) = N(μ,Σ), and Gaussian
kernel functions, the (i, j)-element ofH is given as

(H)i, j=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑L
l=1
∑L

m=1 ξlξm(Hl,m)i, j (i, j=1, . . . ,M)∑L
l=1 ξl(ul) j (i=M+1, j � i)∑L
l=1 ξl(ul)i ( j=M+1, i � j)

1 (i= j=M+1)

.

For fixed w, optimization problem for ξ is given as

minξ f (ξ)=
∑N

i=1 h
(
yiwM+1 + yi〈ξ,ψn〉

)
subject to f1(ξ)= 〈ξ, H̃ξ〉 + 2〈ξ, h̃〉 + wM+1 − 1 ≤ 0

fl+1(ξ)=−ξl ≤ 0, l = 1, . . . , L,

(12)

where

(ψn)l=

M∑
m=1

wmkl(zm,xn), (H̃)l,m=

M∑
i=1

M∑
j=1

wiw j(Hl,m)i, j

(h̃)l=wM+1

M∑
i=1

wi(ul)i.

The objective function and the first constraint are exactly
equivalent to the problem (6). This problem is also convex,
and can be solved by PDIP algorithm. The algorithm proce-
dure is shown in Algorithm 2.

This alternating optimization converges to a local min-
imum of the problem (6). w and ξ are initialized as wi = 1
for i = 1, . . . ,M + 1 and ξl = 1/L for l = 1, . . . , L. We first
optimizew with fixed ξ, and then alternately optimize ξ and
w until the value of the objective function converges.

Algorithm 2 PDIP algorithm for optimizing ξ
Require: training samples {xi, yi}Ni=1, weight function Q(x), weightw
Ensure: optimal kernel weight ξ for the problem (12)
1: Obtain H̃, h̃,ψ1, . . . ,ψN

2: Set initial value for ξl = 1/L, l = 1, . . . , L, Lagrange multiplier λl = 1,
l = 1, . . . , L + 1, parameter μ is commonly from 10 to 20 [3].

3: Let f(ξ) = [ f1(ξ), . . . , fL+1(ξ)]�, λ = [λ1, . . . , λL+1]�, Df (ξ) =
[∇ f1(ξ) · · · ∇ fL+1(ξ)]� = [2(H̃ξ + h̃)| − IL]�.

4: repeat
5: Obtain τ = −μ(L + 1)/ξ�λ
6: Obtain updating directions (Δξ,Δλ) by solving the Newton-

Raphson linear equation;[∇2 f (ξ) +
∑L+1

i=1 ∇2 fi(ξ) Df (ξ)�
−diag(ξ)Df (ξ) −diag(f(ξ))

] [
Δξ
Δλ

]

=

[ ∇ f (ξ) +Df (ξ)�λ
−diag(λ)f(ξ) − 1

τ1L+1

]

7: Determine updating factor s, (ξ,λ)← (ξ,λ) + s(Δξ,Δλ), by using
the back tracking search or line search.

8: until ‖∇ξ,λ ( f (ξ) +
∑L+1

i=1 λi fi(ξ))‖ converges.

3.3 Cross Learning Method

If all training samples x1, . . . ,xN are used for the basis, the
learning step for ξ tends to select a complex decision bound-
ary because the empirical hinge loss is used for the objective
function (7). In the case of Gaussian kernel, parameters cor-
responding to lager γ (i.e. smaller variance) tend to have
larger values. For instance, when γ → ∞, elements of H
become zero, and k(x,z) = exp(−γ‖x − z‖2) has value one
only if x = z, otherwise zero. In this case, αi = 2yi, β = −1
is one of the solutions that gives f (w) = 0. This causes an
over-fitting problem.

In order to avoid this problem, we introduce the cross-
learning method that uses different sets for the basis vectors
{zi}Mi=1 and for the evaluation of the hinge loss. In particular,
we split given N training samples to K subsets. Then for
each subset, we obtain the classifier parameters (wk, ξk) for
k = 1, . . . ,K, where vectors in the subset are used for the
basis {zi}Mi=1, and all training vectors are used to evaluate the
hinge loss. Finally, we calculate the average of output values
of K classifiers for query vectors.

4. Experiment

We used 13 classification benchmark datasets used in [2].
‘image’ and ‘splice’ datasets have 20 realizations (train-
ing and test sets), and the others have 100 realizations.
We compared the proposed methods (MKGQCM1 and
MKGQCM2) with GQCM [2], SVM, Semi-Infinite Linear
Programming (SILP) [5], LpMKL (p = 2) [6], LPboost [4],
and the linear discriminant analysis (LDA)†. LDA is a clas-

†We used the following software; SVM, and LPboost: Lib-
SVM [7] (http://www.csie.ntu.edu.tw/˜cjlin/libsvm/);
SILP and LpMKL: SHOGUN (http://shogun-toolbox.org/);
LPboost: GLPK (http://www.gnu.org/software/glpk/) for
the linear programming;
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Table 1 Mean classification error rate [%] and standard deviation; the lowest error rates are under-
lined. the second row is the number of hyper-parameters. the last row is the averaged rank.

Data MKGQCM1 MKGQCM2 GQCM SVM SILP LpMKL LPBoost LDA
No. hyper-param. 0 0 1 2 1 1 1 0

banana 11.18± 0.48 10.94± 0.45 10.80±0.66 10.79±0.77 11.31±4.84 10.86±0.57 14.41±1.53 46.61±4.80
breast-cancer 28.82± 5.00 27.75± 4.55 26.70±5.11 26.88±5.08 28.44±4.40 27.13±4.57 29.57±4.62 33.73±4.69

diabetis 25.20± 2.08 23.67± 1.99 23.71±1.84 24.09±2.66 24.52±2.19 23.83±1.69 32.08±2.84 24.98±1.95
flare-solar 36.42± 1.80 35.08± 1.76 33.66±1.94 33.13±2.49 35.70±2.48 35.83±1.76 34.66±2.61 34.65±1.72

german 24.57± 2.42 23.59± 2.13 24.30±2.16 24.30±2.29 26.22±2.48 23.47±2.23 28.04±2.39 28.74±2.56
heart 17.65± 3.27 15.79± 3.57 16.31±3.29 18.88±8.11 17.34±4.08 16.69±3.37 24.32±3.96 16.52±2.99
image 2.96± 0.52 4.89± 0.82 2.97±0.68 3.42±0.81 3.11±0.79 3.06±0.63 2.90±0.70 17.68±0.62

ringnorm 1.55± 0.13 1.71± 0.18 1.77±0.48 1.61±0.19 1.57±0.13 1.57±0.14 3.24±5.81 24.62±0.65
splice 12.76± 0.72 14.95± 0.78 10.90±0.71 11.02±0.65 11.41±0.66 12.58±0.74 12.08±1.39 16.24±0.58

thyroid 4.65± 2.13 4.45± 2.20 4.36±2.27 5.16±2.36 5.24±2.20 4.20±2.31 5.13±4.17 13.37±3.35
titanic 22.52± 1.24 22.67± 0.94 22.33±0.75 22.70±1.57 22.85±1.68 22.69±1.46 22.84±1.79 23.26±1.48

twonorm 2.68± 0.20 2.39± 0.14 2.55±0.30 2.87±1.60 2.82±3.39 2.42±0.15 5.24±7.53 2.61±0.17
waveform 10.11± 0.50 10.54± 0.89 10.54±1.03 10.27±0.65 10.18±0.61 9.74±0.47 12.11±0.96 17.39±0.63

No. underlined 1 3 3 2 0 3 1 0
Avr. rank 4.54 3.69 2.69 4.00 5.08 3.15 6.08 6.77

Fig. 2 Training time.

sifier with no hyper-parameters. Gaussian kernel func-
tions with log10(γ) = −6,−5.75,−5.50, . . . , 1 were used.
For SVM, SILP, and LpMKL, the regularization parameter
was chosen from log10(C) = −3,−2.75, . . . , 3 by the cross-
validation. For LPboost, SVMs using all combination of γ
and C were used for the weak learner. For GQCM and SVM,
one kernel parameter was chosen by the cross-validation
for each realization in the training set. The Gaussian
weight function was used for MKGQCM1, MKGQCM2,
and GQCM. For the cross-learning method, K = 10 was
used. Table 1 shows the classification errors and standard
deviations. Among 13 datasets, MKGQCM2 exhibited the
best classification performance in three datasets that is the
same as GQCM and LpMKL. For averaged rank, GQCM
was the best score (2.69), and the proposed MKGQCM2
was the third best (3.69).

Figure 2 shows the relation between the number of
training samples and training time to obtain a classifier. Av-
eraged training times for each dataset and regression lines
are shown. MKGQCM2 was faster than MKGQCM1, and
its gradient is smaller than the other methods because of the

cross-learning. For instance, although SILP is about ten
times faster than MKGQCM2 when N = 1300, SILP re-
quires to obtain (10 CVs) × (25 values for hyper-parameter)
classifiers to obtain the optimal hyper-parameter before ob-
taining the final classifier. Therefore, the total computa-
tional cost of SILP is higher than that of MKGQCM2. In
SVM, since the number of hyper-parameters is two (for ker-
nel function and regularization), the number of combina-
tions becomes much larger.

5. Conclusion

We have proposed multiple kernel learning for the quadrat-
ically constrained MAP classification. We introduced
two learning methods, MKGQCM1 and MKGQCM2.
MKGQCM1 simply extends the basis function, and
MKGQCM2 alternately updates the weight vector w and
kernel weight parameter ξ. Our experiment showed that
MKGQCM2 was faster than MKGQCM1 while offering
better classification performance.

By introducing the multiple kernel learning, our clas-
sifiers do not require hyper-parameters to be tuned for each
dataset. This property is useful and reduces the computa-
tional complexity due to the hyper-parameter selection, such
as the cross-validation and the leave-one-out. Furthermore,
MKGQCM2 exhibited comparable or better performance
than SVM and recent MKL methods.
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