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Noise-Robust Voice Conversion Based on Sparse Spectral Mapping
Using Non-negative Matrix Factorization
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SUMMARY This paper presents a voice conversion (VC) technique for
noisy environments based on a sparse representation of speech. Sparse
representation-based VC using Non-negative matrix factorization (NMF) is
employed for noise-added spectral conversion between different speakers.
In our previous exemplar-based VC method, source exemplars and target
exemplars are extracted from parallel training data, having the same texts
uttered by the source and target speakers. The input source signal is repre-
sented using the source exemplars and their weights. Then, the converted
speech is constructed from the target exemplars and the weights related
to the source exemplars. However, this exemplar-based approach needs to
hold all training exemplars (frames), and it requires high computation times
to obtain the weights of the source exemplars. In this paper, we propose a
framework to train the basis matrices of the source and target exemplars so
that they have a common weight matrix. By using the basis matrices instead
of the exemplars, the VC is performed with lower computation times than
with the exemplar-based method. The effectiveness of this method was con-
firmed by comparing its effectiveness (in speaker conversion experiments
using noise-added speech data) with that of an exemplar-based method and
a conventional Gaussian mixture model (GMM)-based method.
key words: voice conversion, sparse representation, non-negative matrix
factorization, noise robustness

1. Introduction

The human voice contains a variety of information, such as
linguistic information, speaker individuality, emotional in-
formation, and so on. Voice conversion (VC) is a technique
for converting specific information in an input speech while
maintaining the other information in the utterance. One of
the most popular VC applications is speaker conversion [1].
In speaker conversion, a source speaker’s voice individual-
ity is changed to a specified target speaker’s so that the input
utterance sounds as if it had been spoken by a specified tar-
get speaker. In recent years, VC has been used for speaker
adaptation in text-to-speech (TTS) systems or for automatic
speech recognition (ASR) [2].

There have also been studies on several tasks that make
use of VC. Emotion conversion is a technique for chang-
ing emotional information in input speech while maintain-
ing linguistic information and speaker individuality [3], [4].
VC is also being adopted as assistive technology that recon-
structs a speaker’s individuality in electrolaryngeal speech
or disordered speech [5], [6]. These studies show the varied

Manuscript received September 27, 2013.
Manuscript revised January 17, 2014.
†The authors are with the Graduate School of System Infor-

matics, Kobe University, Kobe-shi, 657–8501 Japan.
††The authors are with Organization of Advanced Science and

Technology, Kobe University, Kobe-shi, 657–8501 Japan.
a) E-mail: aihara@me.cs.scitec.kobe-u.ac.jp

DOI: 10.1587/transinf.E97.D.1411

uses of VC.
Many statistical approaches to VC have been stud-

ied [1], [7], [8]. Among these approaches, the GMM-based
mapping approach [1] is widely used. In this approach, the
conversion function is interpreted as the expectation value
of the target spectral envelope. The conversion parameters
are evaluated using Minimum Mean-Square Error (MMSE)
on a parallel training set. A number of improvements in
this approach have been proposed. Toda et al. [9] introduced
dynamic features and the global variance (GV) of the con-
verted spectra over a time sequence. Helander et al. [10]
proposed transforms based on partial least squares (PLS)
in order to prevent the over-fitting problem associated with
standard multivariate regression. There have also been ap-
proaches that do not require parallel data that make use of
GMM adaptation techniques [11] or eigen-voice GMM (EV-
GMM) [12], [13].

However, the effectiveness of these approaches was
confirmed with clean speech data, and their utilization in
noisy environments was not considered. The noise in the in-
put signal is not only output with the converted signal, but
may also degrade the conversion performance itself due to
unexpected mapping of source features. Hence, a VC tech-
nique that takes into consideration the effect of noise is of
interest. In this paper, we propose noise-robust VC based
on sparse representation.

Recently, approaches based on sparse representations
have gained interest in a broad range of signal processing.
In the field of speech processing, non-negative matrix fac-
torization (NMF) [14] is a well-known approach for source
separation and speech enhancement [15], [16]. In these ap-
proaches, the observed signal is represented by a linear
combination of a small number of atoms, such as the ex-
emplar and basis of NMF. In some approaches for source
separation, the atoms are grouped for each source, and the
mixed signals are expressed with a sparse representation of
these atoms. By using only the weights of the atoms re-
lated to the target signal, the target signal can be recon-
structed. Gemmeke et al. [17] also propose an exemplar-
based method for noise-robust speech recognition. In that
method, the observed speech is decomposed into the speech
atoms, noise atoms, and their weights. Then the weights of
the speech atoms are used as phonetic scores (instead of the
likelihoods of hidden Markov models) for speech recogni-
tion.

In [18], we discussed an exemplar-based VC technique
for noisy environments. In that report, source exemplars
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and target exemplars are extracted from the parallel training
data, having the same texts uttered by the source and tar-
get speakers. Also, the noise exemplars are extracted from
the before- and after-utterance sections in an observed sig-
nal. For this reason, no training processes related to noise
signals are required. The input source signal is expressed
with a sparse representation of the source exemplars and
noise exemplars. Only the weights related to the source ex-
emplars are picked up, and the target signal is constructed
from the target exemplars and the picked-up weights. This
method showed better performances than the conventional
GMM-based method in speaker conversion experiments us-
ing noise-added speech data. However, this exemplar-based
approach needs to hold all training exemplars (frames), and
it requires high computation times to obtain the weights of
the source exemplars.

In this paper, we propose a framework to train the ba-
sis matrices of source and target exemplars so that they have
a common weight matrix. The basis matrix of the source
exemplars is trained using NMF, and then the weight ma-
trix of the source exemplars is obtained. Next, the basis
matrix of the target exemplars is trained using NMF, where
the weight matrix is fixed to that obtained from the source
exemplars. By using the basis matrices instead of the exem-
plars, the VC is performed with lower computation times
than with the exemplar-based method. The effectiveness
of this method was confirmed by comparing its effective-
ness (in speaker conversion experiments using clean speech
data and noise-added speech data) with that of an exemplar-
based method and the conventional Gaussian mixture model
(GMM)-based method.

The rest of this paper is organized as follows: In
Sect. 2, baseline GMM-based VC is introduced. In Sect. 3,
basic idea of NMF-based VC is described. In Sect. 4, our
noise-robust VC is proposed. In Sect. 5, the experimental
data is evaluated, and the final section is devoted to our con-
clusions.

2. Baseline Gaussian Mixture Model-Based Voice Con-
version

A joint density Gaussian mixture model (JD-GMM) method
is one of the most successful VC methods because of its
flexibility and good performance [1]. This section describes
a VC method based on JD-GMM.

2.1 Probability Density Function

JD-GMM VC is divided into two phases: training and con-
version phases. In the training phase, a mapping function
between the source and target spectrum is estimated. Let xt

and yt be the source and target D-dimensional feature vec-
tors at the t-th frame, respectively. A dynamic time warping
(DTW) algorithm is used to align these vectors. Defining the
paired feature zt = [xt

T , yt
T ]T , its joint probability density is

set as

p(zt |θ(z)) =
M∑

m=1

αmN(zt;μ
(z)
m ,Σ

(z)
m ) (1)

where θ(z) is a parameter set of the weight αm, source mean
vector μ(x)

m , target mean vector μ(y)
m , and covariance matrix

Σ(z), and they are given by

Σ(z)
m =

[
Σ

(xx)
m Σ

(xy)
m

Σ
(yx)
m Σ

(yy)
m

]
, μ(z)

m =

[
μ(x)

m

μ(y)
m

]
.

The normal distribution with μ and Σ is denoted as N(μ,Σ).
The prior probability αm of the m-th mixture is constrained
by ΣM

m=1αm = 1. The matrices Σxx
m and Σyy

m are the covari-
ance matrix of the m-th mixture component for the source
and that for the target, respectively. The matrices Σxy

m and
Σ

yx
m are the cross covariance matrices of the m-th mixture

component for the source and the target, respectively. In
this study, these covariance matrices Σxx

m , Σyy
m , Σxy

m and Σyx
m

are diagonal. These parameters are estimated by using the
expectation-maximization (EM) algorithm.

2.2 Mapping Function

In the conversion phase, estimated parameters are used to
implement the conversion function. Given xt, the likelihood
function of yt is given by

P(y; xt, θ
z) =

M∑
m=1

P(m; xt, θ
z)P(y; xt,m, θ

z). (2)

The m-th conditional probability distribution is given by

P(m; xt, θ
(z)) =

αmN(xt;μ
(x)
m ,Σ

(xx)
m )∑M

m=1 N(xt;μ
(x)
m ,Σ

(xx)
m )

(3)

P(y; xt,m, θ
z) = N(yt; E(y)

m,t,D
(y)
m ) (4)

E(yt)
m,t = μ

(y)
m + Σ

(yx)
m (Σ(xx)

m )−1(xt − μ(x)
m ) (5)

D(y)
m = Σ

(yy)
m − Σ(yx)

m (Σ(xx)
m )−1Σ

(xy)
m . (6)

The conversion function F(x), which is implemented
with mean square error, is used to get the target feature ŷ as
follows:

ŷ = F(x) (7)

=

∫
P(yt; xt, θ

(z))dyt (8)

=

∫ M∑
m=1

P(m; xt, θ
(z))P(yt; xt, θ

(z))ytdyt (9)

=

M∑
m=1

P(m; xt, θ
(z))E(y)

m,t. (10)

In each mixture component, the conditional target
mean vector for the given source feature vector is calculated
using a simple linear conversion as shown in (5). The con-
verted feature vector is defined as the weighted sum of the
conditional mean vectors in (10).
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Although the GMM-based mapping function works
well and is widely used, the effectiveness of this method
has only evaluated using clean speech data. In a real envi-
ronment, background noise is inevitable and it may deterio-
rate the performance of conversion. In order to maintain the
quality of the performance of VC in a noisy environment,
some noise reduction method must be added.

3. Voice Conversion Using Non-negative Matrix Fac-
torization (NMF)

NMF is a well-known algorithm for noise suppression based
on sparse representation. This section describes a basic VC
method using NMF [18].

3.1 Basic Idea of NMF-Based Voice Conversion

In the approaches based on sparse representations, the ob-
served signal is represented by a linear combination of a
small number of atoms.

xl ≈
J∑

j=1

a jh j,l = Ahl (11)

xl is the l-th frame of the observation. a j and h j,l are the
j-th atom and the weight, respectively. A = [a1 . . . aJ] and
hl = [h1,l . . . hJ,l]T are the collection of the atoms and the
stack of weights. When the weight vector hl is sparse, the
observed signal can be represented by a linear combination
of a small number of atoms that have non-zero weights. In
this paper, the collection of atoms A and the weight vector
hl are called ‘dictionary’ and ‘activity’, respectively. For the
frame sequence data X = [x1 . . . xL], (11) is expressed as the
inner product of two matrices.

X ≈ AH (12)

X = [x1 . . . xL], H = [h1 . . .hL] (13)

L is the number of the frames.
Figure 1 shows the schema of the VC method based on

the sparse representation. D, L, and J are the numbers of
dimensions, frames and atoms, respectively. In this method,
the parallel dictionaries, which consist of source and target

Fig. 1 Voice conversion based on sparse representation.

dictionaries of the same size, are used to map the source sig-
nal to the target one. The parallel dictionaries are structured
from the parallel training data, which have the same texts
uttered by the source and target speakers. First, they are
labeled by using forced-alignment from phoneme-HMMs
recognition. Then, each labeled area is stretched so that
they have same number of frames by using dynamic time
wrapping (DTW). In this paper, DTW alignment allows du-
plicated frames.

This VC method can be combined with an NMF-based
noise reduction method. Then, the noise dictionary is ex-
tracted from the before- and after-utterance sections in an
observed signal, and the noise dictionary is concatenated
with the source dictionary. The noisy source signal is ex-
pressed with a sparse representation of the source dictionary
and noise dictionary. Only the weights related to the source
dictionary are picked up, and the target signal is constructed
from the target dictionary and the picked-up weights.

3.2 Problem

This method assumes that when the source signal and the
target signal (which are the same words but spoken by dif-
ferent speakers) are expressed with sparse representations of
the source dictionary and the target dictionary, respectively,
the obtained activity matrices are approximately equivalent
as shown in Fig. 2. Based on this assumption, the activity of
the source signal estimated with the source dictionary can
be substituted for that of the target signal.

Figure 3 shows the activity matrices estimated from
the source and target words uttered (‘ikioi’) and their dic-
tionaries. To show an intelligible example, each dictionary
was structured from just the one word “ikioi” and aligned
with DTW. The source/target features and each atom in the
dictionary are a spectral envelope extracted by STRAIGHT
analysis [19]. When the source/target signals and its dictio-
nary are the same word, the estimated activity will have high
energies through the diagonal line. The reason some areas
far from the diagonal line, such as the red-circled areas, also
have high energies is that these areas correspond to the same
utterance ‘i’.

Fig. 2 Assumption of the parallelism of source and target dictionaries.
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Fig. 3 Activity matrices of the source signal (left) and target signal
(right).

Therefore, as shown in Fig. 1, the input source signal
is represented using the source dictionary and the activity.
Then, the converted speech is constructed from the target
dictionary and the activity related to the source dictionary.

However, this exemplar-based approach defines the
parallel dictionary using the parallel training data. Hence,
this method needs to hold all training exemplars (frames),
and it requires high computation times to obtain the weights
of the source exemplars. In conventional NMF-based noise
reduction methods, dictionary A is defined with much fewer
bases. In [17], 4,000 bases are chosen from real speech fea-
tures and used as A. In [20], a small number of bases of A
are trained using NMF. However, when the basis matrices of
the source exemplars and target exemplars are trained using
NMF independently, the parallelism of the source and target
dictionaries shown in Fig. 2 is lost.

Therefore, in this paper, we propose a framework to
train the basis matrices of source and target exemplars so
that they have a common weight matrix. By using the ba-
sis matrices instead of the exemplars, VC can be performed
with lower computation times than with the exemplar-based
method.

4. Proposed Method

This section describes the proposed framework for training
the basis matrices of the source and target exemplars.

4.1 Dictionary Construction for a Noisy Environment

In the preceding section, both dictionaries (source and
target) consisted of the same spectral envelope features
(STRAIGHT spectrum) for simplicity in explaining the pro-
posed method. Indeed, the use of these features worked
without any problems in a preliminary experiment using
clean speech data. However, when it came to constructing a
noise dictionary, STRAIGHT analysis could not express the
noise spectrum well since STRAIGHT itself is an analysis
and synthesis method for speech data. In order to express the
noisy source speech with a sparse representation of source
and noise dictionaries, a simple magnitude spectrum calcu-
lated using short-time Fourier transform (STFT) is used to
construct the source and noise dictionaries.

Fig. 4 Construction of source and target dictionaries.

Figure 4 shows the process for constructing parallel
dictionaries. Parallel dictionaries are constructed from clean
speech data. For the target training speech, a STRAIGHT
spectrum is used to extract its dictionary. Mel-cepstral
coefficients are estimated from the STRAIGHT spectrum
and used for DTW. For the source training speech, on the
other hand, the STRAIGHT spectrum is converted into mel-
cepstral coefficients and only used for DTW in order to
align the temporal fluctuation, and the magnitude spectrum
is used to extract its dictionary. When an input source sig-
nal is converted, the source signal is also applied to STFT
and STRAIGHT analysis. The magnitude spectrum is used
to extract the noise dictionary and to estimate the activity.
The STRAIGHT spectrum, F0 and aperiodic components
are used to synthesize the converted signal.

4.2 Training of the Parallel Basis Matrices

We optimize the source basis matrix As and target basis ma-
trix At so that when the source signal and target signal are
expressed with the sparse representations of As and At, re-
spectively, the obtained activity matrices are equivalent, as
shown in Fig. 2.

Table 1 shows the algorithm of the training of the par-
allel basis matrices. At first, for the training source data
(exemplars) Xs, the basis matrix As and the activity matrix
Hs are optimized using NMF with the sparse constraint [17].
In the framework of NMF with the sparse constraint, it min-
imizes the following cost function:

d(Xs,AsHs) + ||(λtrain1(1×L)). ∗Hs||1
s.t. As, Hs ≥ 0. (14)

Here, .∗ and 1 are an element-wise multiplication and an
all-one vector, respectively. The first term is the Kullback-
Leibler (KL) divergence between Xs and AsHs. The second
term is the sparse constraint with the L1-norm regularization
term that causes Hs to be sparse. λtrain is the weight of the
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Table 1 Algorithm of the training of the parallel basis matrices.

Training of source basis matrix As

• Set source training exemplars to Xs

• Optimize As and Hs by (15) and (16)
Training of target basis matrix At

• Set target training exemplars to Xt

• Fix the activity matrix to Hs, and optimize At by (18)

sparse constraint. As and Hs minimizing (14) are estimated
iteratively applying the following update rules:

As
n+1 = As

n. ∗ (Hs
n(Xs./As

nHs
n)T./(Hs

n1(L×D)))
T

(15)

Hs
n+1 = Hs

n. ∗ (AsT

n (Xs./(As
nHs

n)))

./(AsT

n 1(J×L) + λtrain1(1×L)) (16)

where ./ is an element-wise division.
Next, using the activity matrix Hs obtained by (16),

the target basis matrix At of the training target exemplars
Xt is optimized. Then, At is optimized so that the activity
matrix is equivalent to Hs, i.e. At is optimized to minimize
the following cost function:

d(Xt,AtHs) s.t. At ≥ 0. (17)

In this optimization, the activity matrix is fixed to Hs, and
only At is updated by the following update rule:

At
n+1 = At

n. ∗ (Hs(Xt./At
nHs)T./(Hs1(L×D)))T. (18)

At
n and At

n+1 represent the target basis matrices of the n-th
and the (n + 1)-th iteration, respectively.

4.3 Voice Conversion of Noisy Source Signal

4.3.1 Estimation of Activity from Noisy Source Signal

Figure 5 shows the conversion framework of our method.
The exemplars (frames) of the noise are extracted from the
before- and after-utterance sections in the observed (noisy)
signal, and the noise dictionary is structured from the noise
exemplars for each utterance. For this reason, no training
processes related to noise signals are required. In the ap-
proach based on the sparse representation, the spectrum of
the noisy source signal at frame l is approximately expressed
by a non-negative linear combination of the clean source
dictionary, noise dictionary, and their activities.

xl = xs
l + xn

l

≈
J∑

j=1

as
jh

s
j,l +

K∑
k=1

an
khn

k,l

= [ÂsAn]

[
hs

l
hn

l

]
s.t. hs

l ,h
n
l ≥ 0

= Ahl s.t. hl ≥ 0 (19)

xs
l and xn

l are the magnitude spectra of the source signal and
the noise, respectively. Âs, An, hs

l and hn
l are the source dic-

tionary (basis matrix) trained by (15), noise dictionary (ex-
emplars), and their activities at frame l, respectively. Given

Fig. 5 Proposed noise-robust voice conversion.

the spectrogram, (19) can be written as follows:

X ≈ [ÂsAn]

[
Hs

Hn

]
s.t. Hs,Hn ≥ 0

= AH s.t. H ≥ 0. (20)

In order to consider only the shape of the spectrum, X,
Âs and An are first normalized for each frame so that the
sum of the magnitudes over frequency bins equals unity.

M = 1(D×D)X

X̄ ← X./M

Ā ← A./(1(D×D)A) (21)

X̄ and Ā are normalized A and X, respectively. The joint
matrix H is estimated based on NMF with the sparse con-
straint that minimizes the following cost function:

d(X̄, ĀH) + ||(λconv1(1×L)). ∗H||1 s.t. H ≥ 0. (22)

The weights of the sparsity constraints can be defined
for each basis and exemplar by defining λconv

T =

[λ1 . . . λJ . . . λJ+K]. In this paper, the weights for source
bases [λ1 . . . λJ] were set to 0.15, and those for noise ex-
emplars [λJ+1 . . . λJ+K] were set to 0. H minimizing (22) is
estimated iteratively applying the following update rule:

Hn+1 = Hn. ∗ (ĀT(X̄./(ĀH)))

./(1((J+K)×L) + λconv1(1×L)). (23)

Hn and Hn+1 represent the activity matrices of the n-th and
the (n + 1)-th iteration, respectively.

4.3.2 Target Speech Construction

From the estimated joint matrix H, the activity of source sig-
nal Hs is extracted, and by using the activity and the target
dictionary, the converted spectral features are constructed.

Then, the target dictionary is also normalized for each
basis in the same way the source dictionary was.

Ât ← Ât./(1(D×D)Ât) (24)

Ât is the target dictionary (basis matrix) trained by (18) and
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Ât is the normalized target dictionary of Ât. Next, the nor-
malized target spectral feature is constructed, and the mag-
nitudes of the source signal calculated in (21) are applied to
the normalized target spectral feature.

X̂t = (ÂtHs). ∗M (25)

The target speech is synthesized using a STRAIGHT syn-
thesizer. Then, F0 information is converted using a con-
ventional linear regression based on the mean and standard
deviation as follows:

ŷt =
σ(y)

σ(x)
(xt − μ(x)) + μ(y) (26)

where xt, ŷt, μ(x), μ(y), σ(x), and σ(y) are a log F0 of the
source speaker and the converted F0 at frame t, mean of the
source and target speaker’s log F0, standard deviation of the
source and target speaker’s log F0, respectively. Mean and
standard deviation are calculated from training data of the
source and target speaker.

5. Experiments

5.1 Experimental Conditions

The proposed VC technique was evaluated by comparing
it with an exemplar-based method [18] and a conventional
GMM-based method [1] in a speaker-conversion task using
clean speech data and noise-added speech data. The source
speaker and target speaker were one male and one female
speaker, whose speech is stored in the ATR Japanese speech
database [21], respectively. The sampling rate was 8 kHz.

A total of 216 words of clean speech were used to
construct parallel dictionaries in the methods based on the
sparse representation and used to train the GMM in the
GMM-based method. In the exemplar-based method, the
number of exemplars of the source and target dictionar-
ies was 58,426. Then, in our proposed method, several
bases were trained from the exemplars for each dictionary.
Twenty-five sentences of clean speech or noisy speech were
used in the evaluation. The noisy speech was created by
adding a noise signal recorded in a restaurant (taken from
the CENSREC-1-C database [22]) to the clean speech sen-
tences. The SNR was 15 dB. The noise dictionary is ex-
tracted from the before- and after-utterance sections in the
evaluation sentence. The average number of exemplars in
the noise dictionary for one sentence was 110.

In the methods based on sparse representation, a 257-
dimensional magnitude spectrum was used as the feature
vectors for the input signal, source dictionary and noise dic-
tionary, and a 513-dimensional STRAIGHT spectrum was
used for the target dictionary. The number of iterations
used to estimate the activity was 500. In the GMM-based
method, the 1st through 40th linear-cepstral coefficients ob-
tained from the STRAIGHT spectrum were used as the fea-
ture vectors. The number of mixtures was 64.

Table 2 Spectral distortion improvement ratio (SDIR) [dB] for noisy
speech.

SDIR [dB] time [s]
Proposed (1,000 bases) 5.14 30
Proposed (2500 bases) 4.68 75
Proposed (5,000 bases) 4.38 137
Exemplar-based (58,426 exemplars) 5.23 910
Exemplar-based (1,000 exemplars) 4.91 30
GMM-based (64 mixtures) 4.11 1

5.2 Experimental Results

Table 2 shows the spectral distortion improvement ratio
(SDIR) [dB] and the computation time of the conversion
method (1 sentence on Intel Core i7 2.80 GHz personal
computer) for noisy input source signal. In our proposed
method, 1,000, 2,500 and 5,000 bases were trained from
the exemplars for each dictionary. In the exemplar-based
method, all 58,426 exemplars and 1,000 exemplars (which
are chosen randomly) are used. The SDIR is defined as fol-
lows.

SDIR[dB] = 10 log10

∑
d |Xt(d) − Xs(d)|2∑
d |Xt(d) − X̂t(d)|2 (27)

Here, Xs, Xt and X̂t are normalized so that the sum of the
magnitudes over frequency bins equals unity. As shown in
this table, the distortion improvement for the methods based
on the sparse representation was higher than the GMM-
based method regardless of the number of the trained bases.
In our proposed method, the case of 1,000 bases shows the
best distortion improvement. The distortion improvement
of the proposed method was slightly lower than that of the
exemplar-based method which uses all 58,426 exemplars.
However, compared to the exemplar-based method (which
uses 1,000 exemplars) our proposed method obtained higher
distortion improvement. Moreover, for obtaining the activ-
ity matrix, the computation time of the proposed method
(which uses 1,000 exemplars) was about 30 times faster than
that of the exemplar-based method, which uses all 58,426
exemplars. The computation time is reduced as the number
of the bases is reduced.

We performed a mean opinion score (MOS) test [23]
on the naturalness and speaker individuality of the converted
speech. In the opinion test, the opinion score was set to a 5-
point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad).
The tests were carried out with 7 subjects. For the evaluation
of naturalness, each subject listened to the converted speech
and evaluated how natural the sample sounded. For the eval-
uation of speaker individuality, each subject listened to the
target speech. Then the subject listened to the converted
speech and evaluated how similar the converted speech and
the target one were.

Figure 6 shows the mean opinion scores (MOS) for
each method. The error bars show 95% confidence inter-
vals. As shown in this figure, when clean speech data was
used, the performances of the three methods were not so
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Fig. 6 Mean opinion scores (MOS) for each method.

different under both evaluation criteria. However, when
noisy speech data was used, the performances of the GMM-
based method degraded considerably, especially in natural-
ness. This might be because the noise caused unexpected
mapping in the GMM-based method, and the speech was
converted with a lack of naturalness. On the other hand,
the degradations of the performances of the VC methods
based on the sparse representation were less than those of
the GMM-based method. The performances of the proposed
method were slightly lower than those of the exemplar-
based method when noisy speech data was used.

6. Conclusions

In this paper, we discussed a noise-robust VC technique
based on sparse representation. We proposed a framework
to train the basis matrices of source and target exemplars so
that they have a common activity matrix. The basis matrix of
the source exemplars is trained using NMF. Then, the basis
matrix of the target exemplars is trained using NMF, where
the weight matrix is fixed to that obtained from the source
exemplars. By using the basis matrices instead of the ex-
emplars, the VC is performed with lower computation times
than with the exemplar-based method. When a noisy input
signal is converted to the target signal, the noise exemplars
are extracted from the before- and after-utterance sections
in an observed signal. The noisy signal is expressed with
a sparse representation of the source basis matrix and noise
exemplars. The target signal is constructed from the target
basis matrix and the activity matrix related to the source ba-
sis matrix.

In comparison experiments between the proposed
method, an exemplar-based method and a conventional
GMM-based method, the proposed method showed bet-
ter performances than the GMM-based method when eval-
uating noisy speech. The performances of the proposed
method were slightly lower than those of the exemplar-
based method when noisy speech data was used. But for
obtaining the activity matrix, the computation time of the
proposed method was about 30 times faster than that of the
exemplar-based method.

However, the proposed method still requires higher

computation times than that of the GMM-based method.
While our proposed method took about 30 seconds to con-
vert the speech features for 1 sentence, the GMM-based
method took about 1 second to do this. In future work, we
will investigate the optimal number of bases and evaluate
the performances under other noise conditions.

In this paper, the source and target dictionaries are es-
timated separately. We can estimate the source and target
dictionaries simultaneously by using the joint vector of the
source and the target features just as is done in the conven-
tional GMM-based VC. However, the performance of that
method, which was evaluated experimentally, is worse than
our proposed method. We will also try to improve the per-
formance of that method.

In [24], exemplar-based VC using temporal informa-
tion is proposed. We will also try to introduce dynamic
information, such as segment features. In addition, this
method has a limitation in that it can be applied to only one-
to-one voice conversation because it requires parallel speech
data having the same texts uttered by the source and target
speakers. Hence, we will investigate a method that does not
use parallel data. Future work will also include efforts to
study other noise conditions, such as a low-SNR condition,
and apply this method to other VC applications.
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