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LETTER

Image Quality Assessment Based on Multi-Order Visual
Comparison

Fei ZHOU†a), Member, Wen SUN†b), and Qingmin LIAO†c), Nonmembers

SUMMARY A new scheme based on multi-order visual comparison
is proposed for full-reference image quality assessment. Inspired by the
observation that various image derivatives have great but different effects
on visual perception, we perform respective comparison on different or-
ders of image derivatives. To obtain an overall image quality score, we
adaptively integrate the results of different comparisons via a perception-
inspired strategy. Experimental results on public databases demonstrate
that the proposed method is more competitive than some state-of-the-art
methods, benchmarked against subjective assessment given by human be-
ings.
key words: image quality assessment, image derivatives, multi-order vi-
sual comparison

1. Introduction

Image quality assessment (IQA) has attracted increasing in-
terest due to its importance in image acquisition, transmis-
sion, display, etc. Although subjective evaluation is the most
reliable way of IQA, it is time-consuming, laborious, and
expensive. Hence, it is necessary to develop objective IQA
metrics that can automatically measure image quality and
well approximate subjective scores. According to the avail-
ability of a reference image, objective metrics can be clas-
sified as full-reference, no-reference, and reduced-reference
methods [1]–[4]. In this letter, we focus on the problem of
full-reference IQA.

The most conventional metrics involving mean-
squared error and peak signal-to-noise ratio (PSNR) have
been widely criticized for not correlating well with subjec-
tive fidelity ratings. To address this problem, many efforts
have been made on designing bottom-up models to imitate
human visual system (HVS), e.g., visual signal-to-noise ra-
tio (VSNR) [1]. However, most models are simplified based
on a number of strong assumptions due to the complexity of
HVS. Recently, many researchers prefer to regard HVS as a
black box. That is, it is reasonable to achieve IQA by mea-
suring up-bottom similarities. Inspired by this view, struc-
tural similarity (SSIM) index [2], feature similarity (FSIM)
index [3], and gradient similarity (GSIM) index [4] are de-
signed for full-reference IQA. Therein, the key problem is
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how to design and measure the up-bottom similarity. In this
Letter, the motivation is from our recent work in the field of
super-resolution [5], which shows that image details can be
well represented by high-order image derivatives. Accord-
ingly, we measure the up-bottom similarity by multi-order
visual comparison. The visual comparisons are performed
on different image derivatives and then pooled into a single
similarity index. Experimental results demonstrate the su-
periority of our method over some state-of-the-art methods.

2. Proposed Scheme

2.1 Multi-Order Visual Comparison

It is observed that visual responses to different orders of im-
age derivatives are nontrivial and distinct. To be specific,
lower-order information mainly acts on overall perception
while higher-order information generally determines the vi-
sual perception of image details [5]. Therefore, the measure-
ment of up-bottom similarity should compare multi-order
information as well as distinguish them. In this work, we
investigate zero-order, first-order, and second-order image
derivatives. Given a test image f , second-order information
is calculated as second-order derivatives of f :

fx2 (x, y) =
∂2 f (x, y)
∂x2

,

fy2 (x, y) =
∂2 f (x, y)
∂y2

, (1)

fxy (x, y) =
∂2 f (x, y)
∂xy

,

where x and y represent abscissas and ordinates respectively,
and fx2, fy2, and fxy denote the second-order information of
f . To simplify the formulas in this Letter, we generally omit
the arguments of a function after the definition, e.g., fx2(x, y)
will be abbreviated as fx2. To get first-order information, we
remove second-order derivatives from image gradients:

fx1 (x, y) =
∂ f (x, y)
∂x

−
√

f 2
x2 + f 2

xy,

fy1 (x, y) =
∂ f (x, y)
∂y

−
√

f 2
y2 + f 2

xy,

(2)

where fx1 and fy1 denote the first-order information of f .
Similarly, zero-order information f0 is given by

f0 (x, y) = f (x, y) −
√(
∂ f (x, y)
∂x

)2

+

(
∂ f (x, y)
∂y

)2

. (3)
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In the proposed scheme, to compute of image gradients
(first-order image derivatives) along horizontal and vertical
directions, we convolve images with a pair of Scharr opera-
tors. And second-order image derivatives can be estimated
in a similar way by convolving image gradients with Scharr
operators. For the reference image g, we can also define its
multi-order visual information in the same way, and denote
them as gx2, gy2, gxy, gx1, gy1, and g0 respectively.

Based on Eqs. (1)–(3), we define the measurement
functions for the respective comparison of multi-order in-
formation as follows:

s0( f , g, x, y) =
2 ·

∣∣∣∣ f0 · g0

∣∣∣∣ +C0

f0
2
+ g0

2
+C0

· 2 · σ f 0 · σg0 +C0

σ2
f 0 + σ

2
g0 +C0

,

s1( f , g, x, y) =
2 · | fx1 · gx1| +C1

f 2
x1 + g2

x1 +C1
· 2 · ∣∣∣ fy1 · gy1

∣∣∣ +C1

f 2
y1 + g2

y1 +C1
,

s2( f , g, x, y) =
2 · | fx2 · gx2| +C2

f 2
x2 + g2

x2 +C2
· 2 · ∣∣∣ fy2 · gy2

∣∣∣ +C2

f 2
y2 + g2

y2 +C2

· 2 · ∣∣∣ fxy · gxy

∣∣∣ +C2

f 2
xy + g2

xy +C2
, (4)

where s0, s1, and s2 are the visual comparisons of zero-
order, first-order, and second-order information, f̄0, ḡ0 and
σ f 0, σg0 are the means and standard deviations of the patch
centred at (x, y) in f0 and g0 respectively, and C0, C1, and
C2 are constants for the stability to avoid a nearly zero de-
nominator. Specifically, C0, C1, and C2 are respectively cal-
culated as (K1 × L)2, (K2 × L)2, and (K3 × L)2, where L is
the dynamic range of pixel values (255 for 8-bit grayscale
image), K1, K2, K3 are constants much smaller than 1. The
values of K1, K2, and K3 will be provided in experimental
part.

About Eq. (4), we can further declare the following
points: First, it is easy to verify that all the expressions in
Eq. (4) are consistent with the masking effect of HVS [2],
[4]. Secondly, the expression sn (n is 0, 1, or 2) is a sym-
metric metric which ranges from 0 to 1. And it achieves the
maximum value 1 if and only if nth-order information of the
test and reference image is identical. Thirdly, larger value
of sn( f , g, x, y) implies higher quality at the position of (x, y)
in terms of nth-order information.

2.2 Pooling

To assess image quality, a single index is necessary. How-
ever, the measurement functions in Eq. (4) are performed
on respective order in a pixel-wise fashion. Therefore, it
is required to pool them into an overall score. To achieve
this, we first need to combine s0, s1, and s2. It has been
proven that the simultaneous existence of multiple distortion
components at a given position will mask the perception of
each other [4]. In other words, the smaller distortion will
be masked by the larger distortion. Hence, we obtain the
combined measurement function s by

s( f , g, x, y) =
1

N1
·
⎛⎜⎜⎜⎜⎜⎜⎝∑

n�0

sn · s0 +
∑
n�1

sn · s1 +
∑
n�2

sn · s2

⎞⎟⎟⎟⎟⎟⎟⎠ ,
(5)

where N1 is a normalization constant to ensure the sum of
weights equal to 1. Finally, we integrate the measurements
s at every pixel position into a single score. Since humans
are more sensitive to severely distorted regions, we calculate
the overall image quality q as

q( f , g) =
1

N2

∑
x

∑
y

(1 − s( f , g, x, y)) · s( f , g, x, y), (6)

where N2 is also a normalization constant. In both (5) and
(6), smaller distortions result in smaller weights. However,
the inspirations are different. The weights in (5) are based
on the masking effect of HVS while the weights in (6) are
inspired by the visual attention.

3. Experimental Results

Experiments are conducted on three publicly available and
subject-rated databases, known as TID2008 [6], LIVE [7],
and MICT [8]. In TID2008, there are 25 original images and
1700 test images with 17 types of distortions. And LIVE
database has 29 reference images and 779 distorted images,
including five distortion types. MICT database contains 14
original images and 168 distorted images with two types of
distortions. Moreover, mean opinion score (MOS) is avail-
able for TID2008 and MICT while differential mean opin-
ion score (DMOS) is provided in LIVE. Following guide-
lines of the Video Quality Experts Group [9], we use a five-
parameter logistic function to map the objective predictions
q to the subjective scores. The used function has the form of

p(q) = β1 ·
(

1
2
− 1

1 + exp(β2 · (q − β3))

)
+ β4 · q + β5,

(7)

where the model parameters βi (i = 1, 2, 3, 4, 5) are cho-
sen to minimize the squared error between the subjective
scores and fitted objective scores. In our experiments, the
small constants K1, K2, K3 mentioned in Sect. 2.1 are set to
0.01, 0.1, and 0.1, respectively. It is worthwhile to notice
that K2 and K3 are larger than K1. The reasons are twofold:
First, the dynamic range of gradients is larger than that of
pixel values. Secondly, image derivatives smaller than just
noticeable difference would not be perceived by human be-
ings. Therefore, in order to avoid over-estimating visual dis-
tortions on the regions with small derivatives, constants C2

and C3 cannot be very small. In Fig. 1, we illustrate the scat-
ter plots of the proposed IQA scheme.

To verify the effectiveness of the proposed method, we
compare our predictions with those of PSNR, VSNR [1],
SSIM [2], FSIM [3], and GSIM [4]. Quantitative compar-
isons are based on four criteria, including Spearman rank-
order correlation coefficient (SROCC), Kendall rank-order
correlation coefficient (KROCC), Pearson linear correlation
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Fig. 1 Scatter plots of subjective scores versus our object prediction q on
different databases: (a) TID2008, (b) LIVE, (c) MICT.

coefficient (PLCC), and root mean-squared error (RMSE)
between mapped objective scores and subjective scores. The
first two criteria are used to evaluate prediction monotonic-
ity and the other two can measure prediction accuracy [9].
Larger SROCC, KROCC, PLCC, and smaller RMSE sig-
nify better performances. The quantitative comparisons are
shown in Table 1, from which we can find that the pro-
posed method outperforms the compared methods on all the
databases.

4. Conclusion

In this letter, we propose a full-reference IQA which per-

Table 1 Performance comparisons for IQA methods.

forms visual comparisons of multi-order information. In-
spired by the property of visual responses to different or-
ders of image derivatives, we derive multi-order informa-
tion from various image derivatives. The overall objective
score is evaluated by an adaptive and perceptually inspired
pooling. Experiments on three well-known databases have
confirmed the effectiveness of the proposed method in com-
parison with the state-of-the-art methods.
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