
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014
1769

PAPER

An Empirical Study of Bugs in Software Build System

Xin XIA†, Xiaozhen ZHOU†, David LO††, Xiaoqiong ZHAO†, Nonmembers, and Ye WANG†††a), Member

SUMMARY A build system converts source code, libraries and other
data into executable programs by orchestrating the execution of compil-
ers and other tools. The whole building process is managed by a soft-
ware build system, such as Make, Ant, CMake, Maven, Scons, and QMake.
Many studies have investigated bugs and fixes in several systems, but to
our best knowledge, none focused on bugs in build systems. One signifi-
cant feature of software build systems is that they should work on various
platforms, i.e., various operating systems (e.g., Windows, Linux), various
development environments (e.g., Eclipse, Visual Studio), and various pro-
gramming languages (e.g., C, C++, Java, C#), so the study of software
build systems deserves special consideration. In this paper, we perform
an empirical study on bugs in software build systems. We analyze four
software build systems, Ant, Maven, CMake and QMake, which are four
typical and widely-used software build systems, and can be used to build
Java, C, C++ systems. We investigate their bug database and code reposito-
ries, randomly sample a set of bug reports and their fixes (800 bugs reports
totally, and 199, 250, 200, and 151 bug reports for Ant, Maven, CMake and
QMake, respectively), and manually assign them into various categories.
We find that 21.35% of the bugs belong to the external interface category,
18.23% of the bugs belong to the logic category, and 12.86% of the bugs
belong to the configuration category. We also investigate the relationship
between bug categories and bug severities, bug fixing time, and number of
bug comments.
key words: software build system, bug category, empirical study

1. Introduction

The common goal of build systems is to convert source code,
libraries and other data into executable programs by orches-
trating the execution of compilers and other tools. In addi-
tion, build systems also support the packaging of web-based
applications, the generation of software product documenta-
tion, the automatic static analysis of source code, and other
related activities [1].

Many research studies have investigated different as-
pects of build systems. Tamrawi et al. and Adams et al.
analyze the Makefile by performing symbolic execution [2]
and by constructing a build graph [3]. Neitsch et al. ana-
lyze issues in build systems for multiple programming lan-
guages [4]. Suvorov et al. investigate the migration of build
systems in practice; it analyzes Linux Kernel and KDE as
two case studies [5].

Manuscript received November 15, 2013.
Manuscript revised February 15, 2014.
†The authors are with the College of Computer Science and

Technology, Zhejiang University, China.
††The author is with the School of Information Systems, Singa-

pore Management University, Singapore.
†††The author is with the School of Computer and Information

Engineering, Zhejiang Gongshang University, China.
a) E-mail: yewang@mail.zjgsu.edu.cn

DOI: 10.1587/transinf.E97.D.1769

The whole build process use various systems and tools:
version-control tools, which store the source code and en-
sure concurrent development for developers; compilation
tools, which convert input source code into object code or
executable programs; software build systems, which col-
lect sufficient information about the relationship between
source files and object files, and use necessary compilation
tools to produce the final build output (e.g., executable pro-
grams, software package, documentation, static analysis re-
sults). Software build systems play the most important roles
in building systems, since they orchestrate the entire build
process, and control the final build output. There are var-
ious software build systems, such as Make, Ant, CMake,
Maven, Scons, and QMake.

Understanding software build systems could provide a
better guide for constructing a robust and fault-tolerant build
systems. One necessary step to understand build system be-
havior is to understand the features and characteristics of
bugs in their software build systems. To better understand
the nature of bugs in software build systems and to poten-
tially help to prevent, resolve, mitigate, or manage such
bugs, in this paper, we perform an exploratory study of real
bugs found in these tools.

A number of studies have investigated bugs and their
fixes in various systems [6]–[13], these studies provide
guide for triaging bug reports, detecting duplicated bug re-
ports, designing bug location tools, reduce testing and main-
tenance costs, and helping to improve development effi-
ciency. However, to our best knowledge, none of these stud-
ies focus on bugs in software build systems. One signif-
icant feature of software build systems is that they should
work on various platforms, i.e., various operating systems
(e.g., Windows, Linux), various development environments
(e.g., Eclipse, Visual Studio), and various programming lan-
guages (e.g., C, C++, Java, C#). Thus, analyzing bugs and
their fixes in software build systems deserves a special con-
sideration.

In this study, we analyze four software build systems:

1. Apache Ant∗, one of the most popular build systems
for Java-based projects.

2. Apache Maven∗∗, a software build automation and
comprehension tool used primarily for Java projects.

3. CMake∗∗∗, a software build automation which trans-

∗http://ant.apache.org/
∗∗http://maven.apache.org/
∗∗∗http://www.cmake.org/

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



1770
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

lates a high-level build description into a lower-level
description which can be used by other build system,
such as GNU Make.

4. QMake†, a part of the QT development environment,
which is similar to CMake.

To investigate bugs that appear in the four systems, we
analyze their bugs and code repositories. We collect bug
reports with status “closed”, and manually check their fixes.
Apache Ant uses Bugzilla to track all the bugs; we manually
check the commit logs in CVS to retrieve the fixes related to
a bug. Apache Maven and QMake use JIRA to track bugs,
and JIRA contains links from bug reports to a list of changes
in the source control repositories that fix those bugs. CMake
uses MantisBT to track bugs, and uses Github†† to manage
source code, and we notice developers post links of source
code changes related to the corresponding bugs in Github.

The goal of our study is to characterize bugs that ap-
pear in build systems (their frequency, their categories, their
severities, and the difficulties to fix these bugs (measured
by fix time and number of comments)). To achieve these
goals, we would answer the following questions: How often
a bug appears in software build systems? How much bugs
per kLOC? What categories of bugs appear in software build
systems? What is the severity distribution for each category
of bugs? How long does it take to fix various categories of
bugs? How many comments of a bug received for each cat-
egory of bugs? To answer the above questions, we perform
both manual and automated analysis on a randomly sampled
set of “closed” bug reports and their corresponding bug fix-
ing commits. We find that 21.35% of the bugs belong to
the external interface category, 18.23% of the bugs belong
to the logic category, and 12.86% of the bugs belong to the
configuration category.

This paper extends our preliminary study published as
a short paper in a conference [14]. It extends the preliminary
study in various ways: two additional research questions
are investigated, descriptions of datasets and our empirical
study methodology are extended, related work section is ex-
panded, and a number of examples are added.

The main contributions of this paper are as follows:

1. To our best knowledge, this is the first time that a
large scale, semi-automated empirical study of bugs in
software build systems has been performed. Software
build systems should adapt to different platforms, de-
velopment environments, and programming languages,
which is different from other systems.

2. We collect and manually label 800 bug reports from
four software build systems into various categories by
extending the bug categorization in [15].

3. We investigate the relationships between bug cate-
gories and bug severities, bug fixing time, and num-
ber of bug comments. We believe our analysis of the
bugs would provide guidance for preventing, detect-

†http://qt-project.org/doc/qt-4.8/qmake-manual.html
††https://github.com/

ing, mitigating, resolving, and managing bugs in soft-
ware build systems, and also help construct reliable and
fault-tolerant build systems.

The remainder of the paper is organized as follows. In
Sect. 2, we describe the detail information of our collected
datasets and our empirical study methodology. In Sect. 3,
we present our empirical study which addresses and answers
a set of research questions. In Sect. 4 we briefly highlight
related studies. In Sect. 5, we conclude and present future
work.

2. Dataset & Methodology

In this section, we first describe the four software build
systems that analyzed in the study in Sect. 2.1. Then, we
present our methodology in Sect. 2.2.

2.1 Dataset Collection

2.1.1 Apache Ant

Apache Ant, maintained by Apache Software Foundation, is
one of the most popular software build systems for Java ap-
plications. It is a Java library and command-line tool which
uses XML files to describe the build process and its depen-
dencies. A number of built-in features allowing it to com-
pile, assemble, test and run Java applications are supported.
It was officially released as a stand-alone product on July 19,
2000 with version 1.1. On May 23, 2012, its latest version
(version 1.8.4) was released. Ant consists of 254,431 lines
of source code, and 1,167 Java files (on March 31, 2013).
To analyze bug reports of Ant, we analyze its Bugzilla bug
tracking system located at:

http://ant.apache.org/bugs.html

For our manual analysis, we randomly select 199 bug
reports out of 2,567 bug reports with status of “closed” and
“fixed”, contained in Bugzilla tracking system. The reason
that we pick bug reports with “fixed” status is that there are
only 177 bug reports with status of “closed”, which is quite
a small proportion of the whole Ant bug repository.

2.1.2 Apache Maven

Apache Maven, also maintained by Apache Software Foun-
dation, serves a similar purpose as Apache Ant, but is
based on different concepts and works in a different man-
ner. Maven works on the concept of a project object model
(POM), and uses a plugin-based framework that allows it to
make use of any application controllable through standard
input. Maven was released with version 1.0 in July 2004.
And on February 23, 2013, its latest version (version 3.0.5)
was released. Maven consists of 51,651 lines of source code,
and 346 Java files (on March 31, 2013). To analyze bug re-
ports of Maven, we analyze its JIRA bug tracking system
located at:



XIA et al.: AN EMPIRICAL STUDY OF BUGS IN SOFTWARE BUILD SYSTEM
1771

http://jira.codehaus.org/browse/MNG

For our manual analysis, we randomly select 250 bug
reports out of 2,945 reports tagged as bugs†, with status
“closed”, contained in the JIRA tracking system.

2.1.3 CMake

CMake is a cross-platform, open-source build system,
which is different from Make, Ant, and Maven, since it does
not actually execute the build process. The build process
with CMake takes place in two stages. First, CMake trans-
lates a high-level build description into a native build sys-
tem’s own language; Then, the platform’s native build sys-
tem is used for the actual building. CMake can generate
Makefiles for various platforms and IDEs, such as Unix,
Windows, Mac OS X, etc. It was officially released as a
stand-alone product on January 01, 2003 with version 1.0.
On November 7, 2012, its latest version (version 2.8.10)
was released. CMake consists of 406,715 lines of source
code, and 1,104 C/C++ files (on March 31, 2013). To an-
alyze bug reports of CMake, we analyze its MantisBT bug
tracking system located at:

http://public.kitware.com/Bug/my view page.php

For our manual analysis, we randomly select 200 bug
reports out of 5,192 bug reports with status of “closed”, con-
tained in MantisBT tracking system.

2.1.4 QMake

QMake is a part of the QT development environment, which
is similar to CMake, and can be used to generate either a
Makefile or a Visual Studio project. QMake integrates with
the QT framework, and automatically create moc (meta ob-
ject compiler) and rcc (resource compiler) sources. QMake
can generate Makefiles for various platforms, such as Unix,
Windows, Mac OS X, etc. QMake is distributed with QT
toolkit 3.X around 2003. On January 31, 2013, its latest
version (Qt toolkit 5.0.1) was released. QMake consists of
33,583 lines of source code, and 53 C++ files (on March
31, 2013). To analyze bug reports of QMake, we analyze its
JIRA bug tracking system located at:

https://bugreports.qt-project.org/browse/QTBUG

For our manual analysis, we randomly select 151 bug
reports out of 882 reports tagged as bugs, with status
“closed”, contained in the JIRA tracking system. We no-
tice that only 2 closed bugs of QMake appear from 2003 to
2005. Thus, in this study, we choose to analyze QMake bug
reports reported after 2005.

2.2 Methodology

We focus on only closed bugs from the bug repositories, as
†JIRA provides various issue types: bugs, improvements, new

features, tasks, tests, wishes, brainstorming, etc

Table 1 Statistics information of closed bugs in software build systems.

Projects Version Lines of Code No. Files Bug Count Duration

Ant 1.8.4 254,431 1,167 2,567 5.18 years
Maven 3.0.5 51,651 346 2,945 10.66 years
CMake 2.8.10 406,715 1,104 5,192 9.72 years
QMake 5.0.1 33,583 53 844 6.96 years

Fig. 1 The whole process of the empirical study.

bug reports that are not closed may not be bugs or have no
fixes or enough information for our analysis yet. Table 1
shows version, lines of source code, number of source files,
and the numbers of closed bugs for Ant, Maven, CMake,
and QMake, respectively. We also show the durations (in
years) between the first and last bugs we collected in column
Duration.

Figure 1 presents the whole process of our empirical
study. We first download the bug reports from bug reposito-
ries and the source code from code repositories of the four
software build systems (Steps 1 and 2). Next, we randomly
select a set of bug reports from the whole bug report col-
lection for each system (Step 3). Then, we extract some
information, identity the fixes for each bug report in the
four systems, and assign bug reports into different categories
(Step 4). Finally, we compute some statistics based on the
collected information extracted in Step 4 (Step 5). We ex-
plain more on the information extraction and statistics com-
putation (i.e., Steps 4 and 5, respectively) in the following
paragraphs.

2.2.1 Information Extraction

In our empirical study, we extract the following pieces of
information:

1. Bug Severity: This metric can be fetched directly from
bug reports.

2. Bug Fix Times: This metric can be computed by mea-
suring the difference of bug creation time and bug
closed time.

3. Number of Bug Comments: This metric is computed
by counting the number of times a bug has been dis-
cussed.

To get bug fixes we check both bug and code reposito-
ries. For Apache Ant, since it doesn’t contain source code
change information in bug reports, we check its commit log
in CVS to identity the fixes (bugs whose fixes can’t be iden-
tified from the commit logs are discarded). For Apache
Maven, CMake, and QMake, we find the list of source code
changes for each closed bug report either in the comment



1772
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Table 2 Bug categories for software build systems.

Category Definition

algorithm/method The implementation of an algorithm/method
works in an unexperted way.

assignment/
initialization

A variable or data item is assigned a wrong
value or not properly used.

checking Missing necessary checks for potential error
conditions, or an error response specified for er-
ror conditions.

data Wrong usage of data structure, point, and type
conversions.

logic Incorrect logical expression in condition state-
ments (e.g., if, case, and loop blocks).

non-functional
defects

Failure to meet non-functional requirements,
such as defines improper variable or method,
implement non-compliance method with stan-
dard documentation.

timing/
optimization

Error related to times, concurrency or perfor-
mance issues, e.g., slow complication, memory
leak, etc.

internal interface Errors in interfaces between different compo-
nent in the same system, such as incorrect op-
eration of files or database, and errors of inheri-
tance. For software build systems, it also refers
to errors of build system dependency graph,
such as generating wrong dependency, losing
dependency, etc.

external interface Errors of user interface (including usability is-
sues). For software build systems, it also refers
to errors of the usage of build system tools in
different platforms, such as various operation
systems (e.g., Windows, Linux), various devel-
opment environments (e.g., Eclipse, Visual Stu-
dio), various program languages (e.g., C, C++,
Java, C#).

configuration Error in non-code files (e.g., configuration files)
that cause error in functionality.

others Other bugs not fall into one the above cate-
gories.

text (CMake) or in the source section (Maven and QMake).
Due to the large number of bug reports in these 4 soft-

ware build system, we randomly select a subset of bug re-
port to study the categories of bugs in software build systems
followed by previous studies [9], [11], [16], [17]. We assign
bug reports to several categories manually. We make use of
bug description, bug comment textual information, and also
bug fixes to infer the bug category. We use the set of cate-
gories proposed by Seaman et al. in [15], and we extend it
by adding 1 category (i.e., configuration). Table 2 presents
the bug categories and their description.

2.2.2 Statistics Computation

We compute various statistics for each bug category and for
all the bug reports we investigate in the four software build
systems. These statistics are then used to answer various
research questions in Sect. 3.1. We investigate the relation-
ships between bug categories and bug severities, bug fixing
time, and number of bug comments by using these statistics.

3. Empirical Study

In this section, we present the research questions and their
answers of our empirical study, and threats to validity.

3.1 Research Questions

We are interested in the following research questions:

RQ1 How often bugs appear in software build systems?
Software build systems are popular and complex, al-

most every non-trivial software system would use software
build systems. In this research question, we would like
investigate the bug densities of Ant, Maven, CMake, and
QMake. To answer this research question, we compute the
number of bugs per kLOC, per source code files, and per
year.

RQ2 What are the categories of bugs appearing in software
build systems?

To better understand bugs, Seaman et al. have proposed
a categorization of bugs [15]. Thung et al. have manually
assigned a number of machine learning bugs to Seaman et
al.’s categories to understand the nature of these bugs [18].
Improved understanding of bugs can help developers to im-
prove the quality of a software system. Developers can
spend more testing and code review effort on the categories
of bugs that are particularly problematic (e.g., most of the
reported bugs fall under this category). In this research ques-
tion, we investigate the categories of bugs that appear in
popular build systems and analyze whether bugs of some
categories appear more often than bugs from other cate-
gories. To answer this research question, we first manually
categorize the bugs into different categories presented in Ta-
ble 2, and we analyze the number of bugs in each category.

RQ3 What are the severity distributions of the various cat-
egories of bugs?

The severity level of a bug report indicates the serious-
ness of the bug [19]. In this research question, we investi-
gate severity of bugs under each category. The answer to
this research question could help developers better under-
stand bugs under each category and take appropriate action.
For example, if most of the bugs in a particular category are
given high severity levels (e.g., blocker, and critical), then
developers should make more effort to reduce bugs in this
category. To answer this research question, we compute the
distribution of bugs of various severity levels under each cat-
egory.

RQ4 How long does it take to fix various categories of bugs?
In this research question, we investigate the fixing time

of bugs under each category. The answer to this research
question could help developers or project managers estimate
bug fixing time once they categorize a bug, which can help
to better organize a bug fixing plan and in allocating re-
sources to fix various bugs. To answer this research ques-
tion, we first collect the creation date and closed date (last
update date) of each closed bug report, and we measure bug



XIA et al.: AN EMPIRICAL STUDY OF BUGS IN SOFTWARE BUILD SYSTEM
1773

Table 3 Bug densities in four software build systems.

Projects Bug Number Per kLOC Bug Number Per File Bug Number Per Year

Ant 10.09 bugs/kLOC 2.20 bugs/file 495.56 bugs/year
Maven 57.02 bugs/kLOC 8.51 bugs/file 276.27 bugs/year
CMake 12.77 bugs/kLOC 4.70 bugs/file 534.16 bugs/year
QMake 25.13 bugs/kLOC 15.92 bugs/file 121.26 bugs/year

fixing time as the difference of these two dates. We record
the minimum, maximum, mean, and median number of days
for each category.

RQ5 How many comments of a bug received for each cate-
gory of bugs?

The number of bug comments represents the degree of
developer activity in fixing a bug. For a bug, if there are
more people joining the discussion and posting their com-
ments, it means that either the bug is hard to fix or develop-
ers are more interested in the bug. In this research question,
we investigate the number of comments that various bugs
received under each category. To answer this research ques-
tion, we record the minimum, maximum, mean, and median
number of comments for each category.

3.2 RQ1: Bug Densities

We present the bug densities of Ant, Maven, CMake, and
QMake in Table 3. We found that Maven has the high-
est average number of bugs per kLOC (57.02 bugs/kLOC),
followed by QMake (25.13 bugs/kLOC), CMake (12.77
bugs/kLOC), and Ant (10.09 bugs/kLOC). These numbers
indicate that for every line of code, developers of Maven
need to fix more bugs than the others. We also notice that
bug counts per kLOC of software build systems are much
higher than those reported for algorithm-intensive machine
learning systems [9] and operating systems [12], [20]. For
example, one machine learning system Lucene only has 2.77
bugs per kLOC, but Maven has 57.02 bugs per kLOC, which
is more than 20.58 times than that of Lucene.

We also report the average number of bugs per source
file, and year in the last two columns of Table 3. QMake
is a component of QT toolkit, which only has 53 C/C++
source files and 844 bugs reported in QT bug tracking sys-
tem, but it contains the highest number of bugs per source
file (15.92 bugs/file), followed by Maven (8.51 bugs/file),
CMake (4.70 bugs/file), and Ant (2.20 bugs/file). More-
over, Maven and CMake have received bug reports for a
long period of time — 10.66 and 9.72 years respectively.
CMake has the highest average number of bugs per year
(534.16 bugs/year), followed by Ant (495.56 bugs/year),
Maven (276.27 bugs/year), and QMake (121.26 bugs/year).
We also notice the average number of bug reported per year
is much higher than those reported for machine learning sys-
tems [9]. For example, Lucene has 144.76 bugs/year, and
CMake has around 3.69 times more bugs than Lucene annu-
ally.

Note that a high number of bugs or a high bug density
does not necessarily mean that a project has low software
quality [21]. There are various other factors which affect

the number of reported bugs; For example, the popularity
of a project (e.g., many developers contribute to the project,
many users use this project and report the bugs), and the
size and complexity of the project, affect the number of re-
ported bugs and bug densities. As we noticed, almost every
system of substantial size and complexity needs to use soft-
ware build systems, which makes the build systems become
popular to users. For this reason, although we find that the
bug densities in software build systems are much more than
those of other systems, the quality of these tools is not nec-
essarily poor, due to the popularity of build tools and the fact
that they are widely deployed. Still, the fact that there are
many bugs affecting build systems, highlight the importance
for the development of automated techniques that can help
developers improve the quality of build systems.

Maven has a much higher number of bugs per
kLOC (57.02 bugs/kLOC) than QMake (25.13 bugs/kLOC),
CMake (12.77 bugs/kLOC), and Ant (10.09 bugs/kLOC),
while CMake has a much higher number of bugs per year
(534.16 bugs/year) than Ant (495.56 bugs/year), Maven
(276.27 bugs/year), and QMake (121.26 bugs/year).

3.3 RQ2: Bug Categories

We randomly sample 800 bug reports from the four build
tool systems. Since there more than 10,000 bug reports in
the 4 build systems, similar to prior empirical studies on
bug reports [9], [11], [16], [17], we only analyze a subset of
these reports. We manually analyze a similar number of bug
reports as those analyzed in prior studies.

There bugs are then manually assigned into different
categories. The distribution of bugs based on the 11 cate-
gories is presented in Table 4. We notice that most bugs are
categorized as external interface (21.35%), followed by
logic (18.23%), and then followed by configuration
(12.86%). There are only 2.12% of bugs that fall into the
category others. The small proportion of bugs in the cat-
egory others indicates that the remaining 10 categories are
sufficient to cover most of bugs for software build systems.

External interface category corresponds to bugs of
user interface and those related to usability issues. Soft-
ware build systems need to work for various systems, and
on various platforms, i.e., various operating systems (e.g.,
Windows, Linux), various development environments (e.g.,
Eclipse, Visual Studio), and various programing languages
(e.g., C, C++, Java, C#). Also as users need to use these sys-
tems often, they would pay attention to build system usabil-
ity and user interface. These explain why bugs in external



1774
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Table 4 Bug categories in four software build systems.

Category Number Percentage

algorithm/method 36 4.49%
assignment/initialization 67 8.36%

checking 61 7.62%
data 100 12.48%
logic 146 18.23%

non-functional defects 12 1.50%
timing/optimization 13 1.62%

internal interface 74 9.24%
external interface 171 21.35%

configuration 103 12.86%
others 17 2.12%

Fig. 2 An example of external interface bug.

Fig. 3 An example of logic bug.

interface category are the most. Figure 2 shows an exam-
ple of an external interface bug. It describes a bug about
integrating Maven with glassfish plugin.

Logic category corresponds to bugs of incorrect ex-
pression appearing in conditional statements. For soft-
ware build systems, since we need to make them platform-
independent, we have to consider different conditions, such
as the variable assignment in different platform conditions,
which make the logic bugs appear more than many other
bug categories. To identify logic bugs, we need to check the
source code modification logs. Figure 3 shows an example
of a logic bug and one patch file. It describes the failure to
bootstrap affecting CMake. Only after we read its patch file,
we can identify that it is a logic bug.

Configuration category corresponds to bugs in non-
code files (e.g., configuration files). The whole build pro-
cess can be simply viewed as reading from a configuration
file (e.g., Makefile, build.xml), and building the system ac-
cording to the command in the configuration file. For some
software build systems, such as CMake and QMake, they
are based on low-level build systems such as make, thus they

Fig. 4 An example of configuration bug.

need to parse their configuration files and generate low-level
configuration files. This makes configuration bugs appear
more than many other bug categories. Figure 4 shows an ex-
ample of a configuration bug. It describes a problem about
qtconf file.

The most common categories of bugs in Ant, Maven,
CMake and QMake are: external interface (21.35%),
logic (18.23%), and configuration (12.86%), while the
least common category of bugs aside from others is non-
functional.

3.4 RQ3: Bug Severity

Next, we investigate the relationship between bug category
and bug severity. We study the same five severity levels† as
[9], i.e., Block, Critical, Major, Minor, and Trivial. Block
is the most severe category while Trivial is the least severe
category. Table 5 presents the relationship between bug cat-
egory and bug severity in Ant, Maven, CMake and QMake.

We notice that major and minor severities dominate
all the bug categories. For example, in internal inter-
face, checking, logic, and non-functional categories, ma-
jor severity dominates, while in algorithm/method, tim-
ing/optimization, assignment/initialization, external inter-
face, data, and configuration categories, minor severity
dominates. It is notable that in JIRA (Maven, QMake), the
default severity level when a user creates a new bug report is
major, while in Bugzilla (Ant), the default severity level is
normal, and in MantisBT (CMake), the default severity level
is minor. Past studies have shown that the number of bug
reports with default severity level is the largest [19], [22]–
[24]. Herraiz et al. state that the many severity levels can
confuse bug reporters which are often unable to distinguish
the meaning of the different severity levels [25]. Lamkanfi

†We notice in JIRA (Maven and QMake), the word priority
is used instead of severity. In Bugzilla (Ant), there are 7 sever-
ity levels (blocker, critical, major, normal, minor, trivial, and en-
hancement). And in MantisBT (CMake), there are 8 severity lev-
els (blocker, crash, major, minor, tweak, text, trivial, and feature).
To make the severity level consistent with a previous study [9], we
assign them into 5 severity levels, i.e., we assign normal to minor,
enhancement to trivial for Ant, and we assign crash to critical, and
tweak, text, feature to trivial for CMake.



XIA et al.: AN EMPIRICAL STUDY OF BUGS IN SOFTWARE BUILD SYSTEM
1775

Table 5 Relationship between bug category and bug severity in four software build systems.

Category Severity Number Proportion Category Severity Number Proportion

algorithm/method

Block 0 0.00%

timing/optimization

Block 0 0.00%
Critical 0 0.00% Critical 0 0.00%
Major 8 22.22% Major 2 15.38%
Minor 28 77.78% Minor 10 76.92%
Trivial 0 0.00% Trivial 1 7.69%

assignment/initialization

Block 0 0.00%

internal interface

Block 9 12.16%
Critical 14 20.90% Critical 10 13.51%
Major 16 23.88% Major 36 48.65%
Minor 36 53.73% Minor 14 18.92%
Trivial 1 1.49% Trivial 5 6.76%

checking

Block 1 1.64%

external interface

Block 8 4.68%
Critical 8 13.11% Critical 42 24.56%
Major 36 59.02% Major 53 30.99%
Minor 15 24.59% Minor 57 33.33%
Trivial 1 1.64% Trivial 11 6.43%

data

Block 0 0.00%

configuration

Block 3 2.91%
Critical 13 13.00% Critical 17 16.50%
Major 28 28.00% Major 25 24.27%
Minor 47 47.00% Minor 48 46.60%
Trivial 12 12.00% Trivial 10 9.71%

logic

Block 3 2.05%

others

Block 1 5.88%
Critical 56 38.36% Critical 4 23.53%
Major 68 46.58% Major 7 41.18%
Minor 14 9.59% Minor 5 29.41%
Trivial 5 3.42% Trivial 0 0.00%

non-functional defects

Block 4 33.33%
Critical 2 16.67%
Major 4 33.33%
Minor 2 16.67%
Trivial 0 0.00%

et al. argue that bug reporters who do not assess bug sever-
ity level well often assign these bugs to the default severity
level [22]. As a future work, we could explore automated
methods (e.g., [19], [22]–[24]) to recommend more accurate
severity levels to bugs before performing a more detailed
analysis.

Following the definition of the various severity levels,
block bug refers to a bug that causes system crash, data cor-
ruption, irreparable harm, etc., and critical bug refers to a
bug that affects an important function and it has no reason-
able workaround. Analyzing block and critical bugs can
provide insight towards developing a more robust applica-
tion. From Table 5, we notice all the bug categories except
algorithm/method and timing/optimization contain bugs of
block or critical severity levels. For external interface and
logic categories, they contain the most of block and critical
bugs, i.e., with 50 (29.24%) and 59 (40.41%) bugs, respec-
tively. In Sect. 3.3, we report that most of the bugs are cat-
egorized as external interface and logic. This results show
that external interface and logic categories not only take the
majority of bugs, but also contain the most of block and
critical bugs. To develop a new software build system, we
should pay special attention to there two categories of bugs.
Moreover, block bugs are much less than critical bugs, for
example, in the external interface category, there are 8 block
bugs compared to 42 critical bugs, and in the logic category,
there are 3 block bugs compared to 56 critical bugs.

Considering the trivial severity level, the proportion of
such bugs is small. Category data contains the highest pro-

portion of trivial bugs (12.00%), followed by configuration
(9.71%).

External interface and logic categories not only takes
the majority of bugs (21.35% and 18.23%), but also con-
tain the most of block and critical bugs (29.24% and
40.41%). We should pay special attention to these two
categories of bugs when developing a new software build
system. Trivial bugs takes the smallest proportion.

3.5 RQ4: Bug Fixing Time

Next, we investigate the relationship between bug categories
and bug fixing times. For each closed bug report, we collect
its creation date and closed date (last update date), and we
measure bug fixing time as the difference of these two date.
Table 6 presents the bug fixing times in term of days for
various bug categories. We record the minimum, maximum,
mean, and median number of days for each category.

We notice that the minimum period a bug is fixed is just
a few seconds for all the categories. We check these bug
reports manually, and find that most of them are reported
and fixed by the same developers. This phenomenon fol-
lows the observation by Lamkanfi and Demeyer [26]. The
maximum fixing time can take a few years. Three cate-
gories with the highest maximum bug fixing time are data
(4,040.0257 days), checking (3,473.0556 days) and config-
uration (2,617.8535 days). Categories non-functional and



1776
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Table 7 Relationship between bug category and bug fixing time in four software build systems.

Category Fixing Time Number Proportion Category Fixing Time Number Proportion

algorithm/method
Within A month 11 30.56%

timing/optimization
Within A month 5 38.46%

Within A Year 7 19.44% Within A Year 3 23.08%
More than A Year 18 50.00% More than A Year 5 38.46%

assignment/initialization
Within A month 21 31.34%

internal interface
Within A month 54 72.97%

Within A Year 32 47.76% Within A Year 13 17.57%
More than A Year 14 20.90% More than A Year 7 9.46%

checking
Within A month 43 70.49%

external interface
Within A month 49 28.65%

Within A Year 12 19.67% Within A Year 60 35.09%
More than A Year 6 9.84% More than A Year 62 36.26%

data
Within A month 27 27.00%

configuration
Within A month 27 26.21%

Within A Year 24 24.00% Within A Year 27 26.21%
More than A Year 49 49.00% More than A Year 49 47.57%

logic
Within A month 83 56.85%

others
Within A month 9 52.94%

Within A Year 33 22.60% Within A Year 3 17.65%
More than A Year 30 20.55% More than A Year 5 29.41%

non-functional defects
Within A month 7 58.33%
Within A Year 2 16.67%

More than A Year 3 25.00%

Table 6 Bug fixing times in terms of days in four software build systems.

Category Min Max Mean Median

algorithm/method 0.0014 2544.2750 861.8832 328.9979
assignment/
initialization

0.0118 2542.1111 767.0298 319.8646

checking 0.0007 3473.0556 315.5635 2.8306
data 0.0014 4040.0257 783.1057 339.0691
logic 0.0014 2562.8535 210.3875 11.7160
non-functional
defects

0.0472 748.1382 121.9941 5.1135

timing/
optimization

0.6688 859.3326 233.5380 117.3604

internal interface 0.0021 2405.3354 127.1160 5.0056
external interface 0.0042 2600.9215 458.1231 173.8674
configuration 0.0062 2617.8535 739.9159 318.7201
others 0.0062 2545.1285 708.0220 28.2229

timing/optimization have the smallest maximum bug fixing
time.

We further investigate the mean and median bug fix-
ing time. We notice the mean bug fixing times for all the
categories are quite high compared to the fixing times re-
ported in machine learning systems [9]. For categories al-
gorithm/method, assignment/initialization, data, configura-
tion, and others, the mean fixing times are around 2 years.
For categories non-functional and internal interface, the
mean fixing times are around 4 months. For the remain-
ing categories, the mean fixing times are around 1 year. Al-
though the mean fixing time is high, the median fixing time
is not always high. For category checking, its mean fixing
time is 315.5635 days, but its median fixing time is only
2.8306 days. For checking bugs, some bugs needs much
longer time to fix, while most of them just need a short time
to fix. For categories non-functional and internal interface,
their mean fixing time and median fixing times are lower
than those of the other categories.

Table 7 investigates the relationship between bug cat-
egories and bug fixing times bucketized into: less than a
month, less than a year, and more than a year. For cat-
egories internal interface, checking, non-functional, logic,

Table 8 Number of comments in four software build systems.

Category Min Max Mean Median

algorithm/method 1 13 3.39 3.00
assignment/initialization 0 27 4.16 2.00

checking 0 13 2.87 2.00
data 0 22 2.59 2.00
logic 0 25 4.31 3.00

non-functional defects 1 6 2.08 2.00
timing/optimization 1 8 3.77 4.00

internal interface 0 12 3.12 2.00
external interface 0 38 5.42 4.00

configuration 0 25 4.31 3.00
others 1 6 1.82 1.00

and others, most the bugs are fixed in less than a month, i.e.,
72.97%, 70.49%, 58.33%, 56.85%, 52.94%, respectively.
For category assignment/initialization, most of the bugs are
fixed in less than a year. For categories algorithm/method,
data, and configuration, most of the bugs are fixed in more
than a year, i.e., 50.00%, 49/00%, and 47.57%, respectively.
For category external interface, we notice that the number of
bugs fixed in less than a month, less than a year, and more
than a year are almost the same, i.e., 28.65%, 35.09%, and
36.26%, respectively.

In terms of median bug fixing time, bugs in check-
ing (2.8306 days), internal interface (5.0056 days),
and non-functional (5.1135 days) categories take the
shortest time to fix, while bugs in data (339.0691
days), algorithm/method (328.9979 days), and assign-
ment/initialization (319.8646 days) take the longest time
to fix.

3.6 RQ5: Number of Comments

Finally, we investigate the relationship between bug cate-
gories and number of bug comments. Table 8 presents the
number of bug comments for various bug categories. We
record the minimum, maximum, mean, and median number



XIA et al.: AN EMPIRICAL STUDY OF BUGS IN SOFTWARE BUILD SYSTEM
1777

Table 9 Relationship between bug category and number of bug comments in four software build
systems.

Category Fixing Time Number Proportion Category Fixing Time Number Proportion

algorithm/method
0 or 1 9 25.00%

timing/optimization
0 or 1 1 7.69%

Less than 5 23 79.62% Less than 5 10 23.08%
More than 5 4 15.38% More than 5 2 38.46%

assignment/initialization
0 or 1 25 37.31%

internal interface
0 or 1 32 43.24%

Less than 5 28 41.79% Less than 5 27 36.49%
More than 5 14 20.90% More than 5 15 20.27%

checking
0 or 1 26 42.62%

external interface
0 or 1 28 16.37%

Less than 5 28 45.90% Less than 5 98 57.31%
More than 5 7 11.48% More than 5 45 26.32%

data
0 or 1 33 33.00%

configuration
0 or 1 31 30.10%

Less than 5 40 40.00% Less than 5 42 40.78%
More than 5 27 27.00% More than 5 30 29.13%

logic
0 or 1 70 47.59%

others
0 or 1 11 64.71%

Less than 5 59 40.41% Less than 5 5 29.41%
More than 5 17 11.64% More than 5 1 5.88%

non-functional defects
0 or 1 6 50.00%

Less than 5 5 41.67%
More than 5 1 8.33%

of comments for each category.
We notice bugs in others and non-functional categories

have the smallest mean number of comments, and as shown
in Table 4, these two categories also have the smallest pro-
portion of bugs. For bugs in external interface category,
the mean number of comments is 5.42, which is the high-
est number of comments, followed by logic (4.31) and con-
figuration (4.31). Table 9 further investigates the relation-
ship between bug categories and number of bug comments
bucketized into: 0 or 1 comment, less than 5 comments, and
more than 5 comments. We notice that the proportion of
bugs which have more than 5 comments is low, while most
of the bugs have less than 5 comments.

In terms of mean number of bug comments, bugs
in external interface (5.34 comments), logic (4.31 com-
ments), and configuration (4.31 comments) categories
have the most number of comments, which correspond to
the same 3 categories which have the most number of bugs
(c.f., Table 4). Bugs in others (1.82 comments) and non-
functional (2.08 comments) categories have the least num-
ber of comments, which corresponding to the same 2 cate-
gories which have the least number of bugs.

3.7 Discussion

Comparison to Findings in Prior Studies: In the above 5
research questions, we first investigate the overall bug distri-
bution across the 4 software build systems. Next, we manu-
ally analyze each bug and assign them to different categories
proposed by Seaman et al. [15]. For each bug report cate-
gory, we investigate its severity, bug fix time, and number of
comments distribution.

Some of the research questions asked by ours are also
investigated in other empirical studies for other types of
software systems (e.g., machine learning systems [9], mo-
bile platforms [27], and Google chrome project [28]). Var-

ious bug categorization schemes have been investigated,
e.g., performance vs. non-performance bugs [11], [17], se-
curity vs. non-security bugs [11], and configuration vs. non-
configuration bugs [16].

The closest to our work, is the study by Thung et
al. which also categorize bugs into the bug categorization
scheme proposed by Seaman et al. [15]. They analyze ma-
chine learning bugs while we analyze build system bugs.
Our findings are different from Thung et al. in the following
respects:

1. The densities of bugs in software build systems are
much high than these of machine learning systems [9].
For example, the average number of bugs per kLOC
for Maven (a build system) is 57.02 bugs/kLOC, while
the average number of bugs per kLOC for Lucene (a
machine learning system) is 2.77 [9]. This difference
is attributed mainly to the popularity of build system –
almost every system of substantial size and complexity
needs to use software build systems.

2. For bugs in software build systems, external inter-
face, logic, and configuration bugs appear more of-
ten than the others, while in machine learning sys-
tems [9], algorithm/method, non-functional, and as-
signment/initialization bugs are the 3 main categories
of bugs. Understanding the categories of frequently
occurring bugs could help developers plan quality im-
provement efforts. Different from machine learning
systems, for build systems, developers need to pay
more attentions to external interface, logic, and con-
figuration bugs.

Implications: Our findings (RQ1) show that compared with
other systems (e.g., Lucene which is a popular information
retrieval system), a lot more bugs are reported for build
systems. This highlights the need for build system devel-
opers to employ more advanced techniques to better man-
age bug reports. Techniques like duplicate bug report de-



1778
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

tection [29]–[31], bug severity/priority prediction [22], [23],
and automated bug categorization [18] can be used to help
developers manage the mass of bug reports. Furthermore,
our findings (RQ2, RQ3, and RQ5) suggest that build sys-
tem developers need to give more attention to the external
interface of build systems as most of build system bugs ap-
pear in this category, many of these bugs are critical and
blocker bugs, and these bugs are among the hardest ones to
fix (in terms of the number of comments needed to resolve
the bug). Furthermore, our results (in RQ4) can be used by
developers and project managers to estimate the amount of
time needed to fix different kinds of build system bugs.

3.8 Threats to Validity

There are several threats that may potentially affect the va-
lidity of our empirical study. Threats to internal validity re-
lates to experimenter bias and errors. Our study involves
manual inspection of bugs. This process is potentially error-
prone. To reduce this threat, one of the authors collects the
bug reports, and each bug report is labeled by one author and
is checked by at least another. Finally, we discuss to decide
the final bug category.

Threats to external validity relates to the generalizabil-
ity of our study. We have analyzed four software build sys-
tems: Ant, Maven, CMake, and QMake. To improve the
generalizability of our findings we intentionally pick four
software build systems; Ant and Maven are used mainly for
Java application, CMake works as a substitute of make, and
QMake is a component published with the QT toolkit. In
these systems, bugs are managed using different bug track-
ing systems: JIRA, Bugzilla, and MantisBT. However, there
are still many other software build systems we have not an-
alyzed. Also, we only randomly pick 800 bug reports for
the four software build systems. Although this is not a very
large number, we believe it is a good sample size as past
studies, such as [9], [32]–[35], investigate similar numbers
of manually labeled data. We plan to reduce this threat to
external validity in the future by analyzing more software
build systems and bug reports.

4. Related Work

In this section, we survey the related work in the field of
software build system maintenance in the software engi-
neering literature. We first briefly introduce some empiri-
cal studies on software build system maintenance. Next, we
briefly introduce some empirical studies on bugs and fixes.
Finally, we review the tools for build script analysis.

4.1 Empirical Study on Build System Maintenance

McIntosh et al. investigate version histories of one propri-
etary and nine open source projects [36]. They conclude that
build maintenance incurs up to a 27% overhead on source
code development and a 44% overhead on test development.
Adams et al. [37] analyze the changes to the Linux kernel

build system from its inception up to version 2.6 using
MAKAO [3]. They conclude that a good balance between
obtaining a fast, correct build system and migrating in a step
by step way is the general approach followed by developers
maintaining the Linux build system. A similar conclusion is
also observed for ant-based build systems [38].

Suvorov et al. provide an empirical study for build sys-
tem migration; they analyze two cases: KDE and Linux ker-
nel [5]. They describe 4 types of major challenges for build
system migration, i.e., requirements gathering, communica-
tion issues, balance between performance and the complex-
ity of build code, and effective evaluation of build system.

Neitsch et al. perform an empirical study of the build
systems for programs that are developed in multiple pro-
gramming languages [4]. They identify the major issues for
building multi-language software, and explore the reasons
why these issues occur. Tu and Godfrey perform case stud-
ies on build-time software architecture, and introduce the
“code robot” architectural style [39].

4.2 Empirical Study on Bugs and Fixes

There are various empirical studies on bugs and fixes. Sea-
man et al. make use of NASA historical data by creating
model to guide future software development, and propose a
set of bug categories [15]. Our study extend the set of bug
categories, and label build system bugs into the bug cate-
gories. Thung et al. perform an empirical study of bugs in
machine learning systems [9]. They investigate three open
source machine learning system: Apache Mahout, Lucene,
and OpenNLP. Our study is similar to their study, but we
focus on another type of systems: software build systems.
We believe our result can help developers understand bugs
in software build systems better.

Chou et al. investigate bugs in operating systems in the
Linux and OpenBSD kernels [12]. They analyze the root
cause of bugs, bug distribution, bug life cycle, bug clusters,
and the difference between operating system bugs and other
bugs. Pan el al. investigate bug fix patterns in a number of
systems, and categorize the bug fix types based on the syn-
tax of code changes [40]. Zaman et al. perform a study on
security and performance bugs in Firefox [11]. Lu et al. in-
vestigate concurrency bugs in MySQL, Apache Web Server,
Mozilla, and OpenOffice [7]. Maji et al. study bugs in An-
droid and Symbian [10]. Bhattacharya et al. perform an em-
pirical study on bug reports and bug fixing in open source
Android applications [27].

4.3 Tools for Build Script Analysis

To our best knowledge, only two tools, i.e., MAKAO [3] and
SYMAKE [2], have been developed for build script analy-
sis. MAKAO is a visualization and smell detection tool for
make-based build scripts. MAKAO generates a build graph
from a Makefile, and based on this, it support various func-
tionalities such as querying build-related data, and viewing
the build architecture in different perspectives. MAKAO



XIA et al.: AN EMPIRICAL STUDY OF BUGS IN SOFTWARE BUILD SYSTEM
1779

works on concrete build graphs [41].
Tamrawi et al. [2], [42] propose SYMAKE to analyze

the dynamic Makefile. It proposes a symbolic execution al-
gorithm to process Makefiles and produces a symbolic build
graph (SDG). SYMAKE has been used in several applica-
tions, such as the detection of several types of code smell
and errors in build system. It could also be used to support
build code refactoring.

5. Conclusions and Future Work

To better understand software build systems, we perform an
empirical study on bugs in four such systems. We analyze
four software build systems: Apache Ant, Apache Maven,
CMake, and QMake. We first download their bug reposito-
ries and code repositories. Next, we randomly pick 800 bugs
(199, 250, 200, and 151 bug reports for Ant, Maven, CMake
and QMake, respectively), and manually assign them into
different categories. We further investigate the relationship
between bug categories and bug severities, bug fixing time,
and number of bug comments. We find that among the 800
bug reports, 21.35% of the bugs belong to the external inter-
face category, 18.23% of the bugs belong to logic category,
and 12.86% of the bugs belong to configuration category.

In the future, we plan to investigate more software
build systems, and analyze more bug reports. We also plan
to design an automatic bug categorization tool for build sys-
tems.

Acknowledgments

This research is sponsored in part by NSFC Program
(No.61103032) and National Key Technology R&D Pro-
gram of the Ministry of Science and Technology of China
(No2013BAH01B01).

References

[1] P. Smith, Software Build Systems: Principles and Experience,
Addison-Wesley Professional, 2011.

[2] A. Tamrawi, H. Nguyen, H. Nguyen, and T. Nguyen, “Build code
analysis with symbolic evaluation,” 2012 34th International Confer-
ence on Software Engineering (ICSE), pp.650–660, 2012.

[3] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design re-
covery and maintenance of build systems,” IEEE International Con-
ference on Software Maintenance, ICSM 2007, pp.114–123, 2007.

[4] A. Neitsch, K. Wong, and M. Godfrey, “Build system issues in mul-
tilanguage software,” IEEE International Conference on Software
Maintenance, ICSM 2012, 2012.

[5] R. Suvorov, M. Nagappan, A. Hassan, Y. Zou, and B. Adams, “An
empirical study of build system migrations in practice: Case studies
on KDE and the linux kernel,” IEEE International Conference on
Software Maintenance, ICSM 2012, 2012.

[6] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S.
Moebus, B.K. Ray, and M.-Y. Wong, “Orthogonal defect classifica-
tion — A concept for in-process measurements,” IEEE Trans. Softw.
Eng., vol.18, no.11, pp.943–956, 1992.

[7] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics,”
ACM Sigplan Notices, vol.43, no.3, pp.329–339, 2008,

[8] L. Ma and J. Tian, “Web error classification and analysis for relia-
bility improvement,” J. Systems and Software, vol.80, no.6, pp.795–
804, 2007.

[9] F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs
in machine learning systems,” 23rd IEEE International Symposium
on Software Reliability Engineering, 2012.

[10] A.K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing fail-
ures in mobile OSes: A case study with android and symbian,” 2010
IEEE 21st International Symposium on Software Reliability Engi-
neering (ISSRE), pp.249–258, 2010.

[11] S. Zaman, B. Adams, and A.E. Hassan, “Security versus perfor-
mance bugs: A case study on firefox,” Proc. 8th Working Conf. on
Mining Soft. Rep., pp.93–102, 2011.

[12] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” Operating Systems Review,
vol.35, no.5, pp.73–88, 2001.

[13] Z. Li, L. Tan, Y. Zhou, and C. Zhai, “Have things changed now?,”
An empirical study of bug characteristics in modern open source
software, In ICSE: Proc. 29th International Conference on Software
Engineering, 2007.

[14] X. Xia, X. Zhou, D. Lo, and X. Zhao, “An empirical study of bugs
in software build systems,” 2013 13th International Conference on
Quality Software (QSIC), pp.200–203, 2013.

[15] C.B. Seaman, F. Shull, M. Regardie, D. Elbert, R.L. Feldmann,
Y. Guo, and S. Godfrey, “Defect categorization: Making use of a
decade of widely varying historical data,” Proc. Second ACM-IEEE
International Symposium on Empirical Software Engineering and
Measurement, pp.149–157, 2008.

[16] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L.N. Bairavasundaram, and S.
Pasupathy, “An empirical study on configuration errors in commer-
cial and open source systems,” Proc. Twenty-Third ACM Sympo-
sium on Operating Systems Principles, pp.159–172, 2011.

[17] S. Zaman, B. Adams, and A.E. Hassan, “A qualitative study on per-
formance bugs,” 2012 9th IEEE Working Conference on Mining
Software Repositories (MSR), pp.199–208, 2012.

[18] F. Thung, D. Lo, and L. Jiang, “Automatic defect categorization,”
2012 19th Working Conference on Reverse Engineering (WCRE),
pp.205–214, 2012.

[19] T. Menzies and A. Marcus, “Automated severity assessment of soft-
ware defect reports,” IEEE International Conference on Software
Maintenance, ICSM 2008, pp.346–355, 2008.

[20] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in linux: Ten years later,” ACM SIGPLAN Notices, vol.46,
no.3, pp.305–318, 2011.

[21] I. Herraiz, E. Shihab, T.H. Nguyen, and A.E. Hassan, “Impact of
installation counts on perceived quality: A case study on debian,”
2011 18th Working Conference on Reverse Engineering (WCRE),
pp.219–228, 2011.

[22] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR), pp.1–10, 2010.

[23] A. Lamkanfi, S. Demeyer, Q.D. Soetens, and T. Verdonck, “Com-
paring mining algorithms for predicting the severity of a reported
bug,” 2011 15th European Conference on Software Maintenance and
Reengineering (CSMR), pp.249–258, 2011.

[24] Y. Tian, D. Lo, and C. Sun, “Information retrieval based near-
est neighbor classification for fine-grained bug severity prediction,”
2012 19th Working Conference on Reverse Engineering (WCRE),
pp.215–224, 2012.

[25] I. Herraiz, D.M. German, J.M. Gonzalez-Barahona, and G. Robles,
“Towards a simplification of the bug report form in eclipse,” Proc.
2008 International Working Conference on Mining Software Repos-
itories, pp.145–148, 2008.

[26] A. Lamkanfi and S. Demeyer, “Filtering bug reports for fix-time
analysis,” 2012 16th European Conference on Software Mainte-
nance and Reengineering (CSMR), pp.379–384, 2012.

[27] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S.C. Koduru, “An em-



1780
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

pirical analysis of bug reports and bug fixing in open source android
apps,” 2013 17th European Conference on Software Maintenance
and Reengineering (CSMR), pp.133–143, 2013.

[28] S. Lal and A. Sureka, “Comparison of seven bug report types: A
case-study of google chrome browser project,” Proc. 2012 19th
Asia-Pacific Software Engineering Conference, vol.01, pp.517–526,
2012.

[29] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” Proc.
32nd ACM/IEEE International Conference on Software Engineer-
ing, vol.1, pp.45–54, 2010.

[30] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execu-
tion information,” Proc. 30th International Conference on Software
Engineering, pp.461–470, 2008.

[31] A.T. Nguyen, T.T. Nguyen, T.N. Nguyen, D. Lo, and C. Sun, “Du-
plicate bug report detection with a combination of information re-
trieval and topic modeling,” 2012 Proc. 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE),
pp.70–79, 2012.

[32] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement?: A text-based approach
to classify change requests,” Proc. 2008 Conference of the Center
for Advanced Studies on Collaborative Research: Meeting of Minds,
p.23, 2008.

[33] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein, “Linkster: En-
abling efficient manual inspection and annotation of mined data,”
Proc. Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp.369–370, 2010.

[34] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing
patches,” 2012 34th International Conference on Software Engineer-
ing (ICSE), pp.386–396, 2012.

[35] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering
links between bugs and changes,” SIGSOFT FSE, pp.15–25, 2011.

[36] S. McIntosh, B. Adams, T. Nguyen, Y. Kamei, and A. Hassan,
“An empirical study of build maintenance effort,” 2011 33rd Inter-
national Conference on Software Engineering (ICSE), pp.141–150,
2011.

[37] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evo-
lution of the linux build system,” Electronic Communications of the
EASST, vol.8, pp.1–16, 2008.

[38] S. McIntosh, B. Adams, and A. Hassan, “The evolution of ant build
systems,” 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR), pp.42–51, 2010.

[39] Q. Tu and M. Godfrey, “The build-time software architecture view,”
Proc. IEEE International Conference on Software Maintenance,
pp.398–407, 2001.

[40] K. Pan, S. Kim, and E.J. Whitehead, Jr., “Toward an understanding
of bug fix patterns,” Empirical Software Engineering, vol.14, no.3,
pp.286–315, 2009.

[41] C. Gunter, “Abstracting dependencies between software configura-
tion items,” ACM Trans. Software Engineering and Methodology
(TOSEM), vol.9, no.1, pp.94–131, 2000.

[42] A. Tamrawi, H. Nguyen, H. Nguyen, and T. Nguyen, “Symake: A
build code analysis and refactoring tool for makefiles,” Proc. 27th
IEEE/ACM International Conference on Automated Software Engi-
neering, pp.366–369, 2012.

Xin Xia is a Ph.D. candidate in College
of Computer Science and Technology, Zhejiang
University, China. His research interests include
software mining, empirical study. He is a stu-
dent member of Institute of Electrical and Elec-
tronics Engineers.

Xiaozhen Zhou is a Ph.D. candidate in Col-
lege of Computer Science and Technology, Zhe-
jiang University, China. His research interests
include software engineering and system moni-
tor.

David Lo received his Ph.D. degree from the
School of Computing, National University of
Singapore in 2008. He is currently an assistant
professor in the School of Information Systems,
Singapore Management University. He works in
the areas of software engineering and data min-
ing. He is particularly interested in specification
mining, debugging, software text analytics, fre-
quent pattern mining, and social network min-
ing. He is a member of the Institute of Electrical
and Electronics Engineers and Association for

Computing Machinery.

Xiaoqiong Zhao is a Ph.D. candidate in
College of Computer Science and Technology,
Zhejiang University, China. His research inter-
ests include empirical software engineering.

Ye Wang received the Ph.D. degree in Com-
puter Science from Zhejiang University in 2013.
She is a lecturer in School of Computer and
Information Engineering, Zhejiang Gongshang
University. Her research interests include soft-
ware engineering and service computing.


