
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014
1349

LETTER

Fast Density-Based Clustering Using Graphics Processing Units∗

Woong-Kee LOH†, Yang-Sae MOON††a), Members, and Young-Ho PARK†††b), Nonmember

SUMMARY Due to the recent technical advances, GPUs are used for
general applications as well as screen display. Many research results have
been proposed to the performance of previous CPU-based algorithms by a
few hundred times using the GPUs. In this paper, we propose a density-
based clustering algorithm called GSCAN, which reduces the number of
unnecessary distance computations using a grid structure. As a result of our
experiments, GSCAN outperformed CUDA-DClust [2] and DBSCAN [3]
by up to 13.9 and 32.6 times, respectively.
key words: density-based clustering, graphics processing units, grid struc-
ture

1. Introduction

A Graphics Processing Unit (GPU) is a processor that gen-
erates continuous image frames to output on a display de-
vice. Due to the recent advances in GPU technology, many
approaches have been made to harness the high performance
of GPU for general applications as well as screen display. A
GPU consists of a number of cores; each core executes gen-
eral instructions like an Arithmetic & Logic Unit (ALU) in a
CPU, and thus a GPU is often regarded as a massively paral-
lel processor. The results of many research efforts have im-
proved the performance of previous CPU-based algorithms
by a few hundred times using the GPUs [2], [6], [7].

Clustering is a task that assigns each object in a dataset
to one of multiple groups or clusters so that the objects in
the same cluster are more similar to each other than those in
different clusters. Density-based clustering forms the clus-
ters of densely gathering objects separated by sparse re-
gions. It has the advantage that it can find the clusters of
arbitrary shapes and filter out noise objects easily. Most
widely referenced density-based clustering algorithms are
DBSCAN [3], OPTICS [1], and DENCLUE [4]. CUDA-

Manuscript received May 7, 2013.
Manuscript revised August 6, 2013.
†The author is with the Department of Multimedia, Sungkyul

University, Korea.
††The author is with the Department of Computer Science,

Kangwon National University, Korea.
†††The author is with the Department of Multimedia Science,

Sookmyung Women’s University, Korea.
∗This research was partially supported by Basic Science Re-

search Program through the National Research Foundation (NRF)
funded by the Ministry of Education, Science and Technology
(MEST) (No. 2010-0025001). This work was supported by the
National Research Foundation of Korea (NRF) grant funded by the
Korea government (MEST) (No. 2011-0013235).

a) E-mail: ysmoon@kangwon.ac.kr (Corresponding author)
b) E-mail: yhpark@sm.ac.kr (Co-corresponding author)

DOI: 10.1587/transinf.E97.D.1349

DClust proposed by Böhm et al. [2] improved the perfor-
mance of DBSCAN by more than 15 times using a GPU.

In this paper, we propose a density-based clustering al-
gorithm called GSCAN (GPU-based DBSCAN). GSCAN re-
duces the number of unnecessary distance computations us-
ing a grid structure. As a result of our experiments, GSCAN
outperformed CUDA-DClust and DBSCAN by up to 13.9
and 32.6 times, respectively.

2. Graphics Processing Units

In this section, we briefly introduce Nvidia GPU [5]. Fig-
ure 1 shows a simplified architecture of Nvidia GPU. A
GPU chip contains a few multi-processors (MPs) and each
MP contains many stream processors (SPs). An SP is also
called a core, which executes general instructions like an
ALU in a CPU. Each MP performs a separate task differ-
ent from the other MPs; in contrast, all the SPs in an MP
must execute the same instruction simultaneously on possi-
bly different data. Most recent GPUs contain hundreds or
thousands of SPs. Each MP also contains shared memory
(SM) which stores the common data shared by the SPs in the
MP. The device memory (DM), which is also called global
memory, outside the GPU chip is accessible from all the SPs
in all the MPs.

Nvidia provides Compute Unified Device Architec-
ture (CUDA) toolkit to support GPU application develop-
ment [5]. A CUDA program is a simple variation of C pro-
gram and consists of functions to be executed on both CPU
and GPU. The functions executed in the threads on GPU
are called kernel functions, and the CPU functions are called
host functions. Each SP executes a thread for a same kernel
function, and thus the kernel function is executed in parallel
in a massive number of concurrent threads on a GPU.

Fig. 1 Nvidia GPU architecture.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

1350
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

The logical structure of kernel threads is as follows.
The kernel threads are divided into multiple blocks so that
the same number of blocks are contained in each block. A
block has a unique zero-based blockID. For example, when
there are 64 blocks, each block has a blockID 0 to 63. The
threads in a block have unique zero-based threadIDs in the
same way. A block is assigned to an MP, and each thread is
executed by an SP. An MP can be assigned multiple blocks,
but a block cannot be executed by multiple MPs. In a CUDA
program, the number of blocks and threads to execute a ker-
nel function is specified, and the performance of the func-
tion is highly dependent on the number. If the number of
blocks is larger than the number of MPs or the number of
threads in a block is larger than the number of SPs in an MP,
the corresponding kernel function is executed in the time-
shared manner. If some blocks or threads are waiting for
data accesses or synchronization, the GPU performs context
switching for operational efficiency.

3. Related Work

In this section, we briefly explain about DBSCAN [3]
and CUDA-DClust [2]. DBSCAN presented density-
connectivity relationship for two objects and defined a clus-
ter as a maximal set of density-connected objects. The
density-connectivity relationship is defined using two input
parameters ε and MinPts.

DBSCAN for a given dataset D is summarized in Al-
gorithm 1. At first, the state of each object is set to be
undecided. If an object is inserted into a cluster, its state
turns into decided. Since, for each undecided object p, DB-
SCAN computes ε-neighbor Nε(p) to determine whether p
is a core object or a noise, DBSCAN’s time complexity is
O(n2), where n is the number of objects inD.

Böhm et al. [2] proposed CUDA-DClust, which im-
proved DBSCAN using a GPU. While DBSCAN forms a
cluster for a single undecided object p (∈ D) at a time,
CUDA-DClust assigns an undecided object p to each of
thread blocks and forms multiple clusters for the assigned

Algorithm 1 DBSCAN.
1: Set the state of each object o inD to be undecided;
2: while there exist undecided objects inD do
3: Choose any undecided object p ∈ D and compute Nε (p);
4: if |Nε (p)| ≥ MinPts then
5: Form a new cluster C and insert p in C;
6: Seed ← Nε (p) − p;
7: while there are undecided or noise objects in Seed do
8: for each undecided or noise object q ∈ Seed do
9: Insert q in C and compute Nε (q);

10: if |Nε (q)| ≥ MinPts then
11: Seed ← Seed ∪ Nε (q) − q;
12: end if
13: end for
14: end while
15: else
16: Set the state of p as noise;
17: end if
18: end while

undecided objects simultaneously. To speed up computing
ε-neighbor Nε(p) in each block, CUDA-DClust performs
multiple distance computations from p to a different object
in each thread simultaneously. The sub-cluster formed in
each block is called a chain in CUDA-DClust. If there is a
collision between the chains being formed by different par-
allel blocks, i.e., an object is inserted into two or more differ-
ent chains, it is recorded in a separate data structure called a
collision matrix. In the final stage, the chains with collisions
are merged to form a single cluster. Böhm et al. [2] showed
through experiments that CUDA-DClust outperformed DB-
SCAN by up to 15 times. However, CUDA-DClust has a
drawback that most of distance computations from an unde-
cided object p to all the other objects inD to compute Nε(p)
is unnecessary.

4. GSCAN: GPU-Based DBSCAN

GSCAN is an extension of CUDA-DClust [2]. As shown in
Algorithm 1, DBSCAN as well as CUDA-DClust performs
distance computations from each undecided object p to all
the other objects in D to compute ε-neighbor Nε(p). How-
ever, as shown in Fig. 2, most of the other objects inD reside
beyond ε-range from p and thus most of the distance compu-
tations are unnecessary. GSCAN improves the performance
by reducing such unnecessary computations.

GSCAN reduces unnecessary distance computations as
follows. GSCAN forms a grid covering the entire data space
and divides the objects in D into grid cells as shown in
Fig. 2. The grid dimension d′ is less than or equal to data
dimension d; in our experiments, we always set d′ = 4 re-
gardless of data dimension. Then, for each cell in the grid,
a list of objects contained in the cell is generated. Unlike
DBSCAN and CUDA-DClust, GSCAN performs distance
computations from an undecided object p to only the ob-
jects contained in the cells overlapping with ε-range from

Fig. 2 Data objects divided into grid cells.

LETTER
1351

p. In Fig. 2, GSCAN considers only the objects contained
in 9 cells around p and ignores all the other objects in dif-
ferent cells. Since GSCAN performs distance computations
with much smaller number of objects than DBSCAN and
CUDA-DClust, it achieves better performance.

A GPU kernel function is used to efficiently find the
data objects contained in each grid cell in GSCAN. The
entire dataset is evenly divided into gridSize data subsets
and each subset is assigned to a kernel block. The data
subset assigned to a block consists of data objects resid-
ing adjacently in device memory to make the most of de-
vice memory cache. Algorithm 2 shows the kernel func-
tion to divide the objects into grid cells. In lines (1) and
(2), the range [i1, i2) of data objects to be handled in each
block is determined. Since each block is assigned a differ-
ent blockID (0 ≤ blockID < gridSize), there is no overlap
between the ranges for different blocks. In line (3), block-
Size indicates the number of threads in a block. In lines
(3) to (7), since each thread in the block is assigned a dif-
ferent threadID (0 ≤ threadID < blockSize), different data
objects D[i] are handled in each thread; the cell containing
D[i] is found, andD[i] is appended in the corresponding list
list[c]. In line (5), cellSize[c] can be accessed by multiple
parallel threads at the same time. An atomic function atom-
icInc() prevents such a race condition by serializing concur-
rent accesses by different threads. atomicInc() increments
cellSize[c] by 1 and returns the value stored previously in
cellSize[c].

GSCAN finds the cells overlapping with ε-range from
an object p efficiently as follows. Since there are a large
number of grid cells, it is inefficient to compute the distance
of each cell from p. GSCAN finds the set Cp of cells around
the cell Cp containing p. Let ci (≥ 0) be the coordinate of

Algorithm 2 Kernel function to divide data objects into grid
cells.
1: i1 ← N ∗ blockID/gridSize;
2: i2 ← N ∗ (blockID + 1)/gridSize;
3: for i← i1 + threadID to i2 − 1 step blockSize do
4: c← ID of the cell containingD[i];
5: j← atomicInc(cellSize[c], N);
6: list[c][j] = i;
7: end for

(a) Number of data (N). (b) MinPts. (c) Data dimension (d).

Fig. 3 Comparison of elapsed time.

i-th dimension (0 ≤ i < d′) of Cp. Then, the coordinates of i-
th dimension of the cells in Cp are ci−1, ci, or ci+1, and thus
the number of cells in Cp is not more than 3d′ , where d′ is
the grid dimension. For example, the x/y-coordinates of the
cells in Fig. 2 are in the range [0, 9]. Since the x-coordinate
of Cp containing p is 4, the cells in Cp have x-coordinates
3, 4, or 5. The condition necessary is that the size for every
dimension of a cell should not be less than ε; otherwise,
some objects in Nε(p) may not be contained in the cells in
Cp. Since the size for every dimension of the cells in Fig. 2
is 0.1, ε should not exceed 0.1.

5. Performance Evaluation

In this section, to show the superiority of GSCAN, we
compare its performance with CUDA-DClust [2] and DB-
SCAN [3]. We measure the elapsed time for their execution
for various values of input parameters. For GSCAN and
CUDA-DClust, the elapsed time starts when data objects are
first copied to GPU device memory and ends when the final
clustering result is copied to main memory. Experimental
data is d-dimensional synthetic objects forming 10 arbitrary
Gaussian clusters, and the coordinate for every dimension of
the objects resides in the range [0.0, 1.0]. The input parame-
ters are the number of data objects N, the minimum number
of neighbors MinPts, and the data dimension d. We set the
default parameter values as the same as in [2]: N = 256K,
MinPts = 4, d = 8, and ε = 0.05. The hardware platform is
a PC equipped with the Intel Core i7-3960X 3.3GHz CPU,
16GB DDR3 main memory, 256GB solid-state drive (SSD),
and Nvidia GTX 780 GPU with 3GB GDDR5 device mem-
ory. The software platform is Visual Studio 2010 and CUDA
Toolkit 5.0 on Microsoft Windows 7 64bit Edition.

The first experiment was performed for various values
of N (Fig. 3 (a)). Note that the vertical axis in Fig. 3 (a)
is represented in the log scale. Table 1 shows the per-
formance improvement ratio of GSCAN compared with
CUDA-DClust (3rd row) and DBSCAN (4th row). GSCAN
outperformed CUDA-DClust and DBSCAN by up to 13.9
and 32.6 times, respectively, when N = 1M. Table 2 shows
the number of distance computations in the unit of 1G (230),
and the values in parentheses are the reduction ratios in
GSCAN. Compared with CUDA-DClust, while the reduc-

1352
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

Table 1 Performance improvement ratio of GSCAN.

(a) Number of data (N) (b) MinPts (c) Data dimension (d)
64K 128K 256K 512K 1M 4 16 64 256 1024 4 8 12 16 20

CUDA-DClust 6.3 9.8 12.1 13.5 13.9 12.1 12.2 12.2 11.4 11.4 13.1 12.1 11.8 11.8 12.3
DBSCAN 15.6 23.5 28.0 32.2 32.6 28.0 27.8 27.6 25.9 25.4 30.9 28.0 33.3 35.9 34.7

Table 2 Number of distance computations.

N GSCAN CUDA-DClust DBSCAN
64K 0.2 4.3 (18.7) 1.2 (5.2)

128K 0.9 16.6 (18.4) 4.8 (5.3)
256K 3.6 65.5 (18.4) 19.2 (5.4)
512K 13.7 258.5 (18.9) 76.8 (5.6)

1M 54.7 1,029.0 (18.8) 307.2 (5.6)

Fig. 4 Performance comparison with GSCAN-CPU.

tion ratio remains without significant changes, the perfor-
mance improvement ratio by GSCAN keeps increasing as N
increases. That is because the algorithms perform many op-
erations such as data transfer other than distance computa-
tions, and the percentage of distance computations increases
as N increases. The same discussion also applies to DB-
SCAN.

The second experiment was performed for various val-
ues of MinPts (Fig. 3 (b)). The reduction ratios of distance
computations in GSCAN were 18.4 and 5.4 compared with
CUDA-DClust and DBSCAN, respectively. As shown in
the figure, the elapsed time of the algorithms is almost un-
changed, since there is only little influence on the number
of distance computations by MinPts.

The third experiment was performed for various values
of d (Fig. 3 (c)). Although the elapsed time increases as d
increases, there are only small changes in the performance
improvement ratios as shown in Table 1. That is because,
while the number of distance computations of the algorithms
is almost unchanged, the more time is needed for distance

computations for the larger d.
In the fourth experiment, we converted GSCAN for

multi-core CPUs, which is called GSCAN-CPU in this pa-
per, and compared its performance with GSCAN for GPUs
(Fig. 4). GSCAN outperformed GSCAN-CPU by up to 6.0
times when N = 128K. Although the performance of each
SP in the GPU is lower than the CPU core, the number of
SPs in the GPU is much larger than the number of CPU
cores. In our hardware, the CPU contains only six cores,
while there are 2304 SPs in the GPU. Thus, the simple
operations such as distance computations can be executed
by the GPU more efficiently than the CPU. However, for
the complicated operations with many conditional branches
and frequent data communications, the CPU is the better
choice, since such operations incur performance degrada-
tion by holding many GPU threads waiting.

References

[1] M. Ankerst, M.M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” Proc. Int’l
Conf. Management of Data, ACM SIGMOD, pp.49–60, Philadelphia,
Pennsylvania, USA, June 1999.

[2] C. Böhm, R. Noll, C. Plant, and B. Wackersreuther, “Density-based
clustering using graphics processors,” Proc. Conf. Information and
knowledge management (CIKM), pp.661–670, Hong Kong, China,
Nov. 2009.

[3] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,”
Proc. Int’l Conf. Knowledge Discovery and Data Mining (KDD),
pp.226–231, Portland, Oregon, USA, 1996.

[4] A. Hinneburg and D.A. Keim, “An efficient approach to clustering in
large multimedia databases with noise,” Proc. Int’l Conf. Knowledge
Discovery and Data Mining (KDD), pp.58–65, New York, New York,
USA, Aug. 1998.

[5] Nvidia, CUDA C Programming Guide, Ver. 4.2, April 2012.
[6] S.A.A. Shalom, M. Dash, and M. Tue, “Efficient K-means clustering

using accelerated graphics processors,” Proc. Int’l Conf. Warehousing
and Knowledge Discovery (DaWaK), pp.166–175, Turin, Italy, Sept.
2008.

[7] C. Trapnell and M.C. Schatz, “Optimizing data intensive GPGPU
computations for DNA sequence alignment,” Parallel Computing,
vol.35, no.8, pp.429–440, Aug. 2009.

