1648

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.6 JUNE 2014

[LETTER

A Virtualization-Based Approach for Application Whitelisting*

Donghai TIAN™77 Jingfeng XUE", Changzhen HU', Nonmembers, and Xuanya L1"'", Student Member

SUMMARY A whitelisting approach is a promising solution to pre-
vent unwanted processes (e.g., malware) getting executed. However, pre-
vious solutions suffer from limitations in that: 1) Most methods place the
whitelist information in the kernel space, which could be tempered by at-
tackers; 2) Most methods cannot prevent the execution of kernel processes.
In this paper, we present VAW, a novel application whitelisting system by
using the virtualization technology. Our system is able to block the execu-
tion of unauthorized user and kernel processes. Compared with the previ-
ous solutions, our approach can achieve stronger security guarantees. The
experiments show that VAW can deny the execution of unwanted processes
effectively with a little performance overhead.

key words: whitelisting, virtualization technology

1. Introduction

As more and more software vulnerabilities get discovered,
software security problems become very important. By ex-
ploiting these vulnerabilities, attackers could hijack the pro-
grams’ execution and then intrude into the end hosts. Fur-
thermore, malicious processes could be planted into the
compromised hosts. Relying on the planted processes, at-
tackers can remotely control the end hosts for launching
several attacks (e.g., data collection and distributed denial
of service).

To prevent the malicious processes from getting exe-
cuted, system administrators may deploy the Antivirus tools
into the end hosts. Before running a executable file, the An-
tivirus will check whether the file contains malicious code.
If it is, the Antivirus will deny the execution. In practice,
the Antivirus tools really raise the bar for executing known
malicious code. However, since the tools usually depend on
the extensive signature database, they are limited to detect-
ing new malicious code [1]

To address the problem of the Antivirus, many re-

Manuscript received December 24, 2013.

"The authors are with the School of Software, Beijing Institute
of Technology, China.

"The author is also with State Key Laboratory of Information
Security, Institute of Information Engineering, Chinese Academy
of Sciences, Beijing 100093, China.

T The author is with National Engineering Laboratory for Infor-
mation Security Technologies, Institute of Information Engineer-
ing, Chinese Academy of Sciences, China.

*This work is supported partially by the National High-
Tech Research Development Program of China under Grant No.
2009AA01Z433 and the Open Foundation of State Key Labora-
tory of Information Security (Institute of Information Engineering,
Chinese Academy of Sciences) under Grant No. 2013-4-1.

a) E-mail: donghaitad @ gmail.com

DOI: 10.1587/transinf. E97.D.1648

searchers propose whitelisting approaches [2]-[4]. The ba-
sic idea of these approaches is to maintain a whitelist of pro-
grams, which include executable files and libraries. Only
the programs included in the whitelist can get executed. In
this way, unwanted programs would have no chance to run.
However, existing whitelist approaches store the important
whitelist data in the kernel space, which could be manip-
ulated by attackers to bypass the execution enforcement.
Moreover, the existing methods mainly focus on user-level
protection, and they cannot block the execution of an un-
wanted kernel process.

In this paper, we present a virtualization-based applica-
tion whitelisting system, called VAW, which can block the
execution of unauthorized user and kernel processes. VAW
is implemented on the Xen hypervisor, and it only requires
minimal changes to the existing programs and OS kernel.
Our approach makes the following contributions:

e We propose a novel application whitelisting method
based on the virtualization technology.

e We leverage the Secure-In-VM (SIM) framework [6] to
protect the whitelist data located in the kernel space.

e We design and implement a prototype of VAW based
on Xen. The evaluations show that our system can pre-
vent an unwanted user or kernel process from being
executed.

2. Overview of Our Approach

The goal of VAW is to build a system that can prevent
an unauthorized process from being executed. Different
from previous whitelisting systems, our approach exploits
the process scheduler in the OS kernel to enforce the pro-
cess execution. Specifically, whenever a process needs to be
scheduled, the scheduler will judge whether the process is
included in the pre-defined whitelist. If it is, the scheduler
will carry out process switching. Otherwise, the scheduler
will choose another process that is located in the whitelist to
run.

To register a process to the whitelist, we employ the
trusted communication channel between applications and
the underlying hypervisor. Considering the efficiency of
process scheduling, we maintain the whitelist data in the
kernel space such that the scheduler can access the data di-
rectly. In order to protect the whitelist from being tempered
by attackers, we leverage the SIM framework to isolate the
scheduler and whitelist from the OS kernel. In this way,

Copyright © 2014 The Institute of Electronics, Information and Communication Engineers

LETTER

the other kernel components cannot access the whitelist di-
rectly. Furthermore, the interactions between the process
scheduler and other kernel components are well controlled
so that even kernel attacks cannot bypass our protection to
hijack the scheduler’s execution.

3. System Design and Implementation

We have developed VAW, a prototype based on Xen to
demonstrate our approach. As Fig. 1 shows, the major com-
ponents are located in the guest kernel and hypervisor. The
Authenticator is responsible for authenticating whether the
target process or kernel module can fork a new process. The
Info stores the authenticated information. The role of the
scheduler component is to select a feasible process from the
whitelist to run.

3.1 Process Registration

Regarding process registration to the whitelist, we leverage
the trusted communication channel, by which the user pro-
cess can transfer information to the hypervisor securely. In
general, the work flow of our process registration is illus-
trated in Fig. 2. First, the target process invokes a hypercall
with a secret key to notify the hypervisor that it can fork a
process. Then, the hypervisor will check whether the se-
cret key is valid. If it is, the hypervisor will mark the target
process with a flag to indicate that it can create a new pro-
cess. After that, the execution is transferred back to the user
space. Next, the target process invokes a system call (i.e.,
fork()) to create a new process, which causes the execu-

Kermel |

White | |
list

Scheduler

Kernel | |
Module

! Hypervisor
% Authenticator '—»
| Hardware |

Fig.1 The VAW architecture.

User
Space hypercall

Kernel w create a process

Space hypercall
Hypervisor

Space

systemcall

check a secret key register a process

—» Time

Fig.2 Process registration procedure.

1649

tion trapped into the OS kernel. Once the process descriptor
is fully created, the OS kernel will issue a hypercall for pro-
cess registration. If the parent process is not marked before,
the new child process cannot get registered.

To select a process identifier as the registered data for
process registration, we cannot rely on the internal field
(e.g., pid) of a process descriptor in that kernel-level attack-
ers could temper with the internal field easily. Instead, we
utilize the memory area of a process descriptor as the regis-
tered data for process registration.

Furthermore, to detect loading unauthorized executable
into the registered child address space, we apply the previ-
ous approach [5] to intercept the mmap and execve system
calls for authorization. If the loaded executable is unau-
thorized, the registered process will be removed from the
whitelist.

On the other hand, considering some system processes
(that we call kernel threads) only run in kernel mode, we uti-
lize a similar approach for kernel thread registration. Before
creating a kernel thread, the target kernel component should
first invoke a hypercall with a secret key. Then, the hyper-
visor will verify the key. Next, the kernel component will
issue the kernel function kernel_thread() to create a new
kernel thread. After the kernel thread descriptor is created,
the OS kernel will re-invoke a hypercall with the to register
the kernel thread.

To protect the kernel thread registration from being
hijacked by kernel exploits, we introduce the watchpoints
to monitor the kernel’s execution behavior. Specifically,
we use the vmcall instructions to instrument the OS ker-
nel so that the hypervisor can trap the kernel’s key opera-
tions. To distinguish different operations that are associated
with different watchpoints, each watchpoint passes a unique
identifier to the hypervisor. In our implementation, we in-
sert 4 watchpoints in the related kernel functions, which
include kernel _thread(), do_fork(), copy_process(),
and dup_task_struct (). In this way, the hypervisor could
determine whether the kernel component follows the nor-
mal execution path to create a kernel thread. If not, it in-
dicates that the kernel’s execution could be hijacked. Thus,
the newly created kernel thread cannot be registered to the
whitelist.

In order to reduce modifications to the existing pro-
grams and OS kernel, we only enforce the process registra-
tion after the protected system is fully booted. In initial, the
whitelist contains all the runnable processes. When a pro-
cess terminates, the registered information will be removed
from the whitelist.

3.2 Process Scheduling

Once the processes are registered, the scheduler is responsi-
ble for selecting a feasible process to get executed. In Linux,
there are two kinds of process: non-real-time process and
real-time process [7].

To prevent the unregistered non-real-time process from
being scheduled, we need to modify the CFS scheduler in

1650

1 static struct sched_entity
2 *pick_next_entity(struct cfs_rq *cfs_rq){
3 struct sched_entity *se;
4 struct task_struct *task;
5 struct rq *rq;

6 selection:

7 se = NULL;

8 //ensure the leftmost node exists

9 if(first_fair(cfs_rq)){

10 //select a entity from the cfs_rq

11 se = __pick_next_entity(cfs_rq);

12 //ensure the entity contains a task

13 if(entity_is_task(se)){

14 //get a task from the entity

15 task = task_of(se);

16 while(task is not in the whitelist){
17 //generate an alert

18 alert(task);

19 //get a runqueue from the cfs_rq

20 rq = rq_of(cfs_rq);

21 //remove the task from the runqueue
22 dequeue_task_fair(rq, task,1);

23 //update the runqueue’s related info
24 update_info(rq);

25 //reselect a schedule entity

26 goto selection;

27 }

28 }

29 //set related information to the entity
30 set_next_entity(cfs_rq, se);

31 }

32 return se;

33}

Fig.3 Non-real-time process scheduling algorithm.

Linux. Different from the conventional timesharing-based
schedulers that assign each process a timeslice, the CFS
scheduler assigns each process a proportion of the processor
so that the scheduling fairness could be improved. To help
modeling the multitasking processor, the CFS scheduler in-
troduces the vruntime variable that stores the virtual runtime
of a process. To decide which process to run next, the sched-
uler will select the one with the smallest vruntime. To facil-
itate the process selection, the scheduler utilizes a red-black
tree to maintain the list of runnable processes. By locat-
ing the leftmost node in the tree, the scheduler can get the
process with the smallest vruntime, which will be scheduled
next. Before performing the process switching, our modi-
fied CFS scheduler will check whether the selected process
is in the whitelist. If it is, the CFS scheduler will handle it
by its default routine. Otherwise, the scheduler will pick an-
other process to run. For this purpose, we need to hook the
kernel function pick next_entity in the CFS scheduler.
Figure 3 shows the specific scheduling algorithm. The
key functionality of this algorithm is to set the scheduler en-
tity (i.e., se) that the CFS scheduler depends on for schedul-
ing. Initially, we set the scheduler entity to NULL (Line 7).
If the CFS runqueue (i.e., cfs_rq) does not contain a sched-
uler entity, the returned se value remains to be empty. As a
result, the CFS scheduler will schedule the idle process. On
the other hand, if a scheduler entity is selected (Line 11),
the scheduler should check whether it contains a task (Line

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.6 JUNE 2014

Kernel Address Space Scheduler Address Space

4 N 7)
| R |
| | Kernel Code | | Kernel Code
X
R R
W_| Kernel Data W_ [Kernel Data
R
Scheduler KR Scheduler
— Code B Code
R
—— Scheduler KR Scheduler
— Data — Data
| R | Transition | R Transition
B Gate B Gate
- O\ J

Fig.4 Memory protections in the kernel and schedule address space.

13). If it is, the scheduler need to further judge whether the
task is in the whitelist. If not, an alert will be generated
(Line 18). Then, the scheduler removes this task from the
runqueue (Line 22). Accordingly, the runqueue’s related in-
formation (e.g., the number of runnable processes and the
CPU load factor in the runqueue) should get updated (Line
24). After that, the scheduler will reselect another process
that could be in the whitelist (Line 26).

Since the CFS scheduler and the whitelist both reside in
the kernel space, advanced attackers may hijack the sched-
uler’s execution or modify the whitelist to bypass our pro-
tection by exploiting the kernel’s vulnerabilities. To tackle
this problem, a traditional virtualization-based method is to
move the scheduler and whitelist into the underlying hyper-
visor for protection. However, doing so may impose consid-
erable performance overhead in that each process schedul-
ing will cause the world switch between the guest OS and
hypervisor. Instead, we take the advantage of the SIM
framework [6], which leverages the hardware virtualization
technology to achieve efficient In-VM protection. Specif-
ically, we exploit the Shadow Page Table (SPT) manage-
ment subsystem in the hypervisor to create a separate pro-
tected address space that we call scheduler address space,
and then put the CFS scheduler and whitelist in it. Com-
pared with the original kernel address space, the scheduler
address space has the same memory mapping but different
access permissions. In this way, the scheduler and whitelist
are well isolated from the OS kernel for protection.

As shown in Fig. 4, the scheduler cannot access the ker-
nel code and data in the scheduler address space, while the
OS kernel is not allowed to access the memory regions of the
scheduler and whitelist (stored in the scheduler data area) in
the kernel address space. To ensure the normal execution
transfer between the scheduler and OS kernel, the transi-
tion gate is introduced to switch address spaces and is al-
ways executable in both address spaces. Similar to the SIM
framework, the transition gate utilizes the recent hardware
feature [8] (i.e., CR3_.TARGET_LIST) to change the CR3
register, which stores the root of a shadow page table for

LETTER

address space switching. By doing so, the execution trans-
fers between two addresses spaces will not be trapped by the
hypervisor, and the performance will be greatly improved.

On the other hand, to block the unregistered real-time
process getting scheduled, some modifications to the real-
time scheduler are needed. Basically, the scheduler has two
different policies (i.e., SCHED_FIFO and SCHED_RR) to
schedule real-time processes. Both of these policies apply
a simple FIFO (first-in, first-out) algorithm to select a real-
time process to run. The difference is that a SCHED_FIFO
process does not have a timeslice but a SCHED_RR process
does. As a result, a SCHED_FIFO process can run indef-
initely until a higher priority process preempts it, while a
SCHED_RR process can run only until it exhausts a prede-
termined timeslice.

To select a runnable process from the real-time run-
queue, the kernel function pick next_task_rt in the real-
time scheduler is hooked. In particular, an additional judg-
ment is added to this function for checking whether the se-
lected real-time process is in the whitelist. If not, the sched-
uler will pick another process that is included in the whitelist
to run. Similar to the CFS scheduler, we also apply the SIM
framework to protect the real-time scheduler and its data
from kernel-level attacks.

4. Evaluation

All the experiments are performed on a Dell PowerEdge
T410 Server with a 2.13 G Intel Xeon E5606 CPU and 4
GB memory. The Xen hypervisor version is 3.4.3. We use
Fedora 12 (2.6.31 kernel) as Dom0 system and Debian 4
(2.6.24 kernel) as DomU system with HVM mode enabled.

4.1 Effectiveness

We evaluate the effectiveness of VAW to block execution
of the processes that are not included in the whitelist. For
the user space evaluation, we first introduce a valid but vul-
nerable process that is forked by the bash program. Then,
we exploit the vulnerability of this process to create a new
process for executing a long-stay functionality. The exper-
iments show that the new created process is not registered
to the whitelist, and thus it cannot get scheduled. Regard-
ing the kernel space evaluation, we load a malicious kernel
module into the kernel space to fork a new kernel thread.
Similarly, our system does not schedule the kernel thread
because the kernel module does not have a valid key to reg-
ister the kernel thread to the whitelist.

4.2 Performance

To evaluate the efficiency of our system, we test its perfor-
mance with both micro and macro benchmarks. For the mi-
cro benchmark experiments, we use the LMbench tool to
measure the execution time of process creation and context

1651
Table 1 Micro benchmarks.
[Micro Operation [Normal VM (us)| VAW (us) | Overhead (us)|
Process fork+exit 121.35 234.51 113.16
Process fork+execve 325.81 482.59 156.78
Process fork+/bin/sh -c 728.62 963.78 235.16
Context switch 2.13 4.52 2.39
Table 2 Macro benchmarks.
[Macro Operation [Normal VM| VAW | Overhead|
Kernel decompression 35,827 ms | 41,265 ms| 5,438 ms
Kernel build 2,951s 3,379 s 428 s

switch operations. The results, shown in Table 1, indicate
our system introduces moderate performance overhead for
these operations. For the macro benchmark experiments,
we first apply the gunzip program to decompress the stan-
dard Linux kernel source package (linux-2.6.24.tar.gz), and
then use the gcc program to compile the Linux kernel. As il-
lustrated in Table 2, our system incurs low overhead as com-
pared with the original Linux system running on the normal
VM.

5. Conclusion

In this paper, we present VAW, a novel application whitelist-
ing system based on virtualization. We exploit the process
scheduling mechanism to enforce that only the processes
from the whitelist can get scheduled. Moreover, we apply
the SIM framework to protect the scheduler and whitelist
from being compromised. Our evaluations show that VAW
can prevent unauthorized processes from being executed ef-
fectively with a little performance cost.

References

[1] O. Sukwong, H. Kim, and J. Hoe, “Commercial antivirus software ef-
fectiveness: An empirical study,” Computer, vol.44, pp.63-70, 2011.

[2] A. Apvrille, S. Hallyn, M. Pourzandi, and V. Roy, “DigSig: Run-time
authentication of binaries at kernel level,” Proc. 18th Large Installa-
tion System Administration Conference (LISA), 2004.

[3] Y. Wu and R.H.C. Yap, “Towards a binary integrity system for win-
dows,” Proc. 6th ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2011.

[4] C. Gates, N. Li, J. Chen, and R. Proctor, “CodeShield: Towards per-
sonalized application whitelisting,” Proc. 28th Annual Computer Se-
curity Applications Conference (ACSAC), 2012.

[5] A.M. Azab, P. Ning, E.C. Sezer, and X. Zhang, “HIMA: A hypervisor-
based integrity measurement agent,” Proc. 28th Annual Computer Se-
curity Applications Conference (ACSAC), 2009.

[6] M. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-VM monitoring
using hardware virtualization,” 25th ACM Conference on Computer
and Communications Security (CCS), 2009.

[71 R. Love, Linux Kernel Development Third ed., Addison-Wesley,
2010.

[8] Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manuals, http://www.intel.com/Assets/PDF/manual/
253669.pdf, 2013.

