
1374
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

LETTER

An Efficient Strategy for Bit-Quad-Based Euler Number
Computing Algorithm

Bin YAO†, Hua WU†, Yun YANG†, Yuyan CHAO††, Nonmembers, Atsushi OHTA†††, Haruki KAWANAKA†††,
and Lifeng HE†††a), Members

SUMMARY The Euler number of a binary image is an important topo-
logical property for pattern recognition, and can be calculated by counting
certain bit-quads in the image. This paper proposes an efficient strategy
for improving the bit-quad-based Euler number computing algorithm. By
use of the information obtained when processing the previous bit quad, the
number of times that pixels must be checked in processing a bit quad de-
creases from 4 to 2. Experiments demonstrate that an algorithm with our
strategy significantly outperforms conventional Euler number computing
algorithms.
key words: Euler number, topological property, computer vision, pattern
recognition, binary image

1. Introduction

The Euler number of a binary image, which is defined as the
difference between the number of connected components
and that of holes in the image, is one of the most impor-
tant topological properties in a binary image [1]. The Euler
number of a binary image will not change when the image
is stretched or flexed like an elastic rubber. Therefore, the
Euler number has been used in many applications: process-
ing cell images in medical diagnosis [2], document image
processing [3], shadow detection [4], reflectance-based ob-
ject recognition [5], and robot vision [6].

Many algorithms have been proposed for calculating
the Euler number of a binary image. For example, there
are parallel algorithm for bit-plane computers [7],∗ graph-
based algorithm [8], hardware algorithm [9], and algorithms
for images with special formats [10], [11]. For the ordinary
computer architecture and pixel-based format images, the
algorithm proposed by Gray [12], which was adopted by the
famous commercial image processing tools MATLAB [13],
is one of the most efficient algorithms. This algorithm, de-
noted as GRAY algorithm in this paper, is based on count-
ing certain patterns. There is also run-based algorithm [14],
which calculates the Euler number by use of the number

Manuscript received November 1, 2013.
Manuscript revised January 11, 2014.
†The authors are with Artificial Intelligence Institute, College

of Electrical and Information Engineering, Shaanxi University of
Science and Technology, Xi’an, Shaanxi 710021, China.
††The author is with the Graduate School of Environment

Management, Nagoya Sangyo University, Owariasahi-shi, 488–
8711 Japan.
†††The authors are with the Graduate School of Information Sci-

ence and Technology, Aichi Prefectural University, Nagakute-shi,
480–1198 Japan.

a) E-mail: helifeng@ist.aichi-pu.ac.jp (Corresponding author)
DOI: 10.1587/transinf.E97.D.1374

of runs and the number of neighboring runs, and skeleton-
based algorithm [15], which calculates the Euler number by
use of the number of terminal points and the number of
three edge points. Recently, a new algorithm was proposed
by He, Chao and Suzuki [16]. This algorithm, denoted as
HCS algorithm, calculates the Euler number by labeling
connected components and holes, and it is more efficient
than the GRAY algorithm in many cases.

This paper presents an efficient strategy for improving
the GRAY algorithm. By use of the information obtained
during processing the previous bit-quad, the number of the
times of checking the neighbor pixels for processing a bit
quad decreases from 4 to 2, which leads to more efficient
processing. Experimental results showed that our algorithm
is more efficient than the GRAY algorithm for all images
and other conventional Euler number computing algorithms
for almost all images.

2. Reviews of the GRAY Algorithm and the HCS Algo-
rithm

For an N × M-size binary image, we assume that the object
(foreground) pixels and background pixels in a given binary
image are represented by 1 and 0, respectively. As in most
image processing algorithms, we assume that all pixels on
the border of an image are background pixels. Moreover,
we only consider 8-connectivity in this paper.

2.1 The GRAY Algorithm

The GRAY algorithm for calculating the Euler number of a
binary image is based on counting certain 2×2 pixel patterns
called bit-quads, which are shown in Fig. 1, in the image. It
checks whether the corresponding bit-quad is one of patterns
P1, P2, and P3. Let N1, N2, and N3 be the numbers of pat-
terns P1, P2, and P3 in a binary image, respectively. Then,
the Euler number of the image, namely E, can be calculated
by the following formula.

E = (N1 − N2 − 2N3)/4 (1)

2.2 The HCS Algorithm

The HCS algorithm calculates the Euler number of a binary
∗This algorithm was proposed for cases where 4-connectivity

is considered.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



LETTER
1375

Fig. 1 Bit-quads for calculating the Euler number in the GRAY algo-
rithm.

image according to its definition:

E = C − H (2)

where C is the number of the connected components, and H
is that of the holes in the image, respectively.

For calculating C and H, this algorithm extended the
labeling algorithm proposed in Ref. [17] for looking for con-
nected components and holes in the given binary image si-
multaneously. At any moment in the raster scan, all pro-
visional labels assigned to an 8-connected component or
a 4-connected hole in the processed area of the image are
combined in an equivalent label set (the corresponding op-
eration is called label-equivalence resolving), respectively.
Thus, after the raster scan, all provisional labels assigned
to a connected component or a hole in the image will be
combined in an equivalent label set, respectively. Then, by
counting the number of the equivalent label sets correspond-
ing to connected components and that for holes, we can ob-
tain the number of connected components, i.e., C, and that
of holes, i.e., H, respectively.

3. Proposed Algorithm

In fact, some pixels are checked repeatedly in the GRAY al-
gorithm. For example, in Fig. 2, when processing pixel a,
it needs to check the four pixels in the corresponding bit-
quad {a, b, c, d}. After doing that, it goes to process pixel
c, and the four pixels in the corresponding bit-quad {c, d,
e, f } will be checked, where pixels c and d have just been
checked during processing the previous pixel a. These re-
peated checking can avoided if we can use the information
related to the pixels c and d obtained during processing pixel
a.

Based on the above consideration, we define four
states, namely S 1, S 2, S 3, and S 4, as shown in Fig. 3. Obvi-
ously, to confirm whether each corresponding bit-quad is a
pattern to be counted in the GRAY algorithm, we only need
to check the other two pixels, i.e., pixel X and pixel Y .

For each row in the given image, because all pixels in
the border are background pixels, we will begin our process-
ing from state S 1 (Fig. 3 (a)), and check the values of pixels
X and Y: (1) if the values of both pixels X and Y are 1, we
know that none of the patterns that should be counted in the

Fig. 2 An example for explaining the problem in the GRAY algorithm.

Fig. 3 Four states in our algorithm.

Fig. 4 State transition diagram.

GRAY algorithm, and then we go to process the next bit-
quad, which obviously will be state (Fig. 3 (d)); (2) if the
value of pixel X is 1 and that of pixel Y is 0, the correspond-
ing bit-quad is pattern P1, N1 increases by 1, then we go to
process the next bit-quad, which will be state S 3 (Fig. 3 (c));
(3) if the value of pixel X is 0 and that of pixel Y is 1, the cor-
responding bit-quad is also pattern P1, and N1 increase by
1, then we go to process the next bit-quad, which is state S 2

(Fig. 3 (b)); (4) if the values of both pixels X and Y are 0, the
corresponding bit-quad is none of patterns P1, P2, and P3,
we go to process the next bit-quad, which will come back to
state S 1. Other states can be processed in a similar way. The
state transition is shown in Fig. 4.

After processing all pixels in the image, we obtained
the numbers of the patterns P1, P2 and P3, i.e., N1, N2, and
N3, then, we can calculate the Euler number by use of the
formula (1) easily.

4. Time Complexity

As indicated above, for processing a bit-quad, the GRAY
algorithm needs to check 4 pixels, i.e., it takes 4 pixel ac-
cesses. For an N × M-size binary image, the total number
of pixel accesses will be about 4N × M. According to the
analysis results shown in Ref. [14], the skeleton-based algo-
rithm [15] will take about 8N×M pixel accesses, and for the
run-based algorithm [14], it will take about 4N×M pixel ac-



1376
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

cesses in the worst case, and about 3N ×M pixel accesses in
average case.

The algorithm proposed in Ref. [7] is a graph-based
method. It computes the Euler number of a binary image
for 4-connectivity by use of graph theory, where a binary
image is taken as a square graph, which is constructed by
taking all object pixels as vertices and adding all edges ei j

such that object pixels pi and p j is 4-neighbored. Let v,
s, e be the number of vertices, basic square faces† and 4-
connected edges, respectively, then the Euler number E can
be calculated by E = v + s − e. This algorithm can be ex-
tended to compute the Euler number in a binary image for
8-connectivity as follows [18]: Let v, s, t, e be the num-
ber of vertices, basic square faces, basic right-angled trian-
gle faces†† and 8-neighbored edges except those hypotenuse
edges inside basic square faces, respectively, then the Euler
number E can be calculated by E = v + s + t − e. Because it
needs to check all 8-connectivity edges, it will take at least
4N × M pixel accesses for computing the Euler number.

Accordingly, the run-based algorithm is more efficient
than the GRAY algorithm, the skeleton-based algorithm,
and the graph-based algorithm.

By our strategy, for processing a bit-quad, by use of
the information obtained during processing the previous bit-
quad, we only need to check 2 pixels, i.e., for an N ×M-size
binary image, the total number of pixel accesses is about
2N × M. Therefore, our algorithm is better than the run-
based algorithm, thus, better than the GRAY algorithm, the
skeleton-based algorithm, and graph-based algorithm.

On the other hand, as introduced above, the HCS al-
gorithm calculates the Euler number of a binary image by
labeling foreground pixels and background pixels respec-
tively. Because for processing a pixel in labeling operation,
we do not only need to check some of its neighbor pixels,
but also need to do label-equivalence resolving, it is hard to
analyze its time complexity accurately†††. We will compare
this algorithm with our algorithm by testing them on various
practical images in the next section.

5. Experimental Results

Images used for testing were composed of artificial im-
ages (including noise images and specialized patterns), nat-
ural images obtained from the Standard Image Database
(SIDBA) developed by the University of Tokyo†††† and
the image database of the University of Southern Califor-
nia†††††, texture images downloaded from the Columbia-

†A basic square is a pattern

[
1 1
1 1

]
in a binary image.

††A basic right-angled triangle is one of the patterns

[
1 0
1 1

]
,[

1 1
1 0

]
,

[
1 1
0 1

]
, and

[
0 1
1 1

]
in a binary image.

†††The authors of the HCS algorithm could not give the time
complexity of the algorithm as well.
††††http://sampl.ece.ohiostate.edu/data/stills/sidba/index.htm
†††††http://sipi.usc.edu/database/

Fig. 5 Execution time versus density of an image.

Utrecht Reflectance and Texture Database††††††, and med-
ical images obtained from a medical image database of the
University of Chicago.

Because our algorithm is an improvement of the GRAY
algorithm, the run-based algorithm, denoted as RUN algo-
rithm in this section, is the most efficient conventional Euler-
number computing algorithm, and the HCS algorithm is the
newest one, with the GRAY algorithm, the RUN algorithm
and the HCS algorithm. All algorithms were implemented
in the C language on a PC-based workstation (Intel Core i5-
3470 CPU, 3.20 GHz, 4 GB Memory, Ubuntu Linux OS),
and compiled by the GNU C compiler (version 4.2.3) with
the option -O. All experimental results presented in this sec-
tion were obtained by averaging of the execution time for
5000 runs.

5.1 Execution Time versus the Density of an Image

41 noise images with a size of 512× 512 pixels, which were
generated by thresholding of the images containing uniform
random noise with 41 different threshold values from 0 to
1000 in steps of 25, were used for testing the execution time
versus the density of the foreground pixels in an image. The
results are shown in Fig. 5. We can find that our algorithm
is much better than the GRAY algorithm for all images, is
better than the HCS algorithm for all images except for the
images whose densities are over 95%, and is also better than
the RUN algorithm for all images whose densities are over
20%.

5.2 Comparisons in Terms of the Maximum, Mean, and
Minimum Execution Times on Various Kinds of Real
Images

50 Natural images, 25 medical images, 7 texture images,
and 5 artificial images with specialized shape patterns were
used for this test. The resolution of all of these images is
512 × 512 pixels. The results of the comparisons are shown

††††††http://www1.cs.columbia.edu/CAVE/software/curet/



LETTER
1377

Table 1 Maximum, mean, and minimum execution times (ms) on vari-
ous types of images.

Fig. 6 The execution times (ms) for the selected 4 images: (a) a portrait
image; (b) a fingerprint image; (c) a medical image; (d) a texture image.

in Table 1. From Table 1, for all types of images, our al-
gorithm is much more efficient than GRAY algorithm, the
RUN algorithm and the HCS algorithm for the minimum
time, the average time and the maximum time. In fact, for
each image used in this test, our algorithm is better than any
of the other three algorithms. The execution times (in ms)
for the selected 4 images are illustrated in Fig. 6, where the
foreground pixels are displayed in black.

6. Conclusion

In this paper, we presented an efficient strategy for improv-
ing the bit-quad-based Euler number computing algorithm.
By use of the information obtained during processing the
previous bit quad, our algorithm can avoid checking pix-
els repeatedly, unlike the GRAY algorithm. Experimental
results on various types of images demonstrated that our al-
gorithm outperformed the GRAY algorithm and other con-
ventional Euler number calculating algorithms. For future
work, we will consider hardware implementation and paral-
lel implementation of our algorithm.

Acknowledgments

We thank the anonymous referee for his/her valuable com-
ments that improved this paper greatly. We are grateful to
the associate editor, Dr. Yoshihisa Ijiri, for his kind coopera-
tion and a lot of valuable advices. This work was supported
in part by the Grant-in-Aid for Scientific Research (C) of the
Ministry of Education, Science, Sports and Culture of Japan
under Grant No. 23500222, and the Foundation of Xi’an
Science and Technology Bureau under Grant No.CXY1343.

References

[1] R.C. Gonzalez and R.E.Woods, Digital Image Processing, Third ed.,
Pearson Prentice Hall, Upper Saddle River, 2008.

[2] A. Hashizume, R. Suzuki, H. Yokouchi, H. Horiuchi, and S.
Yamamoto, “An algorithm of automated RBC classification and its
evaluation,” Bio Medical Engineering, vol.28, no.1, pp.25–32, 1990.

[3] S.N. Srihari, “Document image understanding,” Proc. ACM/IEEE
Joint Fall Computer Conference, pp.87–95, Dallas, TX, Nov. 1986.

[4] P.L. Rosin and T. Ellis, “Image difference threshold strategies
and shadow detection,” Proc. British Machine Vision Conference,
pp.347–356, Sept. 1995.

[5] S.K. Nayar and R.M. Bolle, “Reflectance-based object recognition,”
Int. J. Comput. Vis., vol.17, no.3, pp.219–240, 1996.

[6] B. Horn, Robot Vision, pp.73–77, New York, McGraw-Hill, 1986.
[7] M.H. Chen and P.F. Yan, “A fast algorithm to calculate the Euler

number for binary images,” Pattern Recognit. Lett., vol.8, no.5,
pp.295–297, 1988.

[8] F. Chiavetta and V. Gesu, “Parallel computation of the Euler number
via connectivity graph,” Pattern Recognit. Lett., vol.14, pp.849–859,
1993.

[9] Dey, S., Bhattacharya, B.B., Kundu, M.K., and Acharya, T. (2000).
A fast algorithm for computing the Euler number of an image and its
VLSI implementation. Thirteenth International Conference on VLSI
Design, 2000. pp.330–335, 2000.

[10] C.R. Dyer, “Computing the Euler number of an image from its
quadtree,” Computer Graphics and Image Processing, vol.13, no.3,
pp.270–276, 1980.

[11] H. Samet and H. Tamminen, “Computing geometric properties of
images represented by linear quadtrees,” IEEE Trans. Pattern Anal.
Mach. Intell., vol.7, no.2, pp.229–240, 1985.

[12] S.B. Gray, “Local properties of binary images in two dimensions,”
IEEE Trans. Comput., vol.C-20, pp.551–561, 1971.

[13] C.M. Thompson and L. Shure, Image Processing Toolbox, The Math
Works, Incorporated, 1993.

[14] A. Bishnu, B.B., Bhattacharya, M.K. Kundu, C.A. Murthy, and T.
Acharya, “A pipeline architecture for computing the Euler number



1378
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.5 MAY 2014

of a binary image,” J. Systems Architecture, vol.51, no.8, pp.470–
487, 2005.

[15] S.J.L. Diaz-de-Leon and J.H. Sossa-Azuela, “On the computation of
the Euler number of a binary object,” Pattern Recognit., vol.29, no.3,
pp.471–476, 1996.

[16] L. He, Y. Chao, and K. Suzuki, “An algorithm for connected-
component labeling, hole labeling and euler number computing,” J.

Computer Science and Technology, vol.28, no.3, pp.469–479, 2013.
[17] L. He, Y. Chao, and K. Suzuki. “An efficient first-scan method

for label-equivalence-based labeling algorithms,” Pattern Recognit.
Lett., vol.31, no.1, pp.28–35, 2010.

[18] A. Ohta, “On the derivation of the euler number,” Technical report,
Aichi Prefectural University, Oct. 2013. (in Japanese)


