
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014
1709

PAPER Special Section on Cloud and Services Computing

Design and Evaluation of Materialized View as a Service
for Smart City Services with Large-Scale House Log

Shintaro YAMAMOTO†a), Nonmember, Shinsuke MATSUMOTO†b), Sachio SAIKI†c),
and Masahide NAKAMURA†d), Members

SUMMARY Smart city services are implemented using various data
collected from houses and infrastructure within a city. As the volume and
variety of the smart city data becomes huge, individual services have suf-
fered from expensive computation effort and large processing time. In order
to reduce the effort and time, this paper proposes a concept of Materialized
View as a Service (MVaaS). Using the MVaaS, every application can easily
and dynamically construct its own materialized view, in which the raw data
is converted and stored in a convenient format with appropriate granular-
ity. Thus, once the view is constructed, the application can quickly access
necessary data. In this paper, we design a framework of MVaaS specifi-
cally for large-scale house log, managed in a smart-city data platform. In
the framework, each application first specifies how the raw data should be
filtered, grouped and aggregated. For a given data specification, MVaaS
dynamically constructs a MapReduce batch program that converts the raw
data into a desired view. The batch is then executed on Hadoop, and the re-
sultant view is stored in HBase. We present case studies using house log in
a real home network system. We also conduct an experimental evaluation
to compare the response time between cases with and without MVaaS.
key words: large-scale, house log, materialized view, high-speed and effi-
cient data access, MapReduce, KVS, HBase

1. Introduction

Smart city refers to a next-generation city planning, encour-
aging to improve the efficiency of the city with ICT tech-
nologies [1], [2]. The smart city provides various value-
added services. A significant characteristic of the services
is to use various information of houses and infrastructures
within the city. The information include energy consump-
tions of devices, operation log of household appliances and
equipment, environmental data such as temperature and hu-
midity, traffic data from roads and railroads. These are gath-
ered from sensors and system loggers deployed in hetero-
geneous systems. In general, the information gathered from
the smart city is Big Data, comprising large-scale and het-
erogeneous data items. Our long term goal is to provide a
universal platform, on which applications and services can
extensively use the smart city data for various purposes.

In our previous research [3], [4], we proposed a logging
platform, called Scallop4SC (Scalable Logging Platform for
Smart City). Exploiting cloud technologies Hadoop and
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HBase, Scallop4SC processes and stores the large amount
of house logs (e.g., power consumption logs) from smart
homes within a smart city. Through API, Scallop4SC pro-
vides the smart city data for various applications, such as en-
ergy visualization, detection of wasteful use, and peak shav-
ing.

In general, required data vary from one application to
another. Hence, each application has to transform the raw
data in Scallop4SC into its appropriate format and granular-
ity. However, due to the size and variety of the raw data, the
transformation poses expensive computation and long pro-
cessing time for the application.

To cope with the problem, we introduced the concept of
materialized view in Scallop4SC [5]. The materialized view
is a database technology that caches results of queries in an
actual table to improve the response time [6]. Our exper-
iment showed that the materialized view dramatically im-
proved the response time. However, each materialized view
was statically created by a proprietary MapReduce program.
Thus, application developers had to be familiar with com-
plex knowledge of Hadoop/MapReduce and HBase, for im-
plementing their own materialized views. It was also diffi-
cult to reuse the existing views for other applications.

This motivates us to encapsulate complex creation and
management of the materialized views in an abstract cloud
service. This is what we call Materialized View as a Ser-
vice (MVaaS) in this paper. For a given recipe of required
data (called data specification), MVaaS dynamically creates
a materialized view for an individual application. Once the
view is constructed, the application can quickly access nec-
essary data through API of the view.

In this paper, we design a framework of MVaaS specif-
ically for Scallop4SC. In the framework, an application de-
veloper of Scallop4SC creates a data specification prescrib-
ing how the raw data should be filtered, grouped and ag-
gregated. Based on the data specification, MVaaS dynam-
ically generates a MapReduce batch program that converts
the raw data into a desired view. The batch is then exe-
cuted on Hadoop, and the resultant view is stored in HBase.
Finally the materialized view is accessed via MVaaS API.
Thus, the developer can easily create and use own material-
ized view.

We discuss case studies of energy-related services
of a smart city using MVaaS. We also conduct a per-
formance evaluation using large-scale power consumption
data, recorded in a real smart home environment for a year.
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It is shown that the proposed MVaaS is especially effective
in cases where the applications repeatedly access the same
data, or the view is derived from a large set of raw data.

The digest version of this paper is published as a
poster/demo paper in International Conference on Cloud
Computing Technology and Science (CloudCom2013).
Changes were made on this version most significantly in the
addition of case study and discussion.

2. Preliminaries

2.1 Smart City and Services

The principle of the smart city is to gather data of the city
first, and then to provide appropriate services based on the
data. Thus, a variety of data are collected from sensors, de-
vices, cars and people across the city. A smart city pro-
vides various value-added services, named smart city ser-
vices, according to the situation by big data within a city.
Promising service fields include energy saving [7], traffic
optimization [8], local economic trend analysis [9], enter-
tainment [10], community-based health care [11], disaster
control [12] and agricultural support [13].

The size and variety of gathered data become huge in
general. Velocity (i.e., freshness) of the data is also im-
portant to reflect real-time or latest situations and contexts.
Thus, the data for the smart city services is truly big data.

Due to the limitation of storage, the conventional ap-
plications were storing only necessary data with optimized
granularity. Therefore, the gathered data was application-
specific, and could not be shared with other applications.

The limitation of the storage is relaxed significantly by
cloud computing technologies. Thus, it is now possible to
store various kinds of data as they are, and to reuse the raw
data for various purposes. We are interested in construct-
ing a data platform to manage the big data for smart city
services.

2.2 Scallop4SC (Scalable Logging Platform for Smart
City)

We have been developing a data platform, called Scal-
lop4SC, for smart city services [3], [4]. Scallop4SC is
specifically designed to manage data from houses. The data
from houses are essential for various smart city services,
since a house is a primary construct of a city. In near future,
technologies of smart homes and smart devices will enable
to gather various types of house data.

Scallop4SC basically manages two types of house data:
house log and house configuration. The house log is his-
tory of values of any dynamic data measured within a smart
home. Typical house log includes power consumption, sta-
tus of an appliance and room temperature. The house con-
figuration is static meta-data explaining a house. Examples
include house address, device ID, floor plan and inhabitant
names.

Figure 1 shows the architecture of Scallop4SC. For

Fig. 1 Scallop4SC with static MVs.

each house in a smart city, a logger measures various data
and records the data as house log. The house log is periodi-
cally sent to Scallop4SC via a network. Due to the number
of houses and the variety of data, the house log generally
forms big data. Thus, Scallop4SC stores the house log using
HBase NoSQL-DB, deployed on top of Hadoop distributed
processing. On the other hand, the house configuration is
static but structural data. Hence, it is stored in MySQL RDB
to allow complex queries over houses, devices and people.

Scallop4SC API (shown in the middle in Fig. 1) pro-
vides a basic access method to the stored data. Since
Scallop4SC is an application-neutral platform, the API just
allows basic queries (see [4]) to retrieve the raw data.
Application-specific data interpretation and conversion are
left for individual applications.

2.3 Introducing Materialized View in Scallop4SC

In general, individual applications use the smart city data
in different ways. If an application-specific data is derived
from much of raw data, the application suffers from expen-
sive data processing and long processing time. This is be-
cause the application-specific data conversion is left to each
application. If the application repeatedly requires the same
data, the application has to repeat the same calculation to the
large-scale data, which is quite inefficient.

To cope with this, we introduced materialized view in
Scallop4SC, as shown in the lower part of Fig. 1 [5]. The
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application-specific data can be considered as a view, which
looks up the raw data based on a certain query. The mate-
rialized view is constructed as a table, which caches results
of the query in advance.

Note, however, that the raw data in Scallop4SC is very
large, and that we cannot use SQL for HBase to construct the
view. Therefore, in [5] we developed a Hadoop/MapReduce
program for each application, which efficiently converts the
raw data into application-specific data. The converted data
is stored in an HBase table, which is used as a materialized
view by the application. Our experiment showed that the
use of materialized view significantly reduced computation
cost of applications and improved the response time.

A major limitation of the previous research is that
the MapReduce program was statically developed and de-
ployed. This means that each application developer has to
implement a proprietary data converter by himself. The
implementation requires development effort as well as ex-
tensive knowledge of HBase and Hadoop/MapReduce. It
is also difficult to reuse the existing materialized views for
other applications. These are obstacle for rapid creation of
new applications.

3. Materialized View as a Service for Large-Scale
House Log

3.1 Materialized View as a Service (MVaaS)

To overcome the limitation, we propose a new concept of
Materialized View as a Service (MVaaS). MVaaS encapsu-
lates the complex creation and management of the mate-
rialized views within an abstract cloud service. Although
MVaaS can be a general concept for any data platform with
big data, this paper concentrates the design and implemen-
tation of MVaaS for house log in Scallop4SC.

Figure 2 shows the new architecture of Scallop4SC
with MVaaS. A developer of a smart city application first
gives an order in terms of data specification, describing
what data should be presented in which representation.
MVaaS of Scallop4SC then dynamically creates a materi-
alized view appropriate for the application, from large-scale
house log of Scallop4SC. Thus, the application developer
can easily create and use own materialized view without
knowledge of underlying cloud technologies.

In the following subsections, we explain how MVaaS
converts the raw data of house log into application-specific
materialized view.

3.2 House Log Stored in Scallop4SC

First of all, we briefly review the data schema of the house
log in Scallop4SC (originally proposed in [3]).

Table 1 shows an example of house logs obtained in our
laboratory. To achieve both scalability for data size and flex-
ibility for variety of data type, Scallop4SC stores the house
log in the HBase key value store. Every house log is stored
simply as a pair of key (Row Key) and value (Data). To

Fig. 2 Extended Scallop4SC.

store a variety of data, the data column does not have rigor-
ous schema. Instead, each data is explained by a meta-data
(Info), comprising standard properties for house log.

The properties include date and time (when the log is
recorded), device (from what the log is acquired), house
(where in a smart city the log is obtained), unit (what unit
should be used), location (where in the house the log is ob-
tained) and type (for what the log is). Details of device,
house and location are defined in an external database of
house configuration in MySQL (see Fig. 2). A row key is
constructed as a concatenation of date, time, type, home
and device. An application can get a single data (i.e., row)
by specifying a row key. An application can also scan the
table to retrieve multiple rows by prefix match over row
keys. Note that complex queries with SQL cannot be used
to search data, since HBase is a NoSQL database.

For example, the first row in Table 1 shows that the log
is taken at 12:34:56 on May 28, 2013, and that the house
ID is cs27 and log type is Energy, and that the deviceID is
tv01. The value of power consumption is 600 W. Similarly,
the second row shows a status of tv01 where power is off.

We assume that these logs are used as raw data by var-
ious smart city services and applications.

3.3 Idea of Converting Raw Data into Materialized View

The primary task of MVaaS is to convert the raw data in Ta-
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Table 1 Raw data: House log of Scallop4SC.

Row Key Column Families
Data: Info:

(dateTtime.type.home.device) date: time: device: house: unit: location: type:
2013-05-28T12:34:56.Energy.cs27.tv01 600 2013-05-28 12:34:56 tv01 cs27 W living room Energy
2013-05-28T12:34:56.Device.cs27.tv01 [power:off] 2013-05-28 12:34:56 tv01 cs27 status living room Device
2013-05-28T12:34:56.Environment.cs27.temp3 24.0 2013-05-28 12:34:56 temp3 cs27 Celsius kitchen Environment
2013-05-28T12:34:56.Environment.cs27.pcount3 3 2013-05-28 12:34:56 pcount3 cs27 people living room Environment
2013-05-28T12:35:00.Device.cs27.tv01 on() 2013-05-28 12:35:00 tv01 cs27 operation living room Device
: : : : : : : : :

ble 1 into an application-specific view, according to a given
data specification (defined later).

For example, let us consider a statistical application
that uses daily total energy of each device. If the house logs
were stored in RDB, we would specify the following SQL:

1 CREATE VIEW dailyConsumptionPerDevice AS

2 SELECT date,device,SUM(Data) FROM houselog

3 WHERE type=Energy AND unit=W

4 GROUP BY date,device;

As we can see in the above SQL, a typical view creation
consists of three steps:

• Step 1 (Filter): Filter necessary data records out of all
raw data (corresponding to WHERE clause).
• Step 2 (Group): For the data records, group multiple

data records based on one or multiple properties (cor-
responding to GROUP BY clause).
• Step 3 (Aggregate): For each group, aggregate data

values using an aggregate function (e.g., SUM(Data)).

However, our problem is not that simple, because the table
of house log is huge and stored in a NoSQL database.

Our key idea is to implement a framework that exe-
cutes the above three steps with a MapReduce program.
Figure 3 shows a scenario of creating a materialized view
of dailyConsumptionPerDevice from raw data of house
log. First, we filter the raw data to extract relevant rows with
Energy type and W unit (Step 1). The rows are then grouped
according to the same date and the same device (Step 2). For
each group, the energy values are aggregated by SUM func-
tion to obtain the daily energy consumption of each device
(Step 3). As will be explained later, in our MapReduce pro-
gram, a map process, a shuffle process and a reduce process
will execute Step 1, 2 and 3, respectively. Finally, the resul-
tant view is stored in a new HBase table, which makes the
view materialized.

3.4 Describing Data Specification

To generalize the scenario in the previous section for other
applications, we here define the data specification. Intu-
itively, the data specification is considered as an order from
an application, specifying how the resultant view should be
generated. An SQL equivalent to a template of the proposed
data specification is expressed as follows:

1 CREATE VIEW $view_name AS

2 SELECT $prop1, $prop2,...,$prop_n,

3 $aggregate_function($expression)

4 FROM houselog

5 WHERE $filtering_condition

6 GROUP BY $prop1, $prop2,...,$prop_n;

In the above, $ represents a placeholder, which can be re-
placed by a concrete name or expression in accordance with
individual context.

In the proposed MVaaS, the following three items
should be specified in the data specification, to create an
application-specific materialized view: (1) a filtering condi-
tion, (2) grouping properties, (3) an aggregation function.

Filtering Condition

A filtering condition is a condition that extracts relevant
rows from all house logs. Equivalently, it corresponds to
$filtering condition in the above SQL. In our frame-
work, an (atomic) filtering condition f ilter is defined by
f ilter = [prop cmp val], where prop represents a prop-
erty name (i.e., column qualifier) of the house log table (see
Table 1), cmp represents a comparison operator (==, !=,
>=, <=, > or <), and val represents a value over the prop-
erty. If f ilter1 and f ilter2 are both filtering conditions, then
[ f ilter1 && f ilter2] (logical AND), [ f ilter1 || f ilter2] (log-
ical OR), ! [ f ilteri] (logical NOT) are also filtering condi-
tions.

For example, a condition that “power consumption of
tv01 is more than 600W” can be expressed by [device
== tv01 && type == Energy && unit == W && Data >=

600]. A condition that “3 people is in living room” can be
expressed by [location == living room && type ==
Environment && unit == people && Data == 3].

Grouping Properties

Grouping properties define groups of the filtered data.
If multiple rows take the same values with respect to
the properties, these rows are grouped into the same
group. The grouping properties are equivalent to $prop1,
$prop2,...,$prop n in the above SQL.

In the data specification, grouping properties group
are defined by group = [p1, p2, . . . , pn], where each pi

is one of the followings: Data, device, house, unit,
location, type, TIME, CUSTOM. Properties from Data
to type are those in Table 1. TIME specifies temporal gran-
ularity of the grouping, which is defined by one from year,
month, date, hour, minute, second. CUSTOM repre-
sents a user-defined grouping criteria, such as am gathering
all logs taken in the morning.

For example, grouping properties that aggregates house
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Fig. 3 Flowchart of converting raw data into materialized view.

logs for each device every day can be expressed by [date,
device]. Those that gathers house logs for each house per
year can be expressed by [house, year].

In the proposed method, concatenation of values of the
grouping properties is used as every row key of the mate-
rialized view. Therefore, it is important to determine the
order of pi’s, by considering priority among the properties.
In the above example, [year, house] would be better if
the application performs year-wise search more frequently
than house-wise search.

Aggregate Function

An aggregation function defines how to aggregate the
grouped house logs, which corresponds to $aggregate
function($expression) in the previous SQL.

In our framework, an aggregation function is defined
by aggregation = aggr(expression), where aggr is one of
the following functions: SUM (total sum), MAX (maximum
value), MIN (minimum value), AVG (average), COUNT (count
of items), CONCAT (concatenation of items), ID (identity),
CUSTOM (user-defined function). Also, expression is any
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expression defined with properties of the houselog table (see
Table 1).

For example, an aggregation function that calculates
total sum of data within the grouped data rows is expressed
by SUM(Data). Another function that concatenates all dates
of the group is expressed by CONCAT(date).

3.5 Generating MapReduce Converter

Once a data specification is given, MVaaS dynamically gen-
erates a MapReduce program that converts the raw data into
the target view. The MapReduce program is generated so
that a pair of map and reduce processes perform the follow-
ing tasks.

• Filter: In the map process, only data rows satisfying
the filtering condition ( f ilter) are passed to the reduce
process.
• Group: In the map phase, each filtered row is con-

verted into such a pair of key and value that:

– key: The key is constructed as a concatenation of
values of the grouping properties. This makes all
the rows in the same group have the same key.

– value: The value is generated by evaluating ex-
pression in the aggregation function.

• Aggregate: In the reduce process, the values in the
same key (i.e., the same group) are aggregated by the
aggregation function (aggr).

A pseudo code of the MapRedeuce program is as follows:

1 class Mapper

2 method map(rowkey, column)

3 if(filter(column)==true)

4 for (p in group)

5 key = concat(key, column.p.getValue())

6 value = eval(expression(column))

7 EMIT(key, value)

8

9 class Reducer

10 method reduce(key, [v1, v2, \ldots , vn])

11 result = aggr(v1, v2,\ldots ,vn)

12 EMIT(key, result)

3.5.1 Mapper

For each row of house logs, Mapper class takes a row key
and column families. Mapper first check if data in the col-
umn satisfies filtering condition. If it does, it generates a key
by concatenating the value of each grouping property. The
value is obtained by evaluating the expression according to
values of column. The pair of key and value is emitted to
Reducer.

3.5.2 Reducer

After the map process, data values v1, v2, . . . , vn with the
same key are gathered and passed to Reducer. Reducer just
aggregate values v1, v2, . . . , vn using a designated aggregated

function. The key and the result is emitted as a row of the
materialized view.

The MapReduce program is then compiled and exe-
cuted on Hadoop in Scallop4SC. The resultant key-values
are stored in a new HBase table as a materialized view. The
creation of the view generally takes time, depending on the
data specification and the size of raw data chosen. How-
ever, once it is created, the application can access the data
quickly.

3.6 Alternative Design by Pig

Although MVaaS itself is general concept for any type
of data processing, there are several the design choices
for implementation. In this paper, we considered data-
specification as high-level language of native MapReduce
program. As one of the other choices, Pig Latin [14] is use-
ful for describing data processing on Hadoop environment.
Pig is a high-level language for describing programs that an-
alyze big data stored in Hadoop and HBase.

3.7 API of Created Materialized View

MVaaS also creates API for the created materialized view.
Through API, applications can access the data of the view
without knowing physical data model of HBase. Two meth-
ods are provided.

• get(view name, row key) returns a value corre-
sponding a given key for a specified view.
• scan(view name, keyword) returns all values

matching a keyword (by prefix search) for a view.

Note that the response time of the API is quite short,
once a materialized view is constructed. Thus, the appli-
cation can quickly access the desired data. Note also that
API provides an access to the existing views, which allows
applications to share and reuse the materialized views.

4. Case Study

We demonstrate the effectiveness of MVaaS through two ex-
ample services in this section.

4.1 Power Consumption Visualization Service

This service visualizes the use of energy at home from var-
ious viewpoints (e.g. houses, towns, devices, current power
consumption, passage of past power consumption, etc.). It
is intended to raise user’s awareness of energy saving by in-
tuitively showing the current and past usage of energy.

In this scenario, we assume that every smart home in
a city sends the power consumption data of every device to
Scallop4SC periodically every 3 seconds, and that the visu-
alization service wants to see the energy consumption within
a house cs27, for every device per hour per day.

As the size of power consumption logs is large, it is un-
realistic for the service to use the raw data directly. Hence,
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Table 2 Materialized view of consumption visualization service.

Row Key Column Families
(hour.device) Data:
2013-05-28T10.tv01 784415
2013-05-28T10.light01 1446
2013-05-28T10.light02 21321
2013-05-29T10.aircon01 54889
2013-05-28T11.tv01 51247
2013-05-28T11.light01 7742
2013-05-28T11.light02 3288
2013-05-28T11.aircon01 65774
: :

the service developer submits the following data specifica-
tion to MVaaS.

1 Filtering condition =

2 [type==Energy && unit==W && house==cs27]

3 Property = [Hour, Device]

4 Aggregation = [SUM(Data)]

Based on the data specification, MVaaS constructs a
materialized view as shown in Table 2. In the table, a row
key is constructed as a concatenation of hour and device,
value is a total sum of power consumption in the hour.

For example, the first row in Table 2 shows that the
total sum of power consumption of tv01 between 10 and 11
AM on May 28, 2013 is 784415 W. The Application can
visualize the use of energy using this table.

4.2 Wasteful Energy Detection Service

This service automatically detects and notifies wasteful use
of electricity, using power consumption data and sensors
data in a smart home.

In this scenario, we assume that every smart home pe-
riodically sends status of every devices and environment in-
formation every minute. The service wants to detect the
wasteful electricity using two materialized views. The first
view enumerates the time when each appliance is turned
on for every location for every device. The second view
enumerates the time for each location, where no user exists
there. An intersection of the two views yields the time where
any appliance is turned on while no one in the room. This is
the wasteful use of energy.

To create the views, the developer submits the follow-
ing data specifications to MVaaS:

1 Filtering condition =

2 [type == Device && unit == status &&

3 house == cs27 && Data == [power:on]]

4 Property = [Date, Location, Device]

5 Aggregation = [CONCAT(time)]

For the second view,

1 Filtering condition =

2 [type == Environment && unit == people &&

3 house == cs27 && Data == 0]

4 Property = [Date, Location]

5 Aggregation = [CONCAT(time)]

Based on these data specifications, MVaaS constructs a

Table 3 Materialized view of diagnosis and improvement of lifestyle
support service.

(a) Status of devices
Row Key Column Families

(date.location.device) Data:
2013-05-28.living room.tv01 17:12:44, 17:13:43, 17:14:57,. . .
2013-05-28.bedroom.light01 23:34:56, 23:35:56, 23:36:57,. . .
2013-05-29.living room.tv01 17:22:16, 17:23:14, 17:24:17,. . .
2013-05-29.bedroom.light01 20:46:23, 20:47:24, 20:48:50,. . .
2013-05-30.living room.tv01 18:56:21, 18:57:21, 18:58:24,. . .
2013-05-30.bedroom.light01 21:57:21, 21:58:21, 21:59:20,. . .
: :

(b) Period of time during absence from the room
Row Key Column Families

(date.location) Data:
2013-05-28.living room 10:12:44, 10:13:43, 10:14:57,. . .
2013-05-28.bedroom 7:34:56, 7:35:56, 7:36:57,. . .
2013-05-29.living room 11:22:16, 11:23:14, 11:24:17,. . .
2013-05-29.bedroom 8:36:23, 8:37:24, 8:38:50,. . .
2013-05-30.living room 9:56:21, 9:57:21, 9:58:24,. . .
2013-05-30.bedroom 7:57:23, 7:58:21, 7:59:20,. . .
: :

materialized views as shown in Table 3 (a) and Table 3 (b).

5. Experimental Evaluation

5.1 Overview of Experiment

We conduct an experiment to evaluate performance of
MVaaS. The experiment is performed on our Scallop4SC
prototype, which is a Hadoop cluster comprising 9 nodes
(Intel(R) Corei7-3770, 32GB, CentOS-x64). Libraries used
for Hadoop/MapReduce are hadoop-core-1.0.4.jar
and hbase-0.94.7.jar. The raw data used in experiment
is power consumption logs gathered in our smart home envi-
ronment CS27-HNS [15]. The consumption logs have been
taken every 3 seconds from 32 devices, for over two years.
For one day, the logs comprises 921,600 data rows (= 20
items x 60 minutes x 24 hours x 32 devices).

From the raw data, we create three kinds of mate-
rialized views with MVaaS: DailyView, HourlyView and
MinutelyView. They store the total power consumption of
each device for every day, hour and minute, respectively.

The purpose of experimental evaluation is to answer
the following two questions.

• Q1: How much time is taken for creating a materialized
view?
• Q2: How fast will applications be able to access the

processed data?

To answer Q1, we measure and compare the time taken
for creating a materialized view from the raw data by using
proposed method and by using Pig Latin program. The pro-
posed method means that a materialized view is created by
MapReduce program converted from a data-specification.
The Pig method means that we write a Pig script which has
the same function as the proposed method.

To answer Q2, we measure the response time that a
client application obtains single data from a materialized
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Table 4 Result of experiments.

Materialized View Monthly Daily Hourly Minutely
# of rows aggregated 28,569,600 921,600 38,400 640
Time for MV creation (sec.)
Proposed Method 3715.8 412.7 52.2 34.7
Pig Latin 4610.1 510.9 79.3 59.5
Response time (sec.)
with MVaaS 0.002 0.002 0.002 0.002
without MVaaS 12,956.381 328.022 13.682 0.260

view through MVaaS API. We compare the response time
with and without MVaaS. In the case of without MVaaS, the
client application obtains raw data and processes the raw
data into own format.

5.2 Result of Experiment

Table 4 shows the result. We can see that MVaaS took about
7 minutes to create a DailyView for converting 921,600 rows
by MapReduce. Once the view is created, the application
can access any data in the view very quickly (2 millisec-
onds). On the other hand, the conventional method without
MVaaS took 5 minutes for each calculation of the daily con-
sumption. Thus, we can see that the creation of a view is
efficient especially when the required raw data is large and
the application frequently accesses the aggregated data.

On the other hand, when the size of raw data to be
aggregated is small, the overhead of MapReduce becomes
dominant in the total execution time. As seen in the result
of MinutelyView, the response time without MVaaS is just
0.2 second, which might be acceptable for some applica-
tions. In such cases, using the conventional method is one
possible choice to avoid overhead of creating a materialized
view.

Compared with Pig, the ratio of execution time of
MVaaS to Pig is 50% to 80%. In other words, MVaaS is
faster than Pig in any dataset size. The ratio comes close to
80% when the number of aggregated rows becomes larger.
This result has the same tendency with the Pig experience
reported by Gates et al [16]. They have reported in April
2009 that Pig took 1.5 times as much time as with native
MapReduce program.

In summary, the answer to Q1 is about 7 minutes for 1
million rows and the processing time is in direct proportion
to the number of rows. The answer to Q2 is 2 milliseconds
and it is independent on the number of rows.

6. Discussion

6.1 Related Work

Hive [17] has powerful SQL-like feature for summarizing
and aggregating big data stored in Hadoop. It seems to
be useful for dynamic creation of materialized views in
MVaaS. However, Hive basically requires to prepare tables
with rigorous data schema (like those of RDB) on top of
Hadoop. Hence, it is not directly applied to our design of

Scallop4SC, where various (even unknown) types of house
logs are stored in the same big table. Also, since the ag-
gregated data is stored in Hadoop, random data access from
applications would yield long response time.

Pig [14] provides a high-level language (Pig Latin) for
describing programs that analyze big data stored in Hadoop
and HBase. It might be adopted as the language for our
data specification. However, since Pig Latin is designed
for general-purpose analysis, it might be difficult for appli-
cation developers to learn and use it. Also, the execution
of a Pig program is generally slower than that of a native
MapReduce program. Thus, we proposed a custom method
to generate a MapReduce program from a data specification
designated for MVaaS of Scallop4SC.

6.2 Validity of Design Choice

Although, we considered data-specification as high-level
language of native MapReduce program, other general-
purpose framework can be applied the implementation of
our approach.

The general-purpose framework has high flexibility
and can be applied to any type of data processing. Of course,
all example scripts written in this paper can be also achieved
by Pig. Specifically, Pig can be used with small learning
cost because it supports simple and abstract notations. How-
ever, a user of these general-purpose framework has to cre-
ate program from a wide variety of script commands. In
contrast, our approach specializes the existing framework to
the smart city. This decreases flexibility of data processing
but increases the ease of use. In our method, the sequence of
data processing is fixed within the three steps; filter, group
and aggregate. Thus, the end user can only focus on how
to process raw data within the constraints, determined by
our framework. These constraints provide not only simpli-
fication of data processing, but also simple and easy user
interactions.

6.3 Issues for Practical Operation of MVaaS

In order to provide MVaaS efficiently for practical settings,
we have to address some pragmatic issues, which are be-
yond this paper. One issue is task scheduling of MapReduce
programs. A MapReduce task generally takes some time. If
many applications request MVaaS to create views, MVaaS
should consider an efficient schedule of the tasks, so that
the waiting time meets a desired service level of each appli-
cation. To handle many requests at a time, we should also
consider dynamic scaling of MVaaS by adding more com-
puting nodes.

Another issue is to find good design of materialized
view. For every application, there are many design choices
of materialized views. It would be difficult for the developer
to find optimal view for the application. Developing best
practices and design patterns for MVaaS is promising. We
leave these practical issues for our future work.
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7. Conclusion

In this paper, we proposed a materialized as a service
(MVaaS) for large-scale house log in a smart city data plat-
form Scallop4SC. Using MVaaS, a developer of a smart city
application can easily construct an application-specific view,
by which the application can access the necessary data effi-
ciently. For a given data specification, MVaaS dynamically
generates a MapReduce program that converts the raw data
into the view. The program is then executed on Hadoop
of Scallop4SC, and published as a service with API. We
have evaluated the proposed method through case studies
and performance evaluation. Our future works include the
pragmatic issues discussed in Sect. 6.3 and development of
practical applications using MVaaS.
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