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SUMMARY Now that the subject of green computing is receiving a lot
of attention, the energy consumption of datacenters has emerged as a signif-
icant issue. Consolidation of Virtual Machines (VMs) reduces the energy
consumption since VM live migration not only optimizes VM placement,
but also switches idle nodes to sleep mode. However, VM migration may
negatively impact the performance of the system and lead to violations in
SLA (Service Level Agreement) requirements between end users and cloud
providers. In this study, we propose a VM consolidation mechanism that
reduces the energy consumption of datacenters, eliminates unnecessary mi-
grations, and minimizes the SLA violations. Compared to previous studies,
the proposed policy shows a reduction of 2% to 3% in energy consumption,
13% to 41% in VM migration frequency, and 15% to 50% in SLA viola-
tions.
key words: cloud computing, virtual machine, consolidation, SLA, data-
center management

1. Introduction

With the rapid growth of cloud computing, many cloud ser-
vice providers have emerged to offer several convenient ser-
vices. Google Drive and DropBox provide users with uni-
versal access to data and documents. Google App Engine
and Windows Azure have released application programming
interfaces (APIs), which programmers can use to access
cloud resources. Amazon EC2 provides flexible computing
capacity and makes web-scale computing easier for devel-
opers. In addition, no matter what type of service cloud
providers supply, they have to guarantee that the quality of
service that cloud users obtain is as good as they paid for.

A critical benchmark of the quality of service for
cloud-based providers, such as the CPU capability and the
amount of memory space, is specified in the form of a Ser-
vice Level Agreement (SLA) between providers and cus-
tomers. Providers have to offer compensation when they
cannot meet SLA requirements. In terms of cost consider-
ations, cloud providers minimize datacenter costs (includ-
ing electrical usage and hardware resources) under the con-
straint of guaranteeing that performance meets SLA require-
ments.

Virtualization technology integrates heterogeneous
physical machines into one virtualized resource pool and
creates virtual machines which service cloud users. VM
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consolidation is a technique that aggregates workloads and
switches idle nodes to low-power mode, thereby reducing
the overall energy consumption of the datacenter [2], [4],
[5]. Using live migration, the datacenter manager can easily
balance the load among different nodes, without stopping
the VMs’ processes. However, VM migration may nega-
tively impact the performance of the system and lead to vi-
olations in SLA.

Owing to the fact that the resource demands of vir-
tual machines (VMs) change during execution, the reduc-
tion of energy consumption is now one of the main issues
in cloud datacenters. It is important that the datacenter man-
ager manages VMs with an ability to consider future loading
trends. Troung et al. [4] measured the power consumption
of a server running in different states, and proposed a green
scheduler for energy savings in cloud computing. Optimiza-
tion of the allocation of VM placements can reduce the num-
ber of active servers, resulting in greater energy savings [6],
[7]. In this regard, Beloglazov et al. [2] proposed several
heuristics for the dynamic consolidation of VMs based on
historical data of VM resource usage.

The goal of this study is to provide an IaaS (Infras-
tructure as a Service) system provider which can reduce the
energy consumption of datacenters while meeting SLA re-
quirements. This study proposes an autonomic consolida-
tion technique that can control the average CPU capability
to reduce the VM migration frequency and guarantee SLA
requirements. The remainder of this paper is organized as
follows: Sect. 2 presents the system model we used in this
study, Sect. 3 presents details of the mechanism that we pro-
pose, and Sect. 4 evaluates the proposed mechanism by em-
ploying simulations using CloudSim. Conclusions will be
provided in Sect. 5.

2. System Model

A cloud provider typically consists of a collection of servers
offering virtualized resources and a datacenter manager
which uses these resources to create VMs to process user
tasks. The datacenter manager creates and allocates VMs to
computing nodes, and balances the workload between nodes
to guarantee SLA requirements.

To standardize the quality of service, cloud providers
and consumers sign an agreement termed the SLA to define
the level of service being sold. In terms of cloud computing
resources, the SLA requirement refers to the CPU capability
of the VM in this study. In our model, the CPU capability
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of the server is represented in units of some Million Instruc-
tions per Second (MIPS).

2.1 Power Model

Recent studies have shown that the power consumption of a
server which applies the DVFS technique has an almost lin-
ear relationship with CPU utilization. The DVFS technique
allows the CPU to switch the frequency and voltage levels
to low-performance levels when the workload is low, and
dynamically adjust them to high-performance levels when it
is high. Therefore, the power consumption of the server at a
fraction u of CPU utilization, P(u), is defined as follows:

P(u) = (Pmax − Pidle)u + Pidle,

where Pmax and Pidle are the power consumption at maxi-
mum and idle CPU utilization, respectively. CPU utiliza-
tion of the server changes with time, and the relationship
between utilization and time is denoted by u(t). The energy
consumption of a server over a period of time is defined as
an integral of the power consumption over that period, as
follows [1]:

Ei =

∫ t1

t0

Pi(ui(t))dt.

We also considered the energy consumption of the
switching server when it is turned ON and OFF. The switch-
ing energy consumption of server i is defined as

ei = S i(T
ON
i PON

i ) + T OFF
i POFF

i ),

where T ON
i and T OFF

i are the duration of time that server i
turns ON and OFF, PON

i and POFF
i are the power consump-

tion of server i when it turns ON and OFF, and S i is the
number of the switching instances for server i. Then the en-
ergy consumption of the datacenter of N servers is computed
by E =

∑N
i=1(Ei + ei).

For the cost of migration, since migration negatively
impacts the performance of the VM and hurts the SLA, the
migration time Tm is estimated by the ratio of the amount
used memory space and the network bandwidth.

2.2 SLA Violation Metrics

Generally, end users can not estimate the computing capa-
bility they need accurately. For the safe reason, the amount
of reserved capability usually exceeds that of consumption.
In this study, we assume that users always request comput-
ing resources under the amount specified in the SLA re-
quirements.

A cloud provider has responsibilities to ensure that
users are offered QoS in the SLA. Thus we consider the
metric for the SLA violation in terms of the rate of viola-
tion of a resource provision. A violation is said to occur
when a server cannot offer enough resources to a VM. The
amount of unfinished workload is the difference between the
VM resource demand and the amount of resources that the

server provides. The SLA violation rate of a datacenter with
N servers over a period of time [t0, t1] is calculated as fol-
lows:

VSLA =

∫ t1
t0

∑N
i=1(ri(t) − ai(t))dt∫ t1
t0

∑N
i=1 ri(t)dt

where ri(t) is the resource demand of VMi at time t, ai(t) is
the resource provided at time t.

3. Prediction-Based VM Allocation Mechanism

In this section, we present the structure of the datacenter
management system that we employed. When a VM enter
the cloud system in the first time, the initialization process of
the system will allocate resource to the VM with the amount
specified in the SLA. Figure 1 represents the process of the
datacenter management system which includes three main
parts: the predictor, monitor, and allocator (in Fig. 2).

(1) VM Predictor

Workloads of applications that are processed on the VM
vary with time, and uncertain resource requirements result
in the difficulty of load balancing. However, the behavior
and resource demand of an application may be similar over
a period of time. The predictor collects historical resource
usage data and outputs an estimated value. The management
system allocates the VM with resources under the estimated
value. The estimated value is defined as

UP =

∑R
i=1 Recordi

R
(1 + σ)

Fig. 1 The process of the datacenter management system.

Fig. 2 Three main parts of the datacenter management system: (a) VM
predictor, (b) VM monitor, and (c) VM allocator.
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where Recordi is the historical usage, R is the number of us-
age records, and σ is the standard deviation of the historical
usage. In fact, we reserve more resources for UP with a safe
factor 1 + σ of previous usages. With the estimated value,
the system restricts VM resource usage to under UP. For
a VM, its workload is completed only when its demand is
lower than the estimated value. Unfinished workloads ap-
pear when the demand of the VM exceeds the estimated
value. In this situation, the server did not offer resources
demanded during some previous periods and it has to catch
up the progress later under the limitation of UP when it has
more computing capability or VM’s demand is less than UP.

(2) VM Monitor

When the management system limits VM resources whereas
the VM’s demand exceeds the estimated value, the system
should relocate and move the VM to a new node to honor
the SLA. On the contrary, when the VM demand is much
lower than the estimated value, the system should lower the
resources earmarked for that VM in order to load other VMs
onto that node or move this VM onto other node. A monitor
is used to detect the unexpected situations, such as over-
loading or underloading. Instead of moving or readjusting
a VM immediately, the system leaves room for the possi-
bility for the VM to return to the expected situation. To
detect unloading of a VM, we introduce a tolerance factor
τ, 0 < τ < 1. The underloaded state occurs if U/UP < τ
and the overloaded state occurs if U > UP, where U is the
actual usage. Furthermore, the prediction failure is reported
when one of the above two states happens. In our system,
if the prediction failure occurs in two consecutive time pe-
riods, the monitor informs the predictor to re-calculate UP

and passes the related information to the VM allocator.

(3) VM allocator

The VM allocation policy consists of two parts: (1) selecting
VM based on records by VM monitor and (2) deciding tar-
get hosts for migration. Instead of searching for overloaded
nodes, we focused on locating VMs which are in the pre-
diction failure state and need to be migrated. In this study,
we suggest a grouping policy to speed up the process of se-
lecting the VM migration destination. The policy groups
servers into two status types: active and sleep. The policy
will search the active group first, and if there are no nodes
in the active group that satisfy the VM, it will then go on
to search the sleep group. Besides, the minimum growth in
server power consumption can be easily found by locating
the server which has the minimum value of ρ, where ρ is the
ratio of the computing capability to the power consumption
of a server.

4. Performance Evaluation

We compared our mechanism with the IQR-MMT policy of
VM placement [2], which is a very efficient consolidation
management. Compared to the pure DVFS policy which
does not migrate VMs, IQR-MMT can reduce datacenter

Table 1 Power consumption of server growth with CPU utilization.

Utilization (%) 00 10 20 30 40 50 60 70 80 90 100

Power (W) 75 78 84 89 94 100 105 109 112 115 117

energy consumption by 45.6% on energy consumption of
the datacenter with an SLA violation rate of only 0.10%.

To evaluate the efficiency of the proposed mechanism,
we used two different sets of workloads for VMs: one con-
sisted of workloads with different durations for the VM, and
the other comprised workloads with different behaviors for
the VM. The duration of a VM is the time between it starting
and finishing its jobs. The behavior of a VM is the behavior
of its resource demand requests. To simplify experimental
results, we only created a single-core VM in simulations.
For the parameters, because there is a tradeoff between the
decreasing number of SLA violations and increasing data-
center energy consumption, we set the number of records
(R) as 10 and the tolerance factor (τ) at 0.85 in our experi-
ments.

We employed the CloudSim simulator [3] to simulate
a large-scale datacenter and evaluate the proposed resource
allocation algorithms. CloudSim 3.0 is used to simulate a
datacenter consisting of 500 heterogeneous IBM x3200 M2
servers. At most, 1000 VMs ran concurrently. Every server
had a dual-core Xeon 3.0GHz CPU, 4GB of memory, and
a network bandwidth of 1Gbit/s. The relationship between
server power consumption and CPU utilization is presented
in Table 1. Every VM consists of a 1GHz CPU, the same ca-
pability as an Amazon EC2 small instance type, and 50MB
of memory, the minimum size in a KVM VM.

We used CPU utilization records, a monitoring infras-
tructure for PlanetLab [2], [8] and provided by the CoMon
project. The utilization records represent the CPU usage of
the server for one day, and the recording interval was 5 min-
utes. We use a Poisson distribution to simulate a user enter-
ing the cloud system and accessing VMs [9]. When a user
enters and requests a VM, the system will create a VM for
the user, randomly choose a record, and assign it to the VM.
A VM requests CPU computing resources according to the
assigned workload which varies with time and the workload
of the server also varies with time.

We divided workloads into two classes according to
their behavior: stable and unstable types. An unstable type
indicates that the demand for resources changes violently
and frequently. A stable type is the opposite of this case.
We classified the workload according to the rule: a work-
load for which the amount of variation in usage is under 15%
and over 75% of the duration is classified as a stable type.
If the variation is otherwise, it is classified as an unstable
type. Figure 3 presents an example for stable workloads. In
this case, the usage difference between two consecutive time
slots, u(t + 1) − u(t), is smaller than 15% and this situation
occurs over 75% of its executive duration.

Table 2 presents results for different workload types.
The proposed mechanism shows a large improvement when
the workload is unstable. This is because the proposed pol-
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Fig. 3 A stable workload.

Table 2 Comparisons with different workload types.

Fig. 4 SLA violations over 24 hours: (a) for all long type workloads,
(b) for all short type workloads, (c) for all stable type workloads and (d) for
all unstable type workloads.

icy does not migrate VMs frequently while the IQR-MMT
policy immediately moves a VM when the server is over-
loaded. Meanwhile, our mechanism reduces datacenter en-
ergy consumption and completes more instructions than the
IQR-MMT policy for both workload types.

We also classified VM workloads into two duration
types: short and long. The duration of short workloads takes
1 to 6 hours to finish the job, and for long workloads, 6 to
24 hours. The amount of SLA violations for different work-
loads over a 24-hour period is shown in Fig. 4. We have that
the SLA violation for our mechanism is always better than
that of IQR-MMT.

5. Conclusion

Cloud providers improve datacenter performance using vir-
tualization techniques to implement VM consolidation and
switch idle servers to energy-saving mode and reduce en-
ergy consumption. In this study, we propose a VM consol-
idation mechanism that reduces the energy consumption of
datacenters, eliminates unnecessary migrations, and mini-
mizes the SLA violations. We used CloudSim Toolkit 3.0
as a simulation platform and evaluated the proposed policy
using workloads traced from PlanetLab VMs. Compared to
the IQR-MMT policy [2], the proposed policy shows a re-
duction of 2% to 3% in energy consumption, 13% to 41%
in VM migration frequency, and 15% to 50% in SLA viola-
tions.
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