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Texture Representation via Joint Statistics of Local Quantized
Patterns

Tiecheng SONG†a), Nonmember, Linfeng XU†, Student Member, Chao HUANG†, and Bing LUO†, Nonmembers

SUMMARY In this paper, a simple yet efficient texture representation
is proposed for texture classification by exploring the joint statistics of lo-
cal quantized patterns (jsLQP). In order to combine information of differ-
ent domains, the Gaussian derivative filters are first employed to obtain the
multi-scale gradient responses. Then, three feature maps are generated by
encoding the local quantized binary and ternary patterns in the image space
and the gradient space. Finally, these feature maps are hybridly encoded,
and their joint histogram is used as the final texture representation. Exten-
sive experiments demonstrate that the proposed method outperforms state-
of-the-art LBP based and even learning based methods for texture classifi-
cation.
key words: texture classification, Local Binary Patterns (LBP), Gaussian
derivative filter, ternary coding

1. Introduction

Local visual features have been widely studied in various
computer vision tasks such as image matching [1], segmen-
tation [2], texture classification [3], co-pattern discovery [4]
and face synthesis [5]. In the real world, texture images typ-
ically exhibit inter-class and intra-class variations such as
rotation, illumination, scale and view changes, making the
recognition task very difficult. Therefore, robust texture rep-
resentation that can handle well these unknown variations is
desired for most of these applications.

Up to now, many approaches have been proposed for
texture analysis such as co-occurrence statistics, Markov
random fields and Gabor filters. Recently, texton dictio-
nary based methods [6], [7] were introduced for texture rep-
resentation. These methods need to lean a texton dictionary,
and involve intensive data-to-cluster computation. The Lo-
cal Binary Pattern (LBP) was presented in [3] for texture
analysis, which is operationally simple and robust to image
rotation and monotonous illumination changes. These at-
tractive properties make the LBP a good choice in texture
classification [3] and face recognition [8].

A lot of variants based on the LBP were developed.
To capture the discriminative patterns, Liao et al proposed
the Dominant LBP (DLBP) [9] by considering the most fre-
quently occurred texture patterns. To allow for distant pixel
interaction, the global features of Gabor filter responses
were employed in [9] to complement the DLBP features.
For the same purpose, the Dominant Neighborhood Struc-
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ture (DNS) was introduced as the global features [10] to
complement the LBP features. To be robust to noise, Tan
and Triggs [11] proposed the Local Ternary Pattern (LTP)
to quantize the local differences into three levels. How-
ever, the split ternary coding adopted in the LTP can lead
to some information loss [12]. Recently, the Completed
LBP (CLBP) [12] and the Completed Local Binary Count
(CLBC) [13] were proposed by jointly encoding the local
difference sign, magnitude and the center pixel. Significant
results have been achieved by the CLBP and CLBC for tex-
ture classification.

In this paper, we propose a simple yet efficient im-
age representation for texture classification. The idea is to
characterize a texture by exploring the joint statistics of lo-
cal quantized (binary and ternary) patterns. To explore in-
formation of different domains, we first use the Gaussian
first derivative filters to obtain the multi-scale gradient re-
sponses. These gradient responses together with the raw im-
age are then quantized and encoded to generate three feature
maps. Finally, a hybrid encoding scheme is adopted, and the
joint statistical distribution is used to represent the texture.
Since the gradient responses are calculated at few scales and
the global thresholding is adopted in our ternary quantiza-
tion, our method is computationally efficient. Moreover, un-
like the textons based methods, our method needs no train-
ing and needs no costly clustering (via K-means). Extensive
experimental results demonstrate the advantages of our pro-
posed method.

2. The Proposed Method

In this section, we present a simple yet efficient texture rep-
resentation by exploring the joint statistics of local quan-
tized patterns (jsLQP). Our main contributions include: (1)
The new local ternary patterns (i.e., proposed LTP) based
on the multi-scale gradient responses are proposed via the
global thresholding. (2) The joint information in the image
and gradient domains is efficiently extracted and effectively
represented in a hybrid way. As illustrated in Fig. 1, our
method can be summarized as three steps: Gaussian deriva-
tive filtering, local pattern quantization and encoding, and
joint histogram representation. The details are given below.

2.1 Gaussian Derivative Filtering

The image gradients can provide discriminative structural
information. Exploring the joint statistics of local quantized
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Fig. 1 The pipeline of our proposed method.

patterns in the image and gradient domains is expected to
obtain robust and compact texture representation. In this
step, we employ the Gaussian first derivative filters to ob-
tain multi-scale gradient response maps. To be robust to the
global illumination changes, the input image is normalized
to have zero mean and unit standard deviation [7].

Let I be the normalized input image. The circularly
symmetric Gaussian at the position (x, y) is defined as

G(x, y) =
1

2πσ2
e
−(x2+y2)

2σ2 (1)

We compute the gradient response by

R(x, y) =
√

(I �Gx)2 + (I �Gy)2 (2)

where � is the convolution operator, and Gx and Gy are the
first derivative of the Gaussian in the x and y directions, re-
spectively.

In our work, we adopt the Gaussian first derivative fil-
ters of size 25 × 25 at three scales: σ1 = 1, σ2 = 2,
σ3 = 4 (they are set based on our empirical study, which
can achieve good classification results). The obtained three
gradient maps R1, R2 and R3 are show in Fig. 1. Since
these filters are computed at three scales, they are compu-
tationally efficient compared with the multi-scale and multi-
orientation MR8 [7] filters.

2.2 Local Pattern Quantization and Encoding

In this step, we encode the local quantized binary and
ternary patterns to generate feature maps both in the image
space and the gradient space. It is important to extract the bi-
nary and ternary patterns in different domains because they
can provide complementary information.

For binary patterns, the LBP operator [3] is applied to
the input image and the selected gradient map R3 (σ = 4) to
encode the micro-structure information. The rotation invari-
ant uniform pattern LBPriu2

P,R (x, y) [3] is adopted to encode
each pixel (x, y) (P is the total number of neighbors, R is the
radius of the neighborhood). This results in P + 2 possible
LBP labels. Thus, the binary coding map B1 for the input
image and B2 for the gradient map R3 can be obtained.

For ternary patterns, each gradient map Ri (i = 1, 2, 3)
is quantized into three levels via the global thresholding.
Unlike the LTP [11] that uses the fixed threshold, our quanti-
zation is self-adapted to the image content and it reveals the

Fig. 2 Illustration of the rotation invariance of the ternary coding maps.
Rows 1-4 are for the rotation angles of 0, 30, 60 and 90 degrees, respec-
tively. Left to right: the raw texture, the corresponding gradient maps R1,
R2, R3, the feature map T , and the statistical histogram of T .

(a) (b) (c)

Fig. 3 Classification accuracies of the proposed method with different
gradient maps on the (a) Outex database [14], (b) CUReT database [7], and
(c) UIUC [15] database, respectively. N denotes the number of training
images used for classifier learning for each texture class.

relative gradient intensity of each pixel against the overall
gradient intensity. Specifically, the quantization is accom-
plished by

ti(x, y) = q(Ri(x, y)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2, Ri(x, y) > (1 + τ)mi

0, Ri(x, y) < (1 − τ)mi

1, otherwise
(3)

where τ is a control parameter (τ = 0.4), and mi is a global
threshold depending on the mean of overall gradient re-
sponses:

mi =
1
|I|
∑
x,y

Ri(x, y) (4)

Subsequently, the ternary feature map T is generated by
jointly encoding the ternary labels as follows

T (x, y) =
3∑

i=1

ti(x, y)3i−1, T (x, y) ∈ [0, 26] (5)

Figure 2 illustrates the rotation invariance of the ternary
coding maps for texture samples captured at different rota-
tion angles. It can be seen that the generated gradient maps
R1, R2 and R3 and their jointly encoded feature map T are
statistically rotationally invariant. Figure 3 shows the clas-
sification accuracies of our method with different gradient
maps, which can be selected to produce the binary coding
map B2. It demonstrates that the gradient map R3 (σ = 4) is
a better choice.

2.3 Joint Histogram Representation

In this step, we explore the joint pixel-wise information that
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corresponds to different feature domains to characterize a
texture. The texture features are represented as a joint his-
togram which is built in a hybrid way.

Specifically, the labels of B1 and the ternary feature
map T are jointly encoded into a 2-D histogram:

H1(l, p) =
∑
x,y

δ((T (x, y), B1(x, y)) == (l, p)) (6)

where (l, p) (l ∈ [0, 26], p ∈ [0, P + 1]) is the entry of the
histogram H1, and

δ(z) =

{
1, if z is true
0, otherwise

(7)

Similarly, the B2 and T are also jointly encoded to form a
2-D histogram H2. Finally, H1 and H2 are both converted
into 1-D histograms and concatenated to represent the tex-
ture (see Fig. 1).

In this way, the pixel-wise information of different fea-
ture domains is explored via the joint statistics of local
quantized binary and ternary patterns. In our work, we set
R = 2, P = 16. Therefore, we obtain a 27× (P+2)×2 = 972
dimensional histogram representation.

3. Experimental Results

In this section, we compare the proposed jsLQP with state-
of-the-art LBP based and learning based (VZ MR8 [6] and
VZ Joint [7]) methods on the Outex [14], CUReT [7] and
UIUC [15] databases. Following the experimental setup in
[12] and [13], the chi-square dissimilarity metric [3] and the
nearest neighborhood classifier are adopted. The results for
VZ MR8 and VZ Joint on the Outex and CUReT databases
are quoted from [12], and the results on the UIUC database
are taken from [7].

3.1 Experimental Results on the Outex Database

For the Outex database, experiments are conducted on two
test suites: Outex TC 00010 (TC10) and Outex TC 00012
(TC12), each with 24 classes of textures collected under
three illuminations (“horizon”, “inca” and “t184”) and nine
rotation angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦).
There are 20 texture samples per class under each setting.
The 24×20 samples with illumination “inca” and angle 0◦
are used for classifier training. For TC10, the other samples
under eight rotation angles with illumination “inca” are used
for testing. For TC12, all samples under illumination “t184”
or “horizon” are used for testing.

The comparison results for different methods are given
in Table 1. The following remarks can be made. Firstly, the
proposed jsLQP yields the best classification performance
(with the average accuracy 99.39%) compared with other
methods for all the test sets. It demonstrates the robustness
of our method to rotation and illumination changes. Sec-
ondly, our method with compact representation outperforms
the multi-scale CLBP by 2.73%. Specifically, the proposed

Table 1 Classification accuracies (%) on the Outex database.

TC10
TC12

Avert184 horizon
LTP (R=2, P=16) 96.95 90.16 86.94 91.35
LTP (R=3, P=24) 98.20 93.59 89.42 93.74

Proposed LTP 96.90 95.65 95.46 96.00

CLBP S (R=2, P=16) 89.40 82.27 75.21 82.29
CLBC S (R=2, P=16) 88.67 82.57 77.41 82.88
CLBP S (R=3, P=24) 95.08 85.05 80.79 86.97
CLBC S (R=3, P=24) 91.35 83.82 82.75 85.97

CLBP S/M/C (R=2, P=16) 98.72 93.54 93.91 95.39
CLBC S/M/C (R=2, P=16) 98.54 93.26 94.07 95.29
CLBP S/M/C (R=3, P=24) 98.93 95.32 94.54 96.26
CLBC S/M/C (R=3, P=24) 98.78 94.00 93.24 95.67

CLBC CLBP (R=2, P=16) 98.83 93.59 94.26 95.56
CLBC CLBP (R=3, P=24) 98.96 95.37 94.72 96.35

Multi-scale CLBP (R=1, 2, 3) 99.17 95.23 95.58 96.66
Multi-scale CLBC (R=1, 2, 3) 99.04 94.10 95.14 96.09

DLBP+NGF [9] (R=2, P=16) 99.1 93.2 90.4 94.2
DLBP+NGF [9] (R=3, P=24) 98.2 91.6 87.4 92.4
DNS+LBP [10] (R=2, P=16) 98.90 93.22 92.13 94.75
DNS+LBP [10] (R=3, P=24) 99.27 94.40 92.85 95.51

VZ MR8 93.59 92.55 92.82 92.99
VZ Joint 92.00 91.41 92.06 91.82

Proposed jsLQP 99.95 98.96 99.26 99.39

jsLQP has 972 dimensions while the multi-scale CLBP has
2 × (10 × 10 + 18 × 18 + 26 × 26) = 2200 dimensions.

3.2 Experimental Results on the CUReT Database

The CUReT database† contains 61 classes of textures. There
are 92 images per class that are captured at different view-
points and illumination conditions. Following [12], [13], N
training images are randomly chosen from each class, and
the remaining 92 − N images are used for testing.

The classification results averaged over 100 random
splits of the training and test sets are presented in Ta-
ble 2. For this database, the proposed jsLQP again performs
best. Particularly, it has 1.43%, 2.55%, 4.02% and 5.6%
performance improvements over the multi-scale CLBP for
46, 23, 12 and 6 training samples, respectively. Our
method also outperforms the learning based VZ MR8 [6]
and VZ Joint [7] by a large margin. Note that the dimen-
sion of our jsLQP is much lower than that of VZ MR8 and
VZ Joint (i.e., 972 versus 2440). It demonstrates the power
of the joint statistics of local quantized patterns. In addi-
tion, the overall performance of the CLBP S is better than
that of the CLBC S on this database. It indicates that the
sign components of the LBP employed by our method are
informative and discriminative.

3.3 Experimental Results on the UIUC Database

The UIUC database has 25 texture classes, each having
40 textures imaged under significant viewpoint and scale

†http://www.robots.ox.ac.uk/∼vgg/research/texclass/
index.html
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Table 2 Classification accuracies (%) on the CUReT database.

N 46 23 12 6
LTP (R=2, P=16) 91.56 86.15 78.79 68.65
LTP (R=3, P=24) 92.51 87.69 80.89 71.31

Proposed LTP 89.86 84.28 77.33 68.36

CLBP S (R=2, P=16) 84.95 79.28 72.02 62.91
CLBC S (R=2, P=16) 78.92 73.99 67.86 59.88
CLBP S (R=3, P=24) 87.14 81.74 75.26 66.84
CLBC S (R=3, P=24) 78.19 73.29 67.74 60.51

CLBP S/M/C (R=2, P=16) 95.65 91.74 85.45 75.91
CLBC S/M/C (R=2, P=16) 95.48 91.19 84.27 74.00
CLBP S/M/C (R=3, P=24) 95.76 91.98 85.90 76.60
CLBC S/M/C (R=3, P=24) 95.05 90.66 83.55 73.13

CLBC CLBP (R=2, P=16) 96.01 92.01 85.57 75.76
CLBC CLBP (R=3, P=24) 96.11 92.29 85.95 76.26

Multi-scale CLBP (R=1, 2, 3) 97.00 93.57 87.66 78.26
Multi-scale CLBC (R=1, 2, 3) 96.76 93.01 86.34 76.17

DNS+LBP [10] (R=2, P=16) 95.00
DNS+LBP [10] (R=3, P=24) 94.52

VZ MR8 97.79 95.03 90.48 82.90
VZ Joint 97.66 94.58 89.40 81.06

Proposed jsLQP 98.43 96.12 91.68 83.86

Table 3 Classification accuracies (%) on the UIUC database.

N 20 15 10 5
LTP (R=2, P=16) 78.75 75.60 70.41 60.06
LTP (R=3, P=24) 82.08 78.91 73.42 62.56

Proposed LTP 84.35 81.68 77.61 69.22

CLBP S (R=2, P=16) 60.49 56.67 51.19 42.09
CLBC S (R=2, P=16) 62.80 59.07 53.26 43.14
CLBP S (R=3, P=24) 64.06 60.16 54.16 44.63
CLBC S (R=3, P=24) 67.10 63.02 57.32 47.22

CLBP S/M/C (R=2, P=16) 91.32 89.46 86.34 79.01
CLBC S/M/C (R=2, P=16) 90.98 89.44 86.71 79.79
CLBP S/M/C (R=3, P=24) 91.42 89.37 85.93 78.01
CLBC S/M/C (R=3, P=24) 91.51 89.82 86.93 79.70

CLBC CLBP (R=2, P=16) 91.46 89.82 86.92 80.07
CLBC CLBP (R=3, P=24) 92.22 90.38 87.26 79.97

Multi-scale CLBP (R=1, 2, 3) 91.56 89.75 86.62 79.23
Multi-scale CLBC (R=1, 2, 3) 92.30 90.69 87.81 80.80

VZ MR8 92.94 91.16 88.29 81.12
VZ Joint 97.83 96.94 95.18 90.17

Proposed jsLQP 94.22 92.46 89.23 81.19

changes. As in [12], [13], N images per class are randomly
chosen for training and the remaining 40−N images are kept
for testing. The average accuracies over 100 randomly splits
of the training and test sets are listed in Table 3.

The following observations can be made. Firstly, the
proposed jsLQP has about 1.92%, 1.77%, 1.42% and 0.39%
performance gains over the multi-scale CLBC (1990 dimen-
sional features) for 20, 15, 10 and 5 training samples, re-
spectively. Secondly, the CLBC performs better than the
CLBP when R = 2 and R = 3 on this database. Despite the
weakness of the LBP, our method still shows very good per-
formance for scale and viewpoint changes. This is further
confirmed on the UIUC database, where the proposed 27-
D LTP via the global thresholding outperforms the original
LTP [11]. The reasons are two-fold. The first is to employ

the multi-scale gradient responses that account for the scale
changes. The second is to utilize the local quantized patterns
that are robust to viewpoint variations. Thirdly, the jsLQP
outperforms state-of-the-art learning based VZ MR8, and it
is second to VZ Joint. It is noticed that both the VZ MR8
and the VZ Joint have 2500 dimensions. More importantly,
our method is training-free, and involves no costly data-
to-cluster assignments. It suggests that exploring the joint
statistics of local quantized patterns is effective and efficient
for robust texture representation.

4. Conclusion

In this paper, we have proposed a simple yet efficient texture
representation by exploring the joint statistics of local quan-
tized (binary and ternary) patterns. The binary and ternary
patterns are efficiently extracted based on the raw image and
the multi-scale gradient responses. The information in the
image and gradient domains is sufficiently explored in a hy-
brid way. Our method is computationally simple in that
the gradient responses are calculated at few scales and the
global thresholding is adopted in the proposed ternary quan-
tization. Moreover, our method is training-free, and needs
no costly data-to-cluster assignments. Compared with ex-
isting LBP based and even learning based algorithms, im-
pressive classification results have been achieved. As fu-
ture work, we will improve our method by developing local
CLBC-like patterns that are robust to significant viewpoint
changes.
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