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PAPER

Motion Pattern Study and Analysis from Video Monitoring
Trajectory

Kai KANG†,††, Nonmember, Weibin LIU†,††a), Member, and Weiwei XING†††, Nonmember

SUMMARY This paper introduces an unsupervised method for mo-
tion pattern learning and abnormality detection from video surveillance.
In the preprocessing steps, trajectories are segmented based on their lo-
cations, and the sub-trajectories are represented as codebooks. Under our
framework, Hidden Markov Models (HMMs) are used to characterize the
motion pattern feature of the trajectory groups. The state of trajectory is
represented by a HMM and has a probability distribution over the possi-
ble output sub-trajectories. Bayesian Information Criterion (BIC) is in-
troduced to measure the similarity between groups. Based on the pair-
wise similarity scores, an affinity matrix is constructed which indicates
the distance between different trajectory groups. An Adaptable Dynamic
Hierarchical Clustering (ADHC) tree is proposed to gradually merge the
most similar groups and form the trajectory motion patterns, which im-
plements a simpler and more tractable dynamical clustering procedure in
updating the clustering results with lower time complexity and avoids the
traditional overfitting problem. By using the HMM models generated for
the obtained trajectory motion patterns, we may recognize motion patterns
and detect anomalies by computing the likelihood of the given trajectory,
where a maximum likelihood for HMM indicates a pattern, and a small
one below a threshold suggests an anomaly. Experiments are performed
on EIFPD trajectory datasets from a structureless scene, where pedestrians
choose their walking paths randomly. The experimental results show that
our method can accurately learn motion patterns and detect anomalies with
better performance.
key words: visual monitoring, trajectory clustering, Hidden Markov Mod-
els, hierarchical clustering, abnormal detection

1. Introduction

Recently, video surveillance has a wide range of applica-
tions in our daily life [1]. Wherever we go, a busy train
station, a parking lot or a shopping mall, there are hun-
dreds of cameras recording our behaviors. With the devel-
opment of the video surveillance system, more and more
videos have been produced [2], while most visual surveil-
lances rely on a human operator. No matter how vigilant the
operators are, a significant number of potentially important
events might be overlooked because of unavoidable infor-
mation overload. So, the reliability of automated detection
systems has become a primary issue [3]. The goal of our
work is to learn activities and interactions in a complicated
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and crowded scene [4].
Our aim is to provide visual surveillance systems

with an activity-based scene model that supports behavioral
understanding and analysis of the observed activity. We ex-
pect a visual surveillance system to discover typical types of
activities (e.g., pedestrian makes a U-turn) in these scenes
and then provide a summary of them; to detect abnormal
activities, e.g., pedestrians with high-speed or strangle be-
haviors; to learn interactions modeled as distribution over
global topics; and to predict behavior in the same group.
These applications have been paid more and more attention
in the human-computer interaction and virtual reality fields.

Learning motion pattern from trajectories has attracted
the attention of computer vision researchers. Most of the
existing learning methods are based on trajectory space at-
tribute. Some authors presented a similarity measure for au-
tomatically identifying important spatial structure of traffic
intersection using trajectories of vehicles [5]. Others clus-
tered foreground pixels using a fast accurate fuzzy K-means
algorithm. The cluster centroids of foreground pixels ensure
that each cluster centroid is associated with a moving object
in the scene [6]. The methods mentioned above have a com-
mon defect, which is that the trajectory clustering cannot be
represented as a motion pattern which obeys uniform distri-
bution.

To solve these problems, we must determine how to
model activities and interactions in crowded scenes. In this
paper we propose a Hidden Markov Model (HMM) method
for learning motion pattern, as shown in Fig. 1.

• Trajectories are translated into smooth and continuous
curve, and then segmented into sub-trajectories with
the same length, the sub-trajectories are then quantized
to a codebook;
• Every trajectory group can be modeled by a HMM,

which represents the relationship between observations
and states. The states of trajectory are hidden which are
connected by state transition probabilities;
• An affinity matrix can be constructed to represent dis-

similarity measures between different models. The tra-
jectories or trajectory groups with smaller distance are
merged and an Adaptable Dynamic Hierarchical Clus-
tering (ADHC) tree will be built by loop;
• Based on the method of HMM and ADHC, trajectory

motion patterns can be learned automatically. Using
the affinity matrix above, we can detect unusual events
by comparing the conformity scores.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Overview of motion pattern learning system.

The rest of the paper is organized as follows. Section 2 sur-
veys related works on trajectory representation and HMM
analysis. Section 3 explains the formation of HMM and
affinity matrices, based on which we can construct the
ADHC tree and detect the abnormal events. Section 4 dis-
cusses the experimental results of learning motion pattern
and detecting anomaly from a Forum scene. In Sect. 5, we
present a brief summary and conclusion with an outline of
future research in this area.

2. Related Works

Over the last few years, a number of trajectory clustering
techniques have been developed and applied to various sys-
tem models for transient stability assessment. B. Morris &
M. Trivedi [7] had enumerated a series of trajectory-based
activity analysis for visual surveillance. They not only pre-
sented a survey of trajectory-based activity analyses for vi-
sual surveillance, but also described techniques that used
trajectory data to define a general set of activities that were
applicable to a wide range of scenes and environments.

The most direct way for trajectory cluster is based on
spatial information. Imran N. Junejo [8] applied Hausdorff
distance to compare different trajectories and calculated the
edge weights of the similarity matrix. S. Atev [4] used stan-
dard K-means and its soft variant fuzzy C-means (FCM)
as their techniques, they also presented a similarity mea-
sure which was suitable for use with spectral clustering in
problems. However, they required all trajectories be nor-
malized to a fixed length. N. Sumpter [9] and W. Hu [10]
presented a novel approach to learning spatial-temporal pat-
terns of objects in image sequences, using a neural network
paradigm to predict future behavior. W. Hu [11] also in-
troduced the fuzzy Self-Organizing Neural Network based
method and make the learning process much more effi-
cient. C. Stauffer [12] and X. Wang [13] put forward Co-
Occurrence Decomposition, where trajectories were viewed
as a bag of words where similar bags contain similar words.
A co-occurrence matrix was formed from training data and
decomposed to build document subjects (routes).

David Biliotti [14] developed hierarchical clustering
method and provided tree structure for clustering dif-

ferent resolutions. There were two main hierarchical
clustering variants, agglomerative [15] and divisive [16],
which defined similarity relationships between trajectories
in a tree-like structure following a bottom-up or top-down
procedure. Using the concept of minimum average dis-
tance between machines oscillations exhibiting a common
behavior, Carlos Juarez [17] proposed an online a hierarchi-
cal clustered structure of the system that can be used for on-
line determination of multi-machine dynamic equivalents.
Fan Jiang [18] referred to a process of dynamic hierarchical
clustering (DHC), which differed from typical agglomera-
tive hierarchical clustering in that the data reclassification
process and the model retraining process were incorporated
into each clustering step.

M. Bennewitz [19] presented a visual activity analy-
sis module based on vehicle tracking, and encoded the spa-
tiotemporal motion characteristics of these motion paths by
a hidden Markov Model (HMM). L. Kratz [20] improved
his framework by constructing a coupled HMM that mod-
els the spatial relationship of motion patterns surrounding
each video region. He used this method to model the sta-
tionary structure of motion patterns in the video and iden-
tified a typical event as statistical anomalies. Faisal I.
Bashir [21] presented a framework to estimate the multi-
variate probability density function based on PCA coeffi-
cients of the sub-trajectories using Gaussian mixture mod-
els (GMMs). N. Suzuki [22] employed HMM to model
time-series features of human positions and then a simi-
larity matrix of HMM mutual distances was formed. F.
Porikli [23] and T. Xiang [24] also employed affinity ma-
trix and eigenvector decomposition, but one for detection
of usual events and another for dimension reduction on the
N dimensional feature space. H. Zhou [25] combined mul-
tiple video streams in the inference level, with a Coupled
Hidden Markov Model (CHMM), N. Oliver et al. [26] com-
pared HMMs with CHMMs for modeling interactions like
following and meeting, and showed that CHMMs are more
efficient and accurate. F. Jiang [27] used a dissimilarity mea-
sure between time series based on the Bayesian information
criterion (BIC), which confirmed to be more accurate than
usual dissimilarity process.

Our approach has reported some preliminary findings
to trajectory clustering using HMM and ADHC. In follow-
ing sections, we will present our model-based recognition
system that model trajectory group by HMM, cluster trajec-
tories by ADHC and detect abnormal by Affinity Matrix.

3. Motion Pattern Learning

A trajectory is a time series of coordinates representing
the motion path of an object over its life-time, i.e. number
of frames that object exists. The trajectories can be rep-
resented as T = {T1, · · · ,TP}, where P is the number of
trajectories. For the jth trajectory, we adopt the notation
T j = {(x1, y1, t1), · · · , (xQ, yQ, tQ)}, where the Q represents
the number of points, and t is time sequence.

In this work, we transfer the trajectory group feature
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Fig. 2 Relationship between trajectory group and HMM. Every trajec-
tory or trajectory group can be modeled as a HMM. The sub-trajectories
group in yellow circle can be represented as a state which emits a series
of observable outputs. The states transformed from one to another form a
chain of HMM.

sequences into a parameter space λ which is characterized
by a set of Hidden Markov Model (HMM) parameters [23].
The HMM is a probabilistic model composed of a num-
ber of interconnected states S ( j), each of which emits sev-
eral observable outputs Ot. Every HMM is characterized
by two probability distributions: the transition distribution
over states and the output distribution over the output ob-
servations. The observable outputs {O1, · · ·ON} will be en-
coded as a codebook. Since the states transition cannot be
observed indirectly through the sequence of output symbols,
and the states are said to be hidden. Figure 2 shows the re-
lationship between trajectory group and HMM.

3.1 Trajectory Preprocessing

The first issue is how to solve the problem of point leakage.
Since the trajectory sequence is ranked in chronological or-
der, we can check the time series to see whether there is
a point leakage. If there are L leaked points {1, · · · , L}, the
ith leaked point can be represented as the Different Value of
the start point and the end point:

Pleaked(i) = Pstart +
i

L + 1
(Pend − Pstart) (1)

To get observable outputs of HMM, a continuous trajec-
tory sequence T j is automatically segmented into K sub-
trajectory segments. The data of each sub-trajectory are
concatenated into a dimensionality reduction vector and the
set of sub-trajectories are processed for standardization sub-
space. F.I. Bashir [21] had represented a method of seg-
menting the trajectories at perceptually significant points of
change, the spatial curvature of a 2-D curve. But the trajec-
tories in our paper are structureless and they are too irregular
to use the curvature-based segment.

To build a codebook, we have to get a uniform
sampling of continuous trajectory. The Uniform Cu-
bic B-splines has been proved to be a simple and effec-
tive method to obtain a continuous trajectory. The term

Fig. 3 Building codebooks of trajectories. (a1) and (b1) are original tra-
jectories; (a2) and (b2) represent the codebook corresponding to them. For
long trajectories as (a1), the character can be retained; for detailed trajec-
tories as (b1), the particulars can be obvious.

“B-spline” is coined by Isaac Jacob Schoenberg and is short
for basis spline [28]. Given m+ n+ 1 points {P0, · · · Pm+n+1}
and the m+ 1 B-spline curves of degree n can be defined as:

S i,n(t) =
n∑

k=0

Pi+k · bk,n(t) (2)

where t ∈ [0, 1], i = 1, · · ·m. The bk,n(t) is a B-spline basis
function of degree n. Every B-spline curve can be confirmed
by n + 1 points. The basis B-splines of degree n can be
defined as:

bk,n(t)

=
1
n!

n−k∑

j=0

(−1) jC j
n+1(t + n − k − j)n (3)

where t ∈ [0, 1] and i = 1, · · ·m. The Uniform Cubic
B-spline is the most commonly used form of B-spline. We
get basis B-splines from Formula (3) when n = 3, the blend-
ing function can easily be calculated:

S i,3(t) =
1
6
·
[
1 t t2 t3

]

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pi

Pi+1

Pi+2

Pi+3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where t ∈ [0, 1] and i = 1, · · ·m.
To quantize position, the scene (640 × 480) is divided

into cells of size (20 × 20). The motion of a moving pixel
is uniformly sampled using Uniform Cubic B-splines and
quantized into a codebook as shown in Fig. 3. We set the
sampling number as 30. The trajectory character and detail
can be represented clearly from the codebook in Fig. 3.

3.2 Hidden Markov Model

We represent the trajectory group pattern as a Hidden
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Markov Model (HMM). The hidden states capture the tran-
sitive properties of the successive coordinates of the spa-
tiotemporal trajectory, and the sub-trajectories which can be
observed as distribution of different states are presented as
output symbols. The states sequence that maximizes the
probability is the corresponding model for the considering
trajectory. We propose to use the HMMs for trajectory clus-
tering and recognition applications.

In our work, the first parameter specified for the HMM
is the number of states. For each group of trajectories rep-
resented by a specific HMM, we set the number of states as
the number of sub-trajectories for that class.

When the number of states is fixed, the complete set of
HMM parameters describing the model can be given as the
following:

λ = {A, B, π,M,N} (5)

where A denotes the state transition probability matrix,
which is a matrix of size M × M. Output matrix B de-
notes the output probability between state and observation,
which is a matrix of size M × N. Vector π is the probabil-
ity of the given sub-trajectory state which is the first sub-
trajectory among all the trajectories. M and N represent the
states number and observations number respectively.

The HMM structure of a given trajectory groups is
shown in Fig. 2. Every clear circle represents a random vari-
able of a hidden state, and every shaded circle represents the
observation. Each state has a probability distribution over
the possible outputs. Each chain corresponds to one tra-
jectory group and the following observations correspond to
the sub-trajectories in this group. Every chain can be repre-
sented as a HMM.

Once the number of states is decided, the HMM pa-
rameter in Formula (5) will be estimated. For a given
trajectory, we split it into M sub-trajectories. The state
variable qt corresponding to the tth sub-trajectory is tacked
from one of M values qt ∈ {S 1, · · · , S M}. Since we as-
sume a Markov process, so the next probability distribu-
tion of qt+1 depends only on qt. This is described by the
above states transition probability matrix A whose element
ai j = Pr(qt+1 = S j|qt = S i) represents the probability that
qt+1 corresponding to state S j transmitted from qt corre-
sponding to S i. The initial states probabilities are denoted
as πi, which represent the probability that q1 equals to S i.
The observational data Ot for each state of the HMM corre-
sponds to the state of the instant at tth sub-trajectory, which
is denoted by b j(ot) = Pr(ot |qt = S j). The structure of our
HMM can be showed clearly in Fig. 2.

The parameters of the HMM can be initialized to ran-
dom values, and then final parameter estimated by the
forward-backward procedure [27]. To train the model max-
imizing the probability of the observation, we can choose
a proper λ = {A, B, π,M,N} such that Pr[O|λ] can be max-
imized locally using an iterative algorithm such as Baum-
Welch method [29]. Finally, we can get a set of reasonable
parameters for HMM. This procedure is called the maxi-
mum likelihood estimate of HMM.

Pr[O | λ] =
∑

M

Pr[O | S , λ] · Pr[S | λ]

=
∑

q1···qM

πq1 · bq1 (O1) · aq1q2 (6)

· bq2 (O2) · · · aqM−1qM · bqM (OM)

3.3 Affinity Matrix

To represent similarity between different groups, investiga-
tors are used to analyze the average distance between the
groups represented by the individual classifiers. Similarity
of different HMMs can be measured using the cross like-
lihood ratio (CLR). Let i and j be two feature sequences,
modeled by two HMMs λi and λ j respectively. The dissim-
ilarity between i and j can be defined as [18]:

d(i, j) = |Li + Lj − L j
i − Li

j| (7)

where Li and Lj denote the likelihoods of i and j being gen-
erated by their own fitted models, i.e., Pr(i|λi) and Pr( j|λ j),
while L j

i and Li
j denote the cross likelihoods, Pr( j|λi) and

Pr(i|λ j) respectively. This method is appropriate when states
and observations are simple, but this is not fit for our work.

To solve this problem, a dissimilarity measure between
time series based on the Bayesian Information Criterion
(BIC) was used in our work [27], where BIC is a statistical
criterion for model selection.

BIC = − log L +
C
2

log N (8)

where L is the likelihood of the estimated model as above,
N is the number of observations, and C is the number of
model parameters. For any two estimated models, the one
with smaller value of BIC is the optimal. Our work is to
compute the dissimilarity of different groups using BIC. To
make work clearly, every trajectory in our database is mod-
eled with the same structure by an HMM, that is with equal
number of parameter Ck, and N HMMs are trained for N tra-
jectory groups.

When trajectory group i and j are merged and modeled
together by one HMM. The difference of BIC values for the
two models i and j is equal to [18]:

d(i, j) = BIC(i j, · · ·) − BIC(i, j, · · ·)
= log Li + log Lj − log Li j (9)

− 1
2

CK log N

where (i, j, · · ·) denotes any two trajectories i, j compared to
all the other trajectories, and Lt is the likelihood of trajec-
tory t generated by the HMM trained by itself λt, Pr(t|λt).
(i j, · · ·) denotes the trajectory group (merged i and j) com-
pared to all the other trajectories, and Li j is the likeli-
hood of the new trajectory group i j generated by its HMM,
Pr(i j|λi j). d(i, j) measures the dissimilarity of two trajectory
groups, and L refers to the likelihood for all trajectories in
this group. If two trajectory groups are identical, the dis-
similarity distance d(i, j) will have a minimum value. The
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smaller d(i, j) is the greater tendency for i and j to merge.
For each feature, the K ×K affinity matrix D = {d(i, j)}

provides a new representation of dissimilarity for the train-
ing dataset. To class database, agglomerative hierarchical
clustering using BIC-based dissimilarity measure can be
performed.

3.4 Adaptable Dynamic Hierarchical Clustering

Starting with any given individual trajectory, all possible
pairs of trajectories are merged. To minimize the variability
of trajectories within a cluster and maximize the variability
between clusters, the Hierarchical Clustering is proved to be
a convenient algorithm for our clustering.

The model-based similarity measure has an over fit-
ting problem when given few training samples as mentioned
above. This problem is true for our first several steps of the
hierarchical clustering: when a cluster contains only a few
trajectories (or starting from one trajectory), the trained
HMM tends to be over fitted, and the dissimilarity measures
between them are quite unreliable, which result in clustering
errors. These errors will accumulative to the latter clustering
steps.

To address this problem, we can update the clustering
results at each merging step. In other words, when a new
HMM is trained based on trajectory merging, all the trajec-
tories in the database should be reclassified. In this way,
some trajectories which have been incorrectly clustered at
previous steps should be associated to other new HMMs.
And then all the HMMs are retrained according to the up-
dated trajectory classes. This updating process also corrects
errors for later clustering steps. When clusters have gath-
ered more samples, the trained HMMs become more reli-
able. This process above can be referred as Dynamic Hier-
archical Clustering (DHC) [18].

Considering the original method of DHC cannot pro-
cess the large quantities of trajectories effectively, we pro-
pose Adaptable Dynamic Hierarchical Clustering (ADHC),
which is illustrated in Fig. 4. To simplify the hierarchical
clustering process, an adaptable merging threshold was pro-
posed. The threshold is determined by the current HMM
parameter, which can be adjusted automatically. When the
dissimilarity of pairwise trajectory groups is smaller than
threshold, they will be merged. In this way, several trajecto-
ries can be clustered within one step, so the computation for
hierarchical clustering will be greatly reduced.

dth = exp{(−Lmax − Lmin

Lmax + Lmin
)/σ} (10)

where Lmax and Lmin represent the maximum and minimum
likelihood of this HMM, and σ is the accommodation coef-
ficient.

The adaptable dynamic hierarchical clustering process
is represented as bellow:

Fig. 4 The framework of Adaptable Dynamic Hierarchical Clustering
Tree. The result of this algorithm is a tree-like hierarchic cluster in which
the individual items are located in the leaf nodes and the tree branches rep-
resent clusters with two or more objects.

Table 1 Comparison of three methods in Dataset 1.

Step 1) Trajectories segmented in one group is fitted with
a HMM. As a result, there are N groups with N HMMs,
the jth groups is represented as C j;
Step 2) For each trajectory group, we compute the dissim-
ilarity measurement d(i, j) and store all resultant distances
in affinity matrix D.
Step 3) Find out the groups of dissimilarity smaller than
dth, merge them and constitute a newly-formed cluster.
Supposing that there are m groups been merged in this
hierarchy, when trajectory group i and j are merged, the
newly-formed cluster is counted as Ci, and C j will be
deleted.
Step 4) The new HMM λi j is trained to replace λi and λ j,
the N − m HMMs are retrained and formed a new affinity
matrix D̂.
Step 5) Chasing down a newly-formed cluster in the above
N−m feature arrays, the procedure is reduplicated until no
d(i, j) < dth.

A fast trajectory pattern learning algorithm is in need
according to the current sharp increase of monitoring data.
The method of ADHC in our work can solve this problem
effectively. Table 1 shows the experimental comparison of
our proposed ADHC with the ordinary HC [7] and DHC in
Feng’s work [18], which is tested on Dataset 1 described in
the following Sect. 4. The result obviously shows that the
hierarchy number of ADHC is much less than the others, so
it is faster and much more timesaving.
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3.5 Abnormality Detection

To detect the unusual events, we analyze the affinity matrix
from group dissimilarity. Trajectory events are ordered with
respect to their conformity scores. Then, every trajectory
is compared with its own groups and computed the corre-
sponding conformity scores. The trajectories that have low
scores are identified as unusual events.

The conformity score of a trajectory j for a given fea-
ture f is the sum of the corresponding rows or columns of
the affinity matrix D that belong that feature,

r f ( j) =
M∑

i=1

di j (11)

The total conformity score for a trajectory is:

ϕ( j) = arg max
j=1,···,M

{r f ( j)} (12)

The trajectory with maximum score corresponds to the most
abnormal event.

4. Experiments

We used the Edinburgh Informatics Forum Pedestrian
Database (EIFPD) [30], which consists of a set of detected
targets of people walking through the Informatics Forum.
Moving objects are tracked in the image plane to obtain
a series of trajectories and each point on a trajectory indi-
cates the centroid of the tracked object. The camera is fixed
overhead approximately 23m above the floor. The images
are 640×480, where each pixel (horizontally and vertically)
corresponds to 24.7 mm on the ground. The capture rate is
about 9 frames per second depending on the local Ethernet.
Figure 5 shows a view of the scene.

In our work, two experimental datasets has been built
from the EIFPD trajectory database, which contain different
amounts of trajectories. Dataset 1 contains 10000 trajecto-
ries randomly selected from original dataset, and Dataset 2
contains 80000 trajectories. Table 2 shows details of these
two datasets.

4.1 Motion Pattern Learning

Dataset 1 contains 10000 trajectories. Every single trajec-
tory is segmented by uniformly sampling the Uniform Cu-
bic B-spline and formed a codebook. Based on the trajectory
preprocessing in subsection 3.1, a training database consist-
ing of 9625 trajectories is selected from the overall trajecto-
ries, the lengths of which have exceeded 30 points.

Our learning method is multistep, and the first step is to
train HMM for every group. The Baum-Welch algorithm is
used for estimating final parameters of HMM, and the con-
vergence threshold of our HMM is 1×10−4, which can be
computed as Formula (13), where Pri represents the max-
imum likelihood estimation in this HMM. To simplify the

Fig. 5 The view of background scene. The main entry/exit points contain
the bottom left (front door), top left (cafe), top center (stairs), top right
(elevator and night exit), bottom right (labs).

Table 2 Two experimental datasets.

computational complexity, the iteration of training HMM is
set as 30 in our work showed in Fig. 7. In each loop the state
transition probabilities will be more precise.

Thiteration =
Pri+1 − Pri

(Pri+1 + Pri)/2
(13)

According to method in subsection 3.4, 54 groups have been
learned from Dataset 1, but some groups contain too few
trajectories that cannot be defined as motion patterns. We set
1% as quantity threshold, which has 90 trajectories at least.
The clustering result shows that there are 32 mainly Motion
Patterns (MP) in our dataset. When trajectory number is
added to 80000, the motion patterns will be more obvious.
Figure 6 shows the compare of top 32 patterns in Dataset 1
and Dataset 2.

Because the clustering process is dynamic, the order of
some patterns has changed. Comparing these two clusters,
we find that most patterns are much the same, but there are
some differences between them. MP 32 in Dataset 1 has
been deleted from the top 32 patterns in Dataset 2, which
changes to be MP34. The MP 30 in Dataset 2 is newly
added, which is MP 33 in Dataset 1. The percent of these
patterns will explain this change clearly. The data in Table 3
shows that percentage change is small. The numbers of tra-
jectories are showed in Fig. 8. Most patterns in Dataset 2
are broader than that in Dataset 1, for example, the MP 1 of
two clusters. We can explain this problem in a probability-
based graph in Fig. 9. The size of the color depth indicates
the probability of trajectories. The color of the graphs in (b)
is deeper than that of (a), and middle position is deeper than
sides. It means that there are more trajectories in (b), and
most of them gather in a central location.

4.2 Abnormal Detection and Pattern Recognition

Abnormal behaviors might be person traversing an area
which had not been traversed before, or one person moving
in varying directions snaky. Based on Sect. 3.5, the behavior
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Fig. 6 Motion patterns compare of two Datasets. (a) The 32 mainly trajectory motion patterns from
Dataset 1. (b) The top 32 mainly trajectory motion patterns in Dataset 2. The blank point represents
the entry position of this pattern. Different color represents different directions of trajectory groups: red
(upward), green (downward), blue (leftward) and yellow (rightward).

Fig. 7 The likelihood estimation curve. This curve is for iteration of
overall trajectory group HMM. Experiments results show that when itera-
tion reaches 30, the rate of convergence will be slower.

Table 3 Percent of different MPs in two datasets.

Fig. 8 Numbers of motion patterns. (a) Numbers of 32 mainly motion
patterns for Dataset 1. (b) Numbers of top 32 motion patterns for Dataset 2.

pattern in the testing sets is labeled as abnormal if there are
no similar patterns in the corresponding training sets. The
abnormality detection measure can be showed in Fig. 10.

We have learned 32 motion patterns from Dataset 1,
which contain a majority of models in this scene. To recog-
nize the patterns of more trajectories, we can compare the
similarity between new trajectory and existing patterns. An-
other 10000 trajectories have been picked out and prepro-
cessed as Sect. 3.1. Every trajectory will be compared with
the learned 32 MPs in Dataset 1. It can be merged into one
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Fig. 9 The probability-based graph in two datasets. (a1), (a2), (a3) repre-
sent the probability-based graphs of Dataset 1, and (b1), (b2), (b3) represent
that of Dataset 2.

Fig. 10 Abnormal behaviors in Dataset 1. (a) The 375 short trajectories.
(b), (c), (d) Some behavior abnormal trajectories. The main color trajec-
tories represent the trajectory motion patterns, and other color trajectories
represent abnormal ones.

Fig. 11 Trajectory number of pattern recognition patterns.

of the pattern which has the most similarity. A threshold has
been set to detect abnormal trajectory. If all the similarities
are beyond the threshold, the trajectory is set to be abnormal.

Based on these results in Fig. 11, it shows that the

HMM-based method approaches a successfully representa-
tion to trajectory clustering. Our experiments also prove the
proposed method is stable.

5. Conclusions

This paper proposes an unsupervised hierarchical method
for learning motion patterns and detecting anomaly. We de-
scribe the feature of trajectory groups as Hidden Markov
Models (HMMs), and each trajectory group can be associ-
ated with one of the learned HMMs. The Adaptable Dy-
namic Hierarchical Clustering (ADHC) has obvious bet-
ter efficiency for trajectory clustering. In our experiment,
32 kinds of motion patterns are learned which can almost
cover all the movement behaviors in the scene. The abnor-
mality detection and behavior analysis in our work achieve
a good performance.

The above work of models learning may be applied in
many domains of the visual surveillance, such as virtual re-
ality, path design, long-term predictions and atypical motion
detection. Our method of clustering deserves further study
and may be applicable to other areas of computer vision and
pattern analysis.
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