1700

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.7 JULY 2014

| PAPER Special Section on Cloud and Services Computing

Fast Recovery and Low Cost Coexist: When Continuous Data

Protection Meets the Cloud

Yu GU', Nonmember, Chuanyi LIU™", and Dongsheng WANG 779, Members

SUMMARY Cloud computing has rising as a new popular service
paradigm with typical advantages as ease of use, unlimited resources and
pay-as-you-go pricing model. Cloud resources are more flexible and cost-
effective than private or colocation resources thus more suitable for storing
the outdated backup data that are infrequently accessed by continuous data
protection (CDP) systems. However, the cloud achieves low cost at the
same time may slow down the recovery procedure due to its low bandwidth
and high latency. In this paper, a novel block-level CDP system archi-
tecture: MYCDP is proposed to utilize cloud resources as the back-end
storage. Unlike traditional delta-encoding based CDP approaches which
should traverse all the dependent versions and decode the recovery point,
MYCDP adopts data deduplication mechanism to eliminate data redun-
dancy between all versions of all blocks, and constructs a version index for
all versions of the protected storage, thus it can use a query-and-fetch pro-
cess to recover version data. And with a specific version index data struc-
ture and a disk/memory hybrid cache module, MYCDP reduces the stor-
age space consumption and data transfer between local and cloud. It also
supports deletion of arbitrary versions without risk of invalidating some
other versions. Experimental results demonstrate that MYCDP can achieve
much lower cost than traditional local based CDP approaches, while re-
maining almost the same recovery speed with the local based deduplica-
tion approach for most recovery cases. Furthermore, MYCDP can obtain
both faster recovery and lower cost than cloud based delta-encoding CDP
approaches for any recovery points. And MYCDP gets more profits while
protecting multiple systems together.

key words: CDP, block-level, cloud, deduplication, MYCDP

1. Introduction

Continuous data protection (CDP), also called continuous
backup or real-time backup, is a methodology that continu-
ously captures and stores data modifications independent of
the primary data, enabling recovery from any point in the
past. To provide the most fine-grained data recovery, it must
archive every data update, thus the backup volume could be
too huge to overwhelm the capacity of CDP system, espe-
cially in data-intensive and long-term scenario. To settle this
problem, CDP systems adopt various technologies to reduce
storage space usage. The mainstream approach uses delta-
encoding scheme to reduce the space consumption, which
results in dependency between versions. The recovery pro-
cedure in these solutions should traverse all the dependent

Manuscript received October 30, 2013.
Manuscript revised January 14, 2014.
"The author is with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China.
""The author is with the Software School, Beijing University of
Posts and Telecommunications, Beijing 100876, China.
T The author is with the Research Institute of Information Tech-
nology, Tsinghua University, Beijing 100084, China.
a) E-mail: wds@tsinghua.edu.cn
DOI: 10.1587/transinf.E97.D.1700

versions according to the recovery point and take compu-
tation to decode corresponding version. The more depen-
dent versions and complicated encoding used, the longer
time the recovery would take. So the backup cost and re-
covery speed, which are two most important factors of CDP
systems, become conflicting in these solutions. New ideas
need to be adopted to solve this predicament.

During the past decade, Cloud computing rises as a
new service paradigm, and becomes more and more pop-
ular. Many IT systems are built on cloud platform now,
utilizing the relatively unlimited resources of cloud with a
pay-as-you-go pricing model [1]. And cloud resources are
more flexible and cost-effective than private or colocation
resources [2].

As in CDP scenarios, most recoveries demand ver-
sions not too far ago from present, and data of relatively
old versions are rarely needed. Using private or coloca-
tion resources to contain these huge volume of data leads
to tremendous waste brought by idling resources. There-
fore, CDP systems can greatly reduce their backup cost by
using scalable cloud resources to store these long-tail data.
However, cloud resources always have low bandwidth and
high latency to their customers, which could extremely slow
down the recovery procedure. Thus it is a big challenge to
achieve low backup cost while ensuring high recovery speed
within cloud based CDP systems. No previous work has
studied this problem.

To solve this problem, a novel CDP architecture,
named MYCDP, is proposed in this paper. MYCDP is a
block-level CDP that can be compatible with all types of
file systems and operation systems, and can utilize various
kinds of cloud resources as the back-end storage. Unlike
traditional delta-encoding based CDP approaches, MYCDP
adopts data deduplication mechanism to eliminate data re-
dundancy between all versions of all blocks, and uses query-
and-fetch process to recover version data instead of delta-
decoding process used by delta approaches. By using spe-
cific architecture and data structures, MY CDP can make low
cost and fast recovery coexisting in cloud based CDP scenar-
ios. It also supports deletion of arbitrary versions without
risk of invalidating some other versions.

The main contribution we try to present in this paper
is the first cloud based CDP which can make fast recovery
and low cost coexist by using data deduplication technology.
The rest of the paper is organized as follows: Sect. 2 presents
the related work. Section 3 discusses MYCDP’s design prin-
ciple, system architecture and key processing procedures.

Copyright © 2014 The Institute of Electronics, Information and Communication Engineers

GU et al.: FAST RECOVERY AND LOW COST COEXIST: WHEN CONTINUOUS DATA PROTECTION MEETS THE CLOUD

The evaluation and analysis are presented in Sect. 4. Finally
in Sect. 5 we conclude and discuss future work.

2. Related Work

Many studies have been done on continuous data protec-
tion. Laden et al.[3] proposed four alternative CDP ar-
chitectures based on storage controller and compared them
with respect to write performance and storage space usages.
Peabody [4] demonstrated that for many workloads, most of
disk sectors written contain identical content to previously
written sectors, motivating the need for content-based co-
alescing. Trap-array [5] designed a disk array architecture
that provided timely recovery to any point-in-time, lever-
aging RAID controller’s XOR operations upon consecu-
tive versions of blocks. Clotho [6] added a new layer in
Linux I/O hierarchy to gather block-level versions and uti-
lized differential encoding between the block versions to re-
duce disk space occupancy. VDisk[7] presented a secure,
block-level versioning system that added file-grain version-
ing to a standard, unmodified file system by logging up-
dates to a read-only log. Mariner [8] is an iSCSI-based
storage system supporting CDP, which employed a track-
based log that unified the long-term logging required for
CDP and short-term logging for low-latency disk writes.
SWEEPER [9] dynamically determines the selection algo-
rithm based on user specified recovery time and recovery
point objectives, which allows trade-offs between recovery
time and data correctness. CDP systems take trial-and-error
test or manual checkpoints to ensure consistence, and TH-
CDP [10] encapsulates the checkpoint information into I/O
request packet queue to make checkpoints without suspend-
ing applications. Although above researches are good refer-
ences for us on CDP architecture, data compression, block-
level modification gathering, data consistency ensuring and
recovery speed accelerating, they all focus on local based
CDP, no cloud based CDP has been studied yet. As we
mentioned, there are new challenges in cloud based CDP
scenarios which need to be studied carefully, and some ex-
isting approaches should be reconsidered.

There are some research on data backup and recovery
based on cloud computing paradigm. Wood et al. [2] have
proved that using public cloud resources to perform archiv-
ing of infrequently needed data is cheaper than using private
or colocation resources, which motivated us to store CDP
data to cloud. Cumulus [11] backs up a file system to cloud
storage using a least-common-denominator cloud interface,
thus supports many kinds of cloud services. The same kind
of interface can be used by MYCDP. And DR-Cloud [12]
utilizes multiple clouds cooperatively to backup data to en-
sure higher data reliability, lower total cost and faster recov-
ery than one cloud, which can be adopted by MYCDP to
ensure high data reliability.

In recent years, data deduplication has become a
commodity component in data intensive storage systems.
CASPER [13] and Venti[14] divide files into fixed-size
chunks before deduplication; LBFS [15] uses Rabin finger-

1701

print algorithm [16] to divide files into variable-size chunks,
then eliminates duplicate chunks by comparing their unique
identifiers. Their results have proved the effectiveness of
data deduplication on various real world data. And Lillib-
ridge et al. [17] adopted cache, container capping and for-
ward assembly area techniques to improve restore speed of
deduplication based backup systems, which can be used by
MYCDP to speed up recovery further. There are also many
commercial products based on data deduplication technique,
such as EMC Data Domain [18], Quantum DXi Series [19]
and Symantec PureDisk [20], which are good design refer-
ences for MYCDP’s deduplication module.

3. MYCDP System
3.1 Design Philosophy

As mentioned above, storing backup data in the cloud could
reduce total cost. But there are some challenges when de-
signing such a CDP system. In general, three matters are the
most important:

e To achieve the best compatibility with various kinds
of systems to be protected and cloud platforms to be
utilized.

e To ensure high recovery speed while using cloud re-
sources.

e To decrease total cost furthest by reducing the occu-
pancy of cloud resources.

We design MYCDP as a block-level CDP system, thus
it can protect various systems with different kinds of file
systems and operation systems by using appropriate block
write bypass mechanisms in block-level layer such as the
SCSI protocol. It also has the minimal performance impact
to the protected system than file-level and application-level
CDP systems. To leverage resources from various cloud
platforms exposing different interfaces, MYCDP adopts
a least-common-denominator cloud storage interface, i.e.
get/put/delete data, like Cumulus [11] does.

Although pricing models of different cloud service
providers are diversified, they mainly consist of three fac-
tors [21]: storage pricing, data transfer (in/out) pricing and
request (get/put/delete/etc.) pricing. To reduce total cost,
MYCDP should decrease the backup volume by a certain
lossless data compression mechanism.

Delta-encoding based CDP systems need to read a
snapshot as the base version and some deltas to decode the
exact data. Since more data needs to be fetched, recovery
will be greatly slowed down in cloud mode. So in MYCDP,
we employ the data deduplication mechanism to eliminate
data redundancy instead of delta-encoding. MYCDP takes
each block data as an atomic data chunk and stores only
unique chunks. It can reduce the duplications among ver-
sions of same and different blocks, so it is more effective in
saving storage space than delta-encoding approaches which
can only utilize similarity between versions of same block.

Protected System

Applications

Operating System

File System

Protected

Storage
L = L __Mveor

Fig.1 MYCDP architecture.

|
|
|
|
| Block Level Driver
|
|
|

And a specified version can be restored by directly read-
ing the chunks composing that version, without any delta-
decoding computation. So it’s cheaper and faster in cloud
mode. In addition, MYCDP can support deletion of arbi-
trary versions without risk of invalidating some other ver-
sions, while the delta-encoding approaches cannot.

MYCDP adopts a specific version index data structure
and management mechanism to collaborate with deduplica-
tion. And the data frequently needed by recovery is held
locally with a hybrid cache consisting of an on-disk large
cache and an in-memory small cache to speed up recovery
processes.

MYCDP ensures consistence of file system by a widely
used trial-and-error mechanism.

3.2 System Architecture

As shown in Fig.1, MYCDP system consists of several
components and data structures. We introduce them briefly
as follows and explain their behavior and relationship in the
next subsection where version backup, recovery and delete
procedures are depicted.

e CDP_Interface

MYCDP exposes the CDP_Interface to the protected
system to handle block-level backup and recovery requests.
While backup, the protected system bypasses all the block-
level write requests to the CDP_Interface. Every request
is divided into a certain number of tuples (LBA, Times-
tamp, Block_Data), each indicating the logical block ad-
dress, occurrence time and new data of a single block write
contained in that request. The Timestamp also represents
the concept of version. The recovery request is also sent
to the CDP_Interface, with a parameter tuple (Timestamp,
Start_LBA, End_LBA) indicating the point-in-time and block
range to be recovered.

e Version_Index

The Version_Index is used to contain information about
all historical versions of all blocks, i.e. the mapping from
(LBA, Timestamp) to Block_Data, which can be used to
query any version of any block.

Because of the huge amount of block versions, e.g. bil-
lions of versions could be produced by a usual usage of a

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.7 JULY 2014

Secondary Index:

A S Y Y S Y
Primary Index: l \

Too | Boo | Tox [Boa| | Toa | Boa | Tr0 | B1p| | Tio | Big [+
Append Buffer:

LBA, P,

LBA, P,

3 Tiyn Tiye2 | Biye [

Bjyn

LBAp | P :
e

Fig.2 Version_Index data structure.

1TB hard disk with 4KB block size, traditional tools such
as database or hashtable cannot hold and update these infor-
mation efficiently. So we designed a specific data structure,
named Version_Index, to solve this problem. As shown in
Fig. 2, the Version_Index consists of an on-disk two-stage
index and an in-memory append buffer. It is updated peri-
odically, not in real time. The on-disk index holds version
records until the last update, while new version records since
the last update are contained in the append buffer.

The on-disk primary index of the Version_Index is an
sequential array composed of fixed-size tuples (T;;, B;),
and each tuple represents the j write to the i block. The
T j and B; ; are Timestamp and Block_Data_ID of that write,
where the Block_Data_ID is the unique identifier of the
Block_Data.

The on-disk secondary index of the Version_Index is an
sequential array composed of fixed-size tuples (A;, T}, B;),
where the A; points to the start offset of records of the i
block in the primary index, the 7; and B; are Timestamp and
Block_Data_ID of the latest write to that block. So we can
use it to greatly accelerate the version lookup for each block.

The in-memory append buffer utilizes a hashtable to
hold all LBAs of newcome block write since the last index
update, and each LBA has a pointer to a queue containing
records of new writes to the corresponding block. Consid-
ering the robustness, MYCDP writes down all these new
records to a log file, which can be used to recover the ap-
pend buffer after a system fault.

If there are multiple client systems to be protected,
MYCDP maintains a set of primary and secondary indexes
for each client, while using the same append buffer for all
clients to utilize memory space efficiently. And a value of
client number is added to each hashtable elements of the ap-
pend buffer.

e Deduplicater

The Deduplicater takes each Block_Data as an atomic
data chunk for deduplication because of the small block size.
For each chunk, a Chunk_ID (also called Block_Data_ID)
is generated by taking cryptographic hash function on its
content. The Deduplicater checks the uniqueness of each
chunk through comparing its Chunk_ID with others, and
only unique chunks will be stored in cloud or local cache.

GU et al.: FAST RECOVERY AND LOW COST COEXIST: WHEN CONTINUOUS DATA PROTECTION MEETS THE CLOUD

e MDS

The MDS maintains three kinds of metadata informa-
tion.

The Chunk_Info contains metadata of all chunks, con-
sisting of tuples (Chunk_ID, Cloud RC, Cloud_Location,
Cache_RC, Cache_Location), where the Cloud_RC and
Cache_RC indicate the corresponding chunk’s reference
count (i.e. redundancy rate) referred by the cloud and the
Disk_Cache, and the Cloud_Location and Cache_Location
are location information being used to fetch that chunk from
the cloud and the Disk_Cache.

The Latest_Version is an array recording the Chunk_IDs
of all blocks’ latest version in sequence.

The Recent_Writes is an FIFO queue consisting of a
certain number of tuples (LBA, Chunk_ID) indicating those
recent block writes.

Multiple Latest_Version and Recent_Writes will be con-
tained in the MDS when protecting multiple client systems.
While a single Chunk_Info is used in this situation to elimi-
nate duplicated chunks between client systems.

The implementation of the MDS can refer to lots of
practical deduplication systems such as Data Domain [18].

e Archiver

The Archiver is responsible for saving/restoring all
unique chunks to/from the cloud. It transfers chunks to the
cloud in batches to reduce the request cost, and uses multiple
threads to put/get data to/from the cloud to furthest utilize
network bandwidth.

e Disk_Cache

The Disk_Cache contains a dynamic set of unique
chunks on local disk to speed up recovery. It uses a raw
disk partition without any file system, and employs a block
allocation bitmap to manage storage space. The partition’s
block size is set to the minimum value of the protected sys-
tems’ block size, and each chunk is stored continuously.
Thus a chunk can be located simply by its start LBA. Since
all chunks are archived to the cloud, there is no need to put
data back to the cloud during cache replacement, largely
reducing the data transfer cost. MYCDP uses SSD as the
Disk_Cache due to its good performance on random or small
read and write requests.

e Recovery_Assembler

The Recovery_Assembler is in charge of assembling re-
covery data using chunks.

e Memory_Cache
The Memory_Cache holds a set of hot chunks in mem-
ory to reduce duplicated chunk reading, and uses the LRU
algorithm to replace chunks.
3.3 Processing Procedures

3.3.1 Version Backup Procedure

As a CDP system, MYCDP runs nonstop to process contin-

1703

uous stream of block-level write requests from the protected
system. The CDP_Interface interprets each request to sep-
arated single block writes, and sends each Block_Data to
the Deduplicater. The Block_Data_ID (Chunk_ID) is gener-
ated by the Deduplicater, then the CDP_Interface records all
these writes as versions to the Version_Index.

The sequential structure and big size of the Ver-
sion_Index’s primary index increases the complexity of ap-
pending version records, so we make a compromise on its
update granularity to a time period. During every periodic
update, MYCDP generates a brand new primary index by
appending records of each block in append buffer to the tail
of that block’s records in the old primary index. Although
the size of primary index can be in the range of hundreds of
MB to tens of GB, the update speed is very fast by sequential
reading from old index and sequential writing to new index.
The update period is determined according to practical con-
ditions. When update begins, a new append buffer will be
created to hold newcome records, and the old append buffer
will be destroyed after update. And the fixed-size secondary
index can be updated without space reallocation after new
primary index is generated.

For each newcome Block_Data (chunk), the Dedupli-
cater checks whether it is unique by query the MDS by its
Chunk_ID. It sends only unique chunks to the Disk_Cache
and Archiver. It is also responsible for updating metadata in
the MDS.

All chunks referred by the Latest_Version and Re-
cent_Writes in the MDS are deduplicated and stored in the
Disk_Cache. So they logically represent a real-time mirror
and a modification buffer of the protected storage respec-
tively, except occupying less space due to deduplication.
To achieve this goal, the Deduplicater increases each new-
come chunk’s Cache_RC by two to indicating its new ref-
erence by the Latest_Version and Recent_Writes. Then if a
chunk’s Cache_RC equals to two, it is an uncached chunk
and will be sent to the Disk_Cache. The Latest_Version
and Recent_Writes are also updated using the information
of each newcome block write. Every time a Chunk_ID is
replaced or extruded by new one from the Latest_Version or
Recent_Writes, its Cache _RC will be decreased by one. And
spaces of chunks with Cache_RC equaling to zero are recy-
cled.

As the final step, the Archiver stores unique chunks to
the cloud. A background garbage collection process also
keeps running in MYCDP to delete unreferenced chunks
(with Cloud_RC equaling to zero) periodically.

3.3.2 Version Recovery Procedure

When the CDP_Interface receives a version recovery re-
quest, it will start a recovery process, which includes sev-
eral work threads: one for query version records from
the Version_Index, some for reading data from the SSD
Disk_Cache, some for getting data from cloud, and one for
assembling data and sending data back to the protected sys-
tem. All these threads run concurrently, which forms a re-

1704

covery pipeline.

For each block, the version demanded by a recovery
request is the version with the biggest Timestamp which is
no bigger than the recovery request’s Timestamp parame-
ter. The query thread searches the append buffer of the Ver-
sion_Index first for appropriate version record. If not found,
it searches the on-disk index. As the primary and secondary
indexes are both sequential arrays with fixed-size elements,
querying them is highly efficient. For the i’ block, the query
thread gets the tuple (A;, T;, B;) and A;4; from the secondary
index first, and check if the 7; is no bigger than the recov-
ery Timestamp. If so, this record is just the wanted record,
and no further search is needed. Otherwise, since the A; and
A, are the start and end offset of the i block’s records
in the primary index respectively, the query thread uses the
binary search algorithm to find the appropriate record from
the primary index.

The Chunk_ID of the found record is delivered to the
assembling thread with the block’s LBA. In the scenario of
recover-to-original-disk, if the found record is the latest ver-
sion record in the Version_Index, the corresponding block is
unchanged and need not to be restored. In this case, a NULL
flag with the block’s LBA will be delivered to the assembling
thread.

As we mentioned above, most recoveries demand ver-
sions not too far ago from present, so recovery versions of
most blocks are just their latest versions, and recovery ver-
sions of other blocks are likely generated by recent writes
of entire protected storage. The Disk_Cache holds exactly
these two kinds of chunks to accelerate recovery speed. And
even chunks of old versions may also be contained by the
Disk_Cache due to chunk duplication.

For each Chunk_ID being queried out, the query thread
gets its location from the MDS. Reading requests of chunks
within the Disk_Cache are sent to those disk reading threads,
and others are sent to those cloud fetching threads. These
data reading threads read chunks’ data and send them to the
assembling thread.

The assembling thread maintains an assembly queue in
memory, which is a moving recovery window consisting of
many successive blocks. Each element in the queue repre-
sents a block need to be restored. For each chunk arrived,
the thread copies its data to all positions it appearing in en-
tire queue. To improve I/O performance of the protected
storage, block data are sent back in batches and in order ap-
proximately. While in some cases, if a few front blocks are
not completed, the subsequent batch of completed blocks
can be sent out first. This strategy mitigates the impact
caused by bandwidth and latency limitations of both local
disk and cloud. All unchanged blocks will not be included
in the assembly queue in recover-to-original-disk mode.

The Memory_Cache holds a certain number of hot
chunks in memory to further reduce chunk reading, thus the
Disk_Cache and the Memory_Cache form a hybrid cache to
speed up recovery.

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.7 JULY 2014

3.3.3 Version Delete Procedure

Traditional delta-encoding based CDP systems have depen-
dency between versions, directly deleting some versions
from them may make some other versions unrecoverable.
While in MYCDP, any version can be deleted without im-
pact to other versions. For version deletion, a request
with a parameter tuple (Start_Timestamp, End_Timestamp)
is sent to MYCDP. Then for each block, all versions be-
longing to that period except the last one of them can
be removed precisely from the cloud to save storage cost.
The delete procedure filters the Version_Index to generate
a new index excluding records with 7Timestamp between
the Start_Timestamp and End_Timestamp, and decreases the
Cloud_RC of the chunk referred by each of those records by
one. Then sometime later, data and metadata of chunks with
Cloud _RC equaling to zero can be removed in batches from
cloud and the MDS by garbage collection process.

4. Evaluation and Analysis

A proof-of-concept prototype is implemented which in-
cludes all the main components of MYCDP. And a variant
of TH-CDP [10], named TH-CCDP, is also implemented for
comparison. TH-CCDP is a typical delta-encoding based
block-level CDP system, which holds all blocks’ latest ver-
sion and all deltas of each block write in the history. To
make a fair comparison, TH-CCDP also archives all data to
the cloud, and uses a disk cache to hold all blocks’ latest ver-
sion and deltas of recent writes. And it stores deltas in fixed-
size batches to improve I/O performance. More specifically,
for data referred by the Latest_Version, MYCDP allocates
space on demand with the assist of its MDS, while TH-
CCDP allocates eventually needed space at the beginning to
avoid complicated metadata management. For data referred
by the Recent_Writes, they both allocate space on demand.

To evaluate MYCDP’s effectiveness, we designed an
experimental environment. We used the Open Storage
Toolkit from Intel Labs [22] to create six iSCSI targets each
with 4KB block length and 10GB size based on a SATA disk
in a Linux PC, and mounted them to a Linux server with the
gemu-kvm tool installed. And we modified the source code
of the Intel’s Toolkit to bypass all block-level write requests
to outside and restore block data from outside through net-
work.

We created six virtual machines (VM) directly using
the six iSCSI targets by the gemu-kvm tool, and installed
windows XP with 4KB block size NTFS file system on each
VM. For each XP, we turned off its virtual memory, redi-
rected main temporary folders to a ramdisk, and installed
some common software such as Office, browser, SSH client
and etc. Then we invited five colleagues in our lab to use
one VM each as their daily work machine for one week.
And we also used the sixth VM ourselves for two weeks.
The VMs’ daily operations include installing/removing soft-
ware, sending/receiving emails using Outlook, and creat-

GU et al.: FAST RECOVERY AND LOW COST COEXIST: WHEN CONTINUOUS DATA PROTECTION MEETS THE CLOUD

ing/modifying/copying/deleting files/directories. The final
disk utilizations of those VMs are in the range of 71% to
96%. And we wrote down all the separated block writes
of those VMs since being created to six traces respectively
as our test benches. The first five VMs generated five
31GB~38GB test benches, and the sixth VM generated a
52GB test bench.

The reason why we chose XP is that XP has relatively
smaller size than other OSs. So we can use less data to form
a proper data classification characters similar to a typical
personal computer, which can accelerate our experiment.
According to the experimental results of Peabody [4], var-
ious OSs with various file systems have considerable block
writes which contain identical content to previous block
writes. So we think our experimental results on XP are in-
structive to cases using other OSs, especially other windows
OSs using same NTFS file system.

We deployed both MYCDP and TH-CCDP to a Linux
PC with an Intel Core i5-3470 quad-core CPU and 4GB
memory. The Version_Index and MDS of MYCDP were
held in a SATA disk. Metadata used by TH-CCDP was
also contained in that disk. And a 180GB Intel 525 Series
mSATA SSD was also installed to that PC. Both MYCDP
and TH-CCDP used the SSD as the Disk_Cache with 4KB
block size to hold data of the latest version and one million
recent writes. We also set the size of the Memory_Cache to
512MB to hold 128k chunks in MYCDP. It should be noted
that the Memory_Cache is useless to TH_.CCDP due to inex-
istent reuse among data of base version and deltas.

To facilitate evaluation, MYCDP and TH-CCDP used
a back-end storage module with adjustable parameter tuple
(Bandwidth, Latency). Thus we used (50Mbps, 150ms) to
simulate cloud-like storage according to our test results in
real world environment, and used (500Mbps, 15ms) to sim-
ulate local-like storage according to the parameters of typ-
ical local disk storages. And we think modest differences
on these parameters will not affect our conclusions below.
More specifically, the difference of latency can be greatly
covered by MYCDP’s multithreading and pipeline mecha-
nism during recovery, and since our evaluation is to qualita-
tively estimate the effectiveness of MYCDP relative to local-
based approaches and delta-encoding approaches, the mod-
est difference of bandwidth will not overturn related conclu-
sions.

The evaluation focused on two import factors: total
cost and recovery speed of MYCDP and TH-CCDP in dif-
ferent situations. And for the various pricing models of
cloud and local resources, we use the storage space con-
sumption to represent the cost. The smaller space is used,
the lower storage and transfer cost is spent. And the re-
quest cost of the cloud can be ignored due to its very low
price [21].

Before data analyses, it should be noted that all the ex-
perimental results of the first five VMs have very similar
characteristics. Since the purpose of this evaluation is to
qualitatively estimate the effectiveness of MYCDP, we only
present results of the first VM for single VM cases. And

1705

—&— MYCDP Cloud
TH-CCDP Cloud

—&— MYCDP Disk
TH-CCDP Disk

[%) %)
o b o
T T 1

|

space consumption (GB)
7y
T

5
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14
day
(a) Protect the sixth VM.
—&— MYCDP Disk —#&— MYCDP Cloud
TH-CCDP Disk TH-CCDP Cloud
25
=
220
g
= 15
g
=
Z 10
=]
[&]
g s
o,
w
0
1 2 3 4 5 6 7
day
(b) Protect the first VM.
—&— MYCDP Disk —#&— MYCDP Cloud
TH-CCDP Disk TH-CCDP Cloud
125
=
2100
g
=275 r
g
=
Z 50
=]
[&]
825 b
o,
w
0
1 2 3 4 5 6 7
day

(c) Protect the first five VMs together.

Fig.3 Storage space consumption comparison.

the first VM’s disk usages at the end of the first day and the
seventh day are 5.7GB and 8.1GB respectively.

First, we ran MYCDP and TH-CCDP with different
test benches to see their storage space consumptions, and
the result is shown as Fig. 3.

The three parts of Fig.3 show the space consumption
of MYCDP and TH-CCDP when they are protecting the
sixth VM, the first VM, and the first five VMs together re-
spectively. We can see space usage of the cloud becomes
bigger and bigger than space usage of the Disk_Cache as
time passed. So by utilizing the flexible and cost-effective

1706

25 r

10

deduplication ratio (%)

day

Fig.4 MYCDP’s deduplication ratio when protecting the first VM.

cloud resources to hold those outdated and infrequently ac-
cessed data with large volume, MYCDP can achieve much
lower cost than local based CDP systems. And the fig-
ure also shows that MYCDP consumes both smaller local
and cloud space than TH-CCDP in same condition. Al-
though the space allocation strategy of data referred by the
Latest_Version gives MYCDP some superiority in disk and
cloud space consumption, that superiority became negligi-
ble very quickly. According to the analysis of trace, about
84% blocks of the first VM have been written at the begin-
ning of the third day, and 96% blocks have been written in
the end. And other VMs have similar phenomenon. So the
comparison is generally fair except the first two days. Fur-
thermore, the more systems being protected, the more ad-
vantages MYCDP has. That’s because data deduplication
can eliminate redundancy globally while delta-encoding can
only eliminate similarity of versions of same block. Ob-
viously, more systems have more redundancy. In addi-
tion, Data operations causing block relocation will generate
more versions in block-level. For example, the disk defrag-
mentation will produce numerous block changes while no
upper-level data is changed in deed. Delta-encoding is in-
efficient to handle this problem, and consumes more stor-
age space. While for data deduplication, such case only in-
creases size of the Version_Index, and no more data will be
stored. So MYCDP can achieve lower cost than TH-CCDP
in cloud mode, especially in multi-client situations. In addi-
tion, MYCDP also reduces the wear on SSD by decreasing
data writes.

Figure 4 shows the deduplication ratio when MY-
CDP protects the first VM. Since MYCDP uses fixed-size
block for deduplication, we cannot expect MYCDP having
very high deduplication ratio in single VM cases. The re-
sult is reasonable according to the experimental results of
Peabody [4]. And we can see the initial deduplication ratio
is relatively low and later deduplication ratios grow higher,
that’s because most initial data is OS and application data,
while regular data (especially user data) is written later. As
we mentioned above, MYCDP’s space allocation strategy
has superiority in the first few days, which just makes up
the weakness of low deduplication ratio in those days in
the space consumption comparison with TH-CCDP. In later
days, MYCDP’s space consumption advantage over TH-

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.7 JULY 2014

MYCDPC
—&— MYCDPL

TH-CCDPC
—&— TH-CCDPL

765655545 435325215105
recovery point (day)

Fig.5 Recovery time comparison.

CCDP really comes from high deduplication ratio.

Then, to evaluate the recovery speed, we employed
four candidate schemes: MYCDPC and TH-CCDPC us-
ing cloud-like back-end storage, MYCDPL and TH-CCDPL
using local-like back-end storage. And we measured their
recovery time (RT) with different recovery point in whole-
disk-recover mode of the first VM, shown as Fig. 5.

In Fig. 5 the horizontal axis denotes the recovery point,
e.g., the value of 6.5 represents recovering to the version of
half a day ago. We can see if the recovery point is not too far
ago from present, the RT of cloud mode is almost the same
as the RT of local mode due to the effectiveness of local
cache. And this is the most cases in real world CDP sce-
narios. When recovering to earlier points, local based CDP
systems recover faster than corresponding cloud based CDP
systems. And MYCDP is always faster than TH-CCDP with
any recovery point in both local and cloud mode. In addi-
tion, when recovering to earlier points, the RT of MYCDPL
has no obvious changes, the RT of MYCDPC increases first
then reaches an upper limit, and the RT of TH-CCDPL and
TH-CCDPC keep growing sharply and endlessly. It is be-
cause MYCDP only reads chunks of exact data from local
or cloud, which have a limited overall size, while TH-CCDP
need to read a base version and unlimited deltas. Although
TH-CCDP can insert more snapshots during the history to
shorten the delta chain and speed up recovery, it will con-
sume much more local and cloud storage space.

In Fig. 6, Speedup_C denotes the speedup of MYCDPC
against TH-CCDPC in same scenario with Fig.5, while
Speedup_L denotes the speedup of MYCDPL against TH-
CCDPL. We can see the earlier version to be recovered,
the bigger speedup MYCDP achieves against TH-CCDP
roughly in both local and cloud mode.

Finally, we evaluated the hybrid cache mechanism of
MYCDP. We used a 512MB/1GB/1.5GB Memory_Cache in
turn to recover the first VM. And we also held 0.5/1/2 mil-
lion recent writes in the Disk_Cache and did it again. The
result is shown as Fig. 7.

We can see enlarging the Memory_Cache and
Disk_Cache can benefit the recovery speed of MYCDP in
different pattern. From Fig. 7 (a), larger Memory_Cache can

GU et al.: FAST RECOVERY AND LOW COST COEXIST: WHEN CONTINUOUS DATA PROTECTION MEETS THE CLOUD

OSpeedup C MSpeedup L

4.0
3.5
o 3.0
=
g 25
&
2.0
1.5
1.0
7656555454 35325215105
recovery point (day)
Fig.6 Recovery speedup of MYCDP.
—#—512MB —®—1GB 1.5GB
1200

900

recvoery time (second)
(=)}
=
=

765655545 435325215105
recovery point (day)
(a) Memory Cache

—8— 0.5M writes —8— 1M writes 2M writes

1200

900

600

recvoery time (second)

765655545 435325215105
recovery point (day)
(b) Disk_Cache

Fig.7 Recovery time of MYCDP with different cache settings.

make MYCDP recover faster for any recovery point due to
reduce both local disk and cloud I/O, and can reach smaller
upper limit of RT earlier. While Fig.7 (b) illustrates that
larger Disk_Cache can guarantee high recovery speed with
earlier recovery point, and can only reduce the upper limit of
RT slightly. So we can separately adjust the Memory_Cache
and Disk_Cache according to practical conditions to achieve
more cost-effective recovery performance.

And the final space consumptions of the Disk_Cache
with 0.5/1/2 million recent writes are approximately

1707

6.7/7.8/8.8 GB respectively. More specifically, the space
consumptions of chunks referred by the Recent_Writes are
about 1.1/2.3/3.9 GB respectively, and the space consump-
tions of chunks referred by the Latest_Version are the same
(about 5.9 GB). Note that some recent writes are also latest
version writes, and all data of recent writes and latest version
writes are deduplicated together, so there are many chunks
in Disk_Cache referred by both the Recent_Writes and Lat-
est_Version. That’s why the sum of space consumption of
chunks referred by the Recent_Writes and Latest_Version is
bigger than the space consumption of Disk_Cache. So the
disk space usage of MYCDP increases very slowly with the
increase of cached recent writes, due to deduplication. In
addition, even the disk space usage of MYCDP caching 2M
recent writes is smaller than the disk space usage of TH-
CCDP caching 1M recent writes.

5. Conclusion and Future Work

According to the evaluation, by utilizing flexible and cost-
effective cloud resources, MYCDP can achieve much lower
cost than traditional local based CDP systems. Its data
deduplication mechanism can reduce the space consump-
tion of both cloud and local storage, which can further re-
duce the total cost compared with the cloud based delta-
encoding CDP scheme. The more systems being protected
together, the more cost MYCDP saves. With the query-and-
fetch based recovery process and the effective disk/memory
hybrid cache, MYCDP can reduce data transfer and com-
putation to achieve faster recovery than cloud based delta-
encoding CDP scheme. And for most cases that the recov-
ery point is not too far ago from present, the recovery speed
of MYCDP is almost the same with the local based dedupli-
cation approach.

While single cloud has limitations of resources and re-
liability, we plan to borrow the mechanism proposed by DR-
Cloud [12] into MYCDRP to leverage resources of multiple
clouds in the future.

Acknowledgements

This work is supported by the National Natural Science
Foundation of China (61202081) and the 863 Program of
China (2012AA012609).

References

[1] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A Berkeley
view of cloud computing,” Dept. Electrical Eng. and Comput. Sci-
ences, University of California, Berkeley, Rep. UCB/EECS, vol.28,
p-13, 2009.

[2] T. Wood, E. Cecchet, K.K. Ramakrishnan, P. Shenoy, J. Van der
Merwe, and A. Venkataramani, “Disaster recovery as a cloud ser-
vice: Economic benefits & deployment challenges,” 2nd USENIX
Workshop on Hot Topics in Cloud Computing, 2010.

[3] G. Laden, P. Ta-Shma, E. Yaffe, M. Factor, and S. Fienblit, “Ar-
chitectures for controller based CDP,” FAST. 2007, vol.7, pp.21-36,
2007.

1708

(4]

(3]

[6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

C.B. Morrey and D. Grunwald, “Peabody: the time travelling disk,”
Proc. 20th IEEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies, 2003. (MSST 2003), pp.241-253, 2003.
Q. Yang, W. Xiao, and J. Ren, “Trap-array: A disk array architecture
providing timely recovery to any point-in-time,” ACM SIGARCH
Computer Architecture News, vol.34, no.2, pp.289-301, 2006.

M. Flouris and A. Bilas, “Clotho: Transparent data versioning at the
block I/O level,” MSST. 2004, pp.315-328, 2004.

J. Wires and M.J. Feeley, “Secure file system versioning at the block
level,” Proc. 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, pp.203-215, Lisbon, Portugal, 2007.

M. Lu, S. Lin, and T. Chiueh, “Efficient logging and replication tech-
niques for comprehensive data protection,” 24th IEEE Conference
on MSST. 2007, pp.171-184, 2007.

V. Akshat, V. Kaladhar, R. Ramani, and J. Rohit, “SWEEPER: An
efficient disaster recovery point identification mechanism,” FAST.
2008.

Y. Sheng, D. Wang, J. He, and D. Ju, “TH-CDP: An efficient block
level continuous data protection system,” IEEE International Con-
ference on Networking, Architecture, and Storage, 2009. NAS 2009,
pp-395-404, 2009.

M. Vrable, S. Savage, and G.M. Voelker, “Cumulus: Filesystem
backup to the cloud,” ACM Trans. Storage (TOS), vol.5, no.4, p.14,
2009.

Y. Gu, D. Wang, and C. Liu, “DR-Cloud: Multi-cloud based disas-
ter recovery service,” J. Tsinghua Science and Technology, vol.19,
pp-13-23, Feb. 2014.

N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp, T.C. Bressoud,
and A. Perrig, “Opportunistic use of content addressable storage for
distributed file systems,” USENIX Annual Technical Conference,
General Track, pp.127-140, 2003.

S. Quinlan and S. Dorward, “Venti: A new approach to archival
storage,” FAST. 2002, vol.2, pp.89-101, 2002.

A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” ACM SIGOPS Operating Systems Review,
vol.35, no.5, pp.174-187, 2001.

M.O. Rabin, “Fingerprinting by random polynomials,” Technical
Report TR-15-81, Center for Research in Computing Technology,
Harvard University, 1981.

M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore
speed for backup systems that use inline chunk-based deduplica-
tion,” FAST. 2013, pp.183-198, Feb. 2013.

B. Zhu, K. Li, and R.H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” FAST. 2008, vol.8,
pp.269-282, 2008.

Quantum Corporation, “Quantum DXi-Series disk backup systems,”
http://www.quantum.com/products/disk-basedbackup/index.aspx,
accessed Oct. 27. 2013.

Symantec Corporation, “Symantec NetBackup PureDisk,” http://
www.symantec.com/netbackup-puredisk, accessed Oct. 27. 2013.
Amazon Corporation, “Amazon simple storage system (Amazon
S3),” http://aws.amazon.com/s3, accessed Oct. 27. 2013.

Intel Labs, “Open storage toolkit from Intel Labs,” http://sourceforge
.net/projects/intel-iscsi/, accessed Oct. 27. 2013.

IEICE TRANS. INF. & SYST., VOL.E97-D, NO.7 JULY 2014

YuGu received the B.S. degree in Computer
Science and Technology from Tsinghua Univer-
sity in 2002. He is now a Ph.D. student in De-
partment of Computer Science and Technology
of Tsinghua University.

Chuanyi Liu received the B.S. degree
in Computer and Information Technology from
Beijing Jiaotong University in 2004, and ceived
the Ph.D. degree in Computer Science and Tech-
nology from Tsinghua University in 2009. He is
now an assistant professor of computer science
& engineering at Beijing University of Posts and
Telecommunications.

Dongsheng Wang received the B.S. and
Ph.D. degrees from Harbin Institute of Technol-
ogy. He is now a professor of Research Institute
of Information Technology in Tsinghua Univer-
sity. He is also a senior member of China Com-
puter Federation, and member of IEEE.

