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Deformable Part-Based Model Transfer for Object Detection

Zhiwei RUAN†a), Nonmember, Guijin WANG†b), Member, Xinggang LIN†, Jing-Hao XUE††,
and Yong JIANG†††c), Nonmembers

SUMMARY The transfer of prior knowledge from source domains can
improve the performance of learning when the training data in a target do-
main are insufficient. In this paper we propose a new strategy to transfer
deformable part models (DPMs) for object detection, using offline-trained
auxiliary DPMs of similar categories as source models to improve the per-
formance of the target object detector. A DPM presents an object by using
a root filter and several part filters. We use these filters of the auxiliary
DPMs as prior knowledge and adapt the filters to the target object. With a
latent transfer learning method, appropriate local features are extracted for
the transfer of part filters. Our experiments demonstrate that this strategy
can lead to a detector superior to some state-of-the-art methods.
key words: deformable part model, object detection, transfer learning

1. Introduction

Object category detection is one of the most important tasks
in computer vision, widely applied in many fields such as
security monitoring and intelligent navigation. Most state-
of-the-art approaches learn a binary object/non-object clas-
sifier trained with positive and negative samples. Recently,
the most successful approach in the PASCAL Visual Ob-
ject Class (VOC) challenge [1] has been the deformable part
model (DPM) proposed by Felzenszwalb et al. [2]. How-
ever, it demands a large number of training samples from
the domain of the target objects to be detected, requiring a
substantial effort to collect and annotate data in advance. Its
performance drops dramatically when there is only a limited
number of training samples available in practice.

Such a demand for substantial training samples from
the target domain can be lessened, if we can transfer some
knowledge from other domains called source domains. The
performance of the detector can also be improved in this
case [3]–[8]. Transfer learning approaches to object detec-
tion differ in the form of the knowledge transferred, which
ranges from similar samples [3], [9], locally structured pri-
ors [4], visual attributes [5] to sharable part templates [6]–
[8]. Among them, sharing part templates can make more use
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Fig. 1 Transfer learning of the DPM. The learnt DPM for a cow is used
as the source model for learning a horse detector with few training samples.

of the previously trained auxiliary models and make transfer
learning more flexible. Aytar et al. [6] use part-like patches
from previously learnt models to enhance exemplar SVMs.
However, the algorithm is only executed on rigid templates,
and this limits the performance of the detector. Ott et al. [7]
extend the DPM to share part filters among multiple models.
It can make efficient use of training data by learning shared
part filters from different object classes, but the training pro-
cesses for different classes are integrated hence a new de-
tector cannot be learnt directly based on previously trained
models. Yang et al. [8] assemble a new detector with root
and part filters from auxiliary detectors. However, the part
filters are used without adjusting parameters, and this may
suppress its performance.

In this paper, we propose a new DPM-based transfer
learning method for object detection, using both the root
and part filters as prior knowledge to transfer. We trans-
fer deformable part filters, rather than only transferring rigid
templates as done by Aytar et al. [6]. Unlike Yang et al. [8],
our method also adjusts the parameters of the part filters.
We also design a new regularisation formulation for train-
ing a discriminative latent SVM, in which we not only share
the root and part filters between models but also adapt the
parameters of the filters to the target object. As illustrated
in Fig. 1, a detector of a target category can be learnt using
some source models, with few training samples. Our ex-
periments demonstrated that the new detector is superior to
some state-of-the-art methods.

2. Model Transfer of DPM

Suppose we need to train a detector for a target category
which only has limited positive training samples, and we
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have several detectors for visually similar source categories
trained with sufficient training samples. We aim to transfer
knowledge from the source categories to the target category
to learn a good detector of target objects.

2.1 Transfer of Rigid Model

An original idea introduced by Aytar et al. [10] is to regu-
larise the training of the target object’s rigid template with
the previously learnt source rigid template. They further this
method to use patches of various source rigid templates [6].

Given n labelled examples X = {xi, yi}ni=1, where yi ∈
{−1, 1}, and m global template models {ωs

i }mi=1 learnt in a
source domain, the task is to learn a linear target model ω
with a scoring function fω(x) = ω · ψ(x), where ψ(x) is the
feature vector. Let {ui}m′i=1 denote patches matching the target
object from the source models and padded with zeros to be
a template of the same size as ω. The target model can be
trained by minimising an objective function

L(ω, α) = ‖ω −
m′∑
i=1

αiui‖2 + γ
m′∑
i=1

α2
i

+C
n∑

i=1

max(0, 1 − yi fω(xi)) ,

(1)

where αis are the transfer weights for ui, max(0, 1−yi fω(xi))
is the standard hinge loss, and parameters γ and C control
the relative weights of the regularisation term and the loss
term, respectively. The patches borrowed from well trained
source templates can bring more discriminative power to
enhance the target detector. However, this algorithm only
transfer rigid templates, and this limits its performance.

Here we propose a learning method to transfer the de-
formable part filters, which are better than the rigid patches
of global templates for learning the part filters of the target.

2.2 Deformable Part Model (DPM)

A DPM consists of one root filter and several part filters [2].
The root filter describes the global appearance of an object;
the part filters represent the local appearance with twice the
resolution of the feature in the root filter and have flexible
positions relative to the root filter.

For a model with P parts, each example is scored as

fω(x) = max
z
gω(x, z) = max

z
{ω · ψ(H, z)} , (2)

where

ω = (F0, . . . , FP, d1, . . . , dP, b) , (3)

ψ(H, z) = (φa(H, z0), . . . , φa(H, zP) ,
− φd(dz1), . . . ,−φd(dzP), 1) ,

(4)

in which ω is a vector of filter parameters, F0 is a root fil-
ter, Fi is the ith part filter, di is a four-dimensional vector
that specifies the coefficients of a quadratic function incur-
ring a penalty to moving the ith part too far from its sup-
posed location vi, b is a bias term, and ψ(H, z) is a feature

vector extracted from the feature pyramid H with a spe-
cific latent spatial configuration z = (z0, z1, . . . , zP), where
zi = (zxi, zyi, li) specifies the location and scale level of
the ith part filter, φa(H, zi) are local appearance features
which describe the image area covered by the ith part, and
φd(dzi) = (dzxi, dzyi, dz2

xi, dz2
yi) are deformation features with

(dzxi, dzyi) = (zxi, zyi) − (2(zx0, zy0)+ vi). The model parame-
ters can be learnt in a latent SVM framework.

Such a deformable configuration is fully exploited by
our DPM-based transfer learning method, as below.

2.3 Transfer of DPM

Given m deformable part models {ωs
i }mi=1 learnt from a source

domain, where the ith model ωs
i has Pi parts, our task is to

learn a new DPM ω for the target domain.
The models learnt from similar source categories are

specified with the same root-filter size and the same part-
filter size, such that the filters are easy to be shared between
different categories. We transfer the filters while omitting
dis from the auxiliary models. If all the part filters are as-
sumed independent, the number of the part filters in the tar-
get model equals P =

∑m
i=1 Pi. As ω for a DPM has the

form of (3), each filter Fpi (either a root or part filter) in ωs
i

that corresponds to filter Fp in ω can be rewritten in a sparse
form u = (0, . . . , 0, Fpi , 0, . . . , 0) to match the form of ω and
the position of Fp in ω.

In this way, we can convert the set of DPMs {ωs
i }mi=1 into

a set of auxiliary filters {ui}m′i=1 with m′ = m +
∑m

i=1 Pi (i.e. m
root filters and

∑m
i=1 Pi part filters). The ω is then trained by

minimising an objective function

LZP (ω, α) = ‖ω −
m′∑
i=1

αiui‖2 + γ
m′∑
i=1

ᾱi
2

+C
n∑

i=1

max(0, 1 − yigw(xi, zi)) ,

(5)

where

ᾱi = αi‖ui‖ , (6)

ZP =

{
zi, i = 1, . . . , n | zi = argmax

z
gw(xi, z)

}
. (7)

The first term in (5) represents the distance between the
learned model ω and the assembled filters. The second term
offers re-weighting of the auxiliary filters. In [6] the patches
from root filters are treated indiscriminately as in (1), but
here we consider the different sizes of the root and part fil-
ters in the DPM and thus let ᾱi be ui-adaptive as in (6).

As γ → ∞, αis will be forced to be zero because of the
infinite penalisation, and (5) will converge to the standard
latent-SVM that transfers no knowledge from the source do-
main. As γ → 0 and C → 0, ω will be forced to be equal
to
∑m′

i=1 αiui and the learnt model is a linear combination of
auxiliary filters. The set ZP includes the highest latent scores
for the positive examples. With latent values zis included,
our method is more adaptive to the diversity of the object
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than the method in [6].

2.4 Optimisation Algorithm

The objective function (5) can be transformed to an equiva-
lent latent-SVM formulation:

‖ω −
m′∑
i=1

αiui‖2 + γ
m′∑
i=1

ᾱi
2

+C
n∑

i=1

max(0, 1 − yi(ω · ψ(Hi, zi)))

= ‖ω̄‖2 +C
n∑

i=1

max(0, 1 − yi((ω̄ · ψ̄i))) ,

(8)

where

ω̄ =
{�ω, √γᾱ1, . . . ,

√
γᾱm′
}
, �ω = ω −

m′∑
i=1

αiui , (9)

ψ̄i =

{
ψ(Hi, zi),

1√
γ‖u1‖u1 · ψ(Hi, zi), . . . ,

1√
γ‖um′ ‖um′ · ψ(Hi, zi)

}
. (10)

With latent values ZP, (5) leads to a semi-convex optimisa-
tion problem, which can be minimised with an Expectation
Maximization-like iterative process of two steps:

1. Latent value estimation: select the highest latent
scores for each positive example by fixing ω and α.

2. Parameter optimisation: minimise the objective
function in (5) over ω and α with selected latent values ZP.
This can be solved by minimising (8) over ω̄ with a stochas-
tic gradient descent method as described in [2]. By using the
parameters �ω and αis in ω̄, we can get ω = �ω+∑m′

i=1 αiui.
In short, Step 1 searches over the space of latent spatial

values, and Step 2 searches over the space of model param-
eters, until convergence is reached.

3. Experiments

For performance evaluation, we conduct two types of ex-
periments as in [10]: (i) between-category transfer where
transfer is conducted from a similar class to the target class
(e.g. from cow to horse); and (ii) superior-to-subordinate
transfer where transfer is conducted from the superior class
to the target subclass (e.g. from quadruped to horse).

3.1 Experimental Settings

In both cases, evaluation is performed on the PASCAL VOC
2007 dataset [1], and we restrict it to the side-views of the
categories that share similar appearances, such as horse vs
cow and motorbike vs bicycle. We select the positive train-
ing examples on the basis of the view attributes annotated
and the aspects of the bounding boxes around the objects.
For testing, we build a test set which consists of all the posi-
tive samples of the side-view target class and a random col-
lection of up to 500 samples from other classes.

In the training stage, we learn two components as mir-
ror of each other (e.g. right view and left view for horse)
for each detector, as the viewpoints of the objects in the se-
lected samples do not vary much. Each DPM has one root
filter and eight part filters. We use features based on the his-
togram of oriented gradient (HOG) descriptors [11] as with
[2]. The HOG is calculated from a dense grid of cells and
normalised with overlapping local contrast.

In the test stage, the detection performance is evaluated
on the test set by using the average precision (AP) as in the
PASCAL toolkit. A detection result is considered correct if
the area of its intersection with the ground truth is greater
than 50% of their union. For evaluation we only randomly
select ten positive examples for transfer learning or direct
DPM training. We repeat experiments five times and take
their average AP. In all experiments, parameter C is fixed to
0.002 as the default value of [2] and γ is simply set to 1.

3.2 Experimental Results

Regarding the between-category transfer, we aim to train a
horse detector by transferring from a cow detector, and train
a bicycle detector by transferring from a motorbike detec-
tor. We compare four methods: 1) ‘Direct training’ learns
the DPM from a limited number of positive target samples
without transfer; 2) ‘RT-TRANS’ learns a target rigid tem-
plate by transferring part-like patches from the rigid tem-
plates of source models [6]; 3) ‘ASB-TRANS’ transfers the
root filters but only assembles without adapting the part fil-
ters of source models [8]; this can be done by modifying the
first term in (5) to constrain the parameters adaption only on
the root filter; and 4) ‘DPM-TRANS’ is our new method of
transferring and adapting entire DPM models.

The results are listed in Table 1. For both target classes
(horse and bicycle), our new transfer learning approach per-
forms the best. For example, for the horse-cow case, our
method (57%) outperforms both the source models (26%)
and the model directly trained on the given positive samples
only (48%); this indicates the benefit from transfer learning.
Our method performs dramatically better than RT-TRANS
(38%), a method transferring only root filters, which sug-
gests the importance of transferring part filters. Then the
superiority of our method to ASB-Trans (47%), a method
assembling part filters but not adjusting them, demonstrates
the importance of adjusting the part filters.

The DPMs learnt from different methods are illustrated
in Fig. 2, from which we can make the following three obser-
vations. 1) If we directly train a DPM from only a limited
number of target samples (Fig. 2 (a)), the resulting model

Table 1 AP (%) of different methods for between-category transfer.

Method horse (cow: 26.3) bicycle (motorbike: 52.5)

Direct training 47.6 ± 6.7 72.6 ± 3.7
RT-TRANS [6] 38.3 ± 9.7 69.1 ± 2.3
ASB-TRANS [8] 46.8 ± 8.6 61.3 ± 4.4
DPM-TRANS 56.5 ± 6.0 76.7 ± 3.3
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Fig. 2 Different DPMs in the horse-from-cow transfer.

Table 2 AP (%) of different methods for superior-to-subordinate trans-
fer.

Method horse cow sheep
(quadruped: 65.1) (quadruped: 56.8) (quadruped: 38.7)

Direct training 47.6 ± 6.7 39.8 ± 8.4 36.3 ± 3.4
RT-TRANS [6] 40.3 ± 8.7 37.5 ± 9.1 31.3 ± 3.3
ASB-TRANS [8] 65.0 ± 8.4 57.1 ± 8.0 39.2 ± 3.8
DPM-TRANS 69.6 ± 6.0 58.7 ± 7.3 40.8 ± 2.9

(Fig. 2 (b)) looks very poor for the target object. The shape
of the object in the root filter is distorted and obscure. Some
part filters deviate from their supposed positions, and the
captured local features are over-fitting to the limited sam-
ples. 2) With the help of the prior knowledge from the sim-
ilar source model (the cow model in Fig. 2 (c)), the transfer
learnt model in Fig. 2 (d) has a well-shaped root filter and
well-located part filters. 3) The head filter (P1) and two fore-
leg filters (P2, P3) in Fig. 2 (f) are more horse-shaped than
the corresponding source filters in Fig. 2 (e). This demon-
strates that the parameters adaption in the proposed method
help the transfer learnt filters to fit the target object better.

The superior-to-subordinate transfer experiments are
performed on the horse, cow and sheep categories. The
superior category ‘quadruped’ is defined as a union of the
three categories. The model of quadruped is trained from
100 randomly selected side-view samples of the three cate-
gories. Then we aim to train a specific subordinate detector
by transferring from the quadruped detector.

The evaluation results are presented in Table 2. For all
the three subordinate categories, our approach performs the
best and also consistently better than the superior category
detector. It indicates that a generic detector can be further
adapted to a specific subordinate by the proposed method.

In summary, the experiments for both the between-
category transfer and superior-to-subordinate transfer

clearly demonstrate the benefit of performing the DPM-
based transfer learning for object detection.

4. Conclusions

We have proposed a new DPM-based transfer learning
method for object detection. Our method can transfer and
adapt both the root and part filters to the target samples. Our
experiments demonstrated that this strategy can lead to a de-
tector superior to some state-of-the-art methods.

Our main future work is to investigate how to select
appropriate auxiliary models to further enhance our method.
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