
1804
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

PAPER

An Adaptive Computation Offloading Decision for Energy-Efficient
Execution of Mobile Applications in Clouds

Byoung-Dai LEE†, Nonmember, Kwang-Ho LIM†, Student Member, Yoon-Ho CHOI††,
and Namgi KIM††a), Members

SUMMARY In recent years, computation offloading, through which
applications on a mobile device can offload their computations onto more
resource-rich clouds, has emerged as a promising technique to reduce bat-
tery consumption as well as augment the devices’ limited computation and
memory capabilities. In order for computation offloading to be energy-
efficient, an accurate estimate of battery consumption is required to de-
cide between local processing and computation offloading. In this paper,
we propose a novel technique for estimating battery consumption with-
out requiring detailed information about the mobile application’s internal
structure or its execution behavior. In our approach, the relationship is de-
rived between variables that affect battery consumption (i.e., the input to
the application, the transmitted data, and resource status) and the actual
consumed energy from the application’s past run history. We evaluated the
performance of the proposed technique using two different types of mobile
applications over different wireless network environments such as 3G, Wi-
Fi, and LTE. The experimental results show that our technique can provide
tolerable estimation accuracy and thus make correct decisions between lo-
cal processing and computation offloading.
key words: battery consumption, dynamic estimation, linear regression,
mobile clouds

1. Introduction

Since the first-generation iPhone was released in 2007, the
popularity of smart devices, such as smart phones and smart
tablets, has been increasing continuously. Each year, dozens
of new smartphone models are introduced into the market.
Worldwide sales of smartphones exceeded those of feature
phones in early 2013 [17]. This phenomenon is attributed to
significantly improved mobile hardware performance, var-
ious high-speed wired/wireless connectivity options, and,
consequently, the availability of a wide variety of mobile
applications for daily life and business. The vision of “a
computer in my hand” has now become a reality.

Unlike stationary computers that have an unlimited
power supply, smart devices are battery-operated for porta-
bility. Therefore, low power consumption is a critical re-
quirement in mobile hardware and software design. Consid-
erable effort has been expended to address limited battery
lifetime, ranging from efficient power management tech-
niques, such as dynamic power management [4] and dy-
namic voltage and frequency scaling [3], to new battery

Manuscript received December 18, 2013.
Manuscript revised February 24, 2014.
†The authors are with the Dept. of Computer Science, Kyonggi

Univ., Suwon, 443–760, South Korea.
††The authors are with the Dept. of Convergence Security, Ky-

onggi Univ., Suwon, 443–760, South Korea.
a) E-mail: ngkim@kgu.ac.kr (Corresponding author)

DOI: 10.1587/transinf.E97.D.1804

technologies based on nanomaterials such as fluoride shut-
tle [1] and grapheme [15]. Recently, cloud computing has
emerged as a solution to the inherent resource limitation
of mobile devices. In the cloud-based approaches, appli-
cations on the mobile device can offload their computation
to the cloud to conserve energy, as well as augment the
computation and memory capabilities of the mobile device
([5], [6], [9], [11], [13], [14], [16]). Computation offloading
reduces the workload on the mobile device but it requires
wireless communication to migrate the computation to more
resource-rich clouds. Therefore, computation offloading is
energy-efficient only if the communication energy does not
exceed the computation energy for local processing ([12]).

To determine whether and which portion of the compu-
tation to offload, the energy consumption needs to be esti-
mated before execution. Communication energy is a critical
factor that determines the energy consumed by computation
offloading, and it depends mainly on the size of the data
transmitted between the mobile device and the cloud and
the network bandwidth. Computation energy depends on the
computation time that is affected by the input data and the
resource status such as CPU load and memory availability.
Many studies ([6], [9], [10], [13], [18]) have been conducted
to develop models, methods and algorithms for an accurate
estimation of energy consumption, but they are limited for
these reasons:

• It is assumed that the size of the results transmitted
from the clouds to the mobile device is predefined or
known in advance. For some applications, this assump-
tion does not hold. For example, the size of an output
video from the video transcoding application is differ-
ent from that of an input video due to differences in
coding efficiency of the corresponding codecs.
• The internal structures of applications or their execu-

tion behaviors (e.g., the number of instructions in a
function, the number of loop iterations, etc.) can be
obtained automatically with the help of dedicated pro-
gramming tools such as compilers or provided by ap-
plication developers. Such pieces of information are
useful for an accurate estimation of the computation
time. However, development of such tools requires sig-
nificant efforts.

In this paper, we propose a technique for energy con-
sumption estimation to address the abovementioned short-
comings. Mobile applications consist of several functional

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

LEE et al.: ADAPTIVE COMPUTATION OFFLOADING DECISION
1805

modules. Some of them must run on mobile devices. Exam-
ples include a user interface or codes for handling a periph-
eral such as a mobile device’s camera. For other modules,
the decision to offload computation must be made based on
energy efficiency. The novel aspect of our technique is that
it treats the module of an application as a black box and thus
does not require detailed information about how it works
internally. Instead, it derives the relationship between vari-
ables that affect the energy consumption (e.g., input param-
eters to the module, transmitted data, and resource status)
and the actual consumed energy from the past run history.
The integral part of our approach is that various filtering
techniques are applied to extract subsets of past run history
that are closely related to the module of which energy con-
sumption needs to be estimated. Once having done that,
the regression methods are applied. In doing so, irrelevant
past history has less influence on the estimation. Further-
more, since it is not known which filtering technique per-
forms best for a given module, our technique selects the best
filtering technique dynamically over time based on various
error measurement metrics. We evaluated the performance
of the proposed technique using two different types of mo-
bile applications: a face recognition application and a video
transcoding application. At the same time, we varied the
underlying wireless network environments, including high-
speed 4G networks such as Long Term Evolution (LTE) [2].
The experimental results showed that our technique deliv-
ers tolerable estimation accuracy and can make correct deci-
sions between computation offloading and local processing.

The remainder of the paper is organized as follows:
Sect. 2 summarizes related work; Sect. 3 explains the pro-
posed estimation technique in detail; and Sect. 4 presents
the experimental results. Finally, we conclude in Sect. 5.

2. Related Works

Significant research [11] has been conducted on offload-
ing decisions for improving performance or saving energy.
Chang et al. [5] provide a performance/power evaluation
model to determine whether offloading a kernel function
benefits the application. Their model is based on a simple
yet general energy consumption model such as that defined
in Kumar et al. [12]. Similarly, Kumar et al. [13] extend a
general energy consumption model of the offloading to be
well suited for a content-based image retrieval (CBIR) pro-
gram. In particular, they decompose a queryprocessing op-
eration in a CBIR session into several steps and are thus able
to define a fine-grained energy consumption model.

Cuervo et al. [6] use various profiling data as input to a
global optimization problem that determines which methods
should execute locally and which should execute remotely.
Their goal is to find a program partitioning strategy that min-
imizes the smartphone’s energy consumption, subject to la-
tency constraints.

Kovachev et al. [10] define the cost function of the of-
floading that consists of three parts-the data transfer cost,
the memory cost, and the CPU cost-and apply integer linear

programming to find an optimized partitioning strategy for
a given set of offloadable modules of a mobile application,
with the objectives of minimizing memory usage, energy us-
age, and execution time.

Xian et al. [18] present a method that uses timeout for
offloading decisions. In their approach, the computation is
offloaded to servers only if it is not completed after its break-
even time, which is the minimum computation time that can
benefit from offloading. They use the online statistical in-
formation to find the optimal timeout, instead of estimating
execution time for each computation instance.

Although our work is similar to others in that past run
history is used for predicting computation time, there are
important distinguishing differences. First, we do not as-
sume that the size of the results generated from an appli-
cation module is known before executing it. Second, we
assume that the internal structure of an application module
and its execution behavior are also unknown. These pieces
of information are derived from the past run history. There-
fore, our work is generic enough to be applicable to a wide
range of mobile applications.

3. Dynamic Estimation of Energy Consumption

For a given module of a mobile application, Fig. 1 depicts
the steps to estimate energy consumption for local process-
ing and computation offloading. The query point represents
the set of information needed to run an instance of the mod-
ule. This includes the input parameters required by the mod-
ule and the current resource status of the target system such
as CPU load and memory availability. The input parameters
are important variables that affect not only the computation
time but also the communication time, as the output of the
module is correlated with the input to the module, thus in-
fluencing the size of data transmitted between the mobile
device and the clouds.

When it needs to be determined whether a given appli-
cation’s module must be offloaded, the first step is to extract
subsets of past run history that are relevant to the query point
by applying a set of filters. In the second step, using the se-
lected datasets, regression methods are applied to predict the
output size as well as the computation times on the mobile
device and the cloud, respectively (e.g., Tlocal(i), Tcloud(i),
and Doutput(i), i = 1, . . . ,N). Note that since the resource
status affects only the computation time, it is not used by fil-
ters for predicting the size of the output of the module. For
the third step, the best estimates for Tlocal, Tcloud, and Doutput

are selected based on prediction accuracies. The expected
energy consumptions for local processing and computation
offloading are computed using the selected values and sam-
pling data of consumed energy by the target mobile device
as shown in the following equation:

1806
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Fig. 1 Sequence of steps to estimate energy consumption. Tlocal(i) and Tcloud(i) are estimated compu-
tation times for local processing and computation offloading based on the filter i, respectively, whereas
Doutput(i) is the predicted size of the result transmitted from the cloud to the mobile device using the
filter i. Elocal and Ecloud are estimated energy consumption for local processing and computation off-
loading using the best estimations for Tlocal, Tcloud , and Doutput (e.g., Tlocal(i), Tcloud(j), Doutput(k)),
respectively. N denotes the number of available filters.

Elocal = Tlocal(i) × Jcomp

Ecloud = Etx + Eidle + Erx

=
Dinput

BW
× Jsend + Tcloud(j) × Jidle

+
Doutput(k)

BW
× Jreceive

(1)

where Tlocal(i), Tcloud(j), and Doutput(k) are the best estima-
tions for the computation time on the mobile device, the
computation time on the cloud, and the output size using
datasets extracted by filters i, j, and k, respectively. The
sampling data include the average amount of energy con-
sumed by the mobile device for performing computation for
one second (Jcomp), for sending or receiving data for one
second (Jsend and Jreceive), and for being idle for one second
(Jidle), respectively. Calculating the energy consumption
for local processing is straightforward, whereas the energy
needed for computation offloading consists of three com-
ponents: the energy for sending data to the cloud for the
module to execute remotely (Etx), the energy for receiving
the execution result from the cloud (Erx), and the energy
consumed by the mobile device sitting idle until the remote
execution of the module finishes and the result is returned
(Eidle). Etx and Erx are proportional to communication time
and are therefore dependent on the size of transmitted data
(Dinput and Doutput(k)) and the network bandwidth (BW).
Note that the size of data to send to the cloud need not be
estimated; it can be computed by summing the sizes of the
input parameters and code size of the module, if necessary.
While the module runs on the cloud, the mobile device must
sit idle for Tcloud. Therefore, energy consumed during this
period must also be taken into account. Finally, when Ecloud

is found to be less than Elocal, the module will be offloaded.
Otherwise, the module will be processed locally.

When the module finishes its execution, the query point
of the module, the actual execution time either on the mo-
bile device or in the cloud, the actual size of the result, and
accuracies of individual estimations are stored for later use.

Note that we assume that during the lifetime of an applica-
tion, the mobile device periodically monitors the network
bandwidth and resource status such as the CPU load and
memory availability of the mobile device and the cloud. In
order to reduce monitoring overhead for the cloud, when the
module is offloaded, such pieces of information are piggy-
backed with the execution results and the monitoring period
re-starts from that point. Although this process requires ex-
tra energy, its impact is relatively small [6]. Detailed de-
scriptions of each of these steps are presented in the next
section.

3.1 Regression Methods

Regression analysis is the part of statistics that investigates
the relationship between two or more variables in a non-
deterministic fashion. In this work, we use the linear re-
gression method because the computational cost is cheaper
than for nonlinear regression methods such as quadratic and
cubic methods. Note that using linear regression does not
mean that we assume that the energy consumption of a given
module is a linear function of the input parameters and the
resource status. Instead, only the subset of the past run his-
tory that is sufficiently close to the query point, which is
selected by filters, will be approximated by a linear relation-
ship.

Multiple linear regression models take the form:

Y = β0 + β1x1 + β2x2 + · · · + βk xk (2)

where Y is the dependent variable, the βi’s are regression co-
efficients, and xi’s are independent variables. In our work,
the number of independent variables varies depending on
the number of input parameters required by the given mod-
ule and the type of the dependent variable (e.g., the com-
putation time and the output size). For example, suppose
that a module requires two input parameters, p and q, and
CPU load and memory availability are considered for the
resource status. Then, the computation time is derived by

LEE et al.: ADAPTIVE COMPUTATION OFFLOADING DECISION
1807

Y = β0 + β1P + β2Q + β3CPU + β4Memory and the out-
put size is derived by Y = β0 + β1P + β2Q, where P, Q,
CPU, and Memory are variables representing values of p,
q, CPU load, and memory availability, respectively. Due to
differences in the units of measurement for individual pa-
rameters as well resource status, for multiple regression it
is advantageous to carry out standardization of variables be-
fore fitting a curve. Let xi and si be the sample average and
sample standard deviation of observed xi. In the standard-
ized model, each variable xi is coded by x′i = (xi − xi)/si.
The coded variable simply re-expresses any xi value in units
of standard deviation above or below the mean. The bene-
fits of standardization are (1) increased numerical accuracy
in all computations and (2) more accurate estimation than
for the parameters of the un-standardized model. This is be-
cause the individual parameters of the standardized model
characterize the behavior of the regression function near the
center of the data rather than near the origin [7]. Therefore,
given k independent variables, we use the following regres-
sion function to predict the expected values of Y , E(Y):

E(Y) = β0 + β1

(
x1 − x1

s1

)
+ β2

(
x2 − x2

s2

)

+ · · · + βk

(
xk − xk

sk

)
= β0 + β1x′1 + β2x′2 + · · · + βk x′k (3)

3.2 Filtering Technique

Linear regression methods attempt to fit a straight line to
the available data to minimize the sum of squared devia-
tions of the predicted values from the actual observations.
Therefore, if the observations do not show strong linearity,
applying the linear regression model will not generate ac-
curate predictions. To address such a limitation, we apply
linear regression methods only to subsets of observations
that are extracted by a filter in such a way that the selected
datasets are close to the query point and show strong lin-
earity. Figure 2 shows the effects of using filters. Suppose
that the query point is q2. The predicted value of Y by the
filtering-based method, h2(q2), is closer to the actual obser-
vation than a prediction without filters, f (q2). This is be-
cause while h2(x) is generated from data points close to q2,
f (x) is derived from all observed data and, therefore, it min-
imizes the error for data points not only close to q2 but also
far from q2.

The closeness of each data point to the query point is
defined by a distance function of the filter. Since the range
and distribution of independent variables are unknown, the
distance function should normalize distances with respect
to the query point. For this purpose, we used standard-
ized Euclidean distance. The distance between data point
D = (d1, d2, . . . , dn) and query point Q = (q1, q2, . . . , qn) is
defined as follows:

Fig. 2 The effects of using filters. Individual rectangles represent the
actual values of Y given X is q1, q2, and q3, respectively. The dashed line,
f (x), is generated by a linear regression method using all observed data,
whereas the solid lines, hi(x), are based on subsets of data points close to
corresponding query points (q1, q2, and q3).

Distance(D,Q) =

√√
n∑

i=1

(d′i − q′i)2

d′i =
di − di

si
, q′i =

qi − di

si
di : the sample average of variable i

si : the sample standard deviation of variable i

(4)

Once the distance is computed, it is compared with a con-
figurable threshold value, α(≥ 0). If the absolute differ-
ence between Distance(D,Q) and α is less than or equal
to zero, then D is included for linear regression analysis. If
the threshold value is too large, it is more likely that data
points irrelevant to the query point are included for analy-
sis, thus decreasing prediction accuracy. On the other hand,
using smaller threshold values may cause useful data to be
omitted.

3.3 Dynamic Estimator

For a given application module, it is difficult to know in ad-
vance which predictor generates the most accurate predic-
tions, because it is highly dependent on the characteristics
of the modules. The novel aspect of our approach is to select
dynamically a best predictor over time for the target module
by using the previous prediction history.

The prediction history database of the dynamic estima-
tor maintains the past prediction history of each predictor,
and it is organized in a two-dimensional matrix: columns
represent the predictors and the variables that affect the com-
putation time of the module, and each row represents the
expected computation time of the predictors and the actual
computation time of a module instance (see Fig. 3). When
the prediction is needed, the dynamic estimator runs all the
registered predictors in parallel. Then it gathers the most
recent k prediction history of each predictor and selects the

1808
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Fig. 3 Structure of prediction history database. “CPU” and “Mem” rep-
resent CPU load and memory availability, respectively. X, Y, and Z denote
input parameters to a application module. The “Comp Time” column rep-
resents the actual computation time and “Loc” indicates the place where
the computation was actually performed. “Size” denotes the output size of
the computation.

one that shows the most accuracy. We used several well-
known fitness functions as metrics for measuring prediction
accuracy, such as mean squared error, mean absolute error,
relative squared error, and so on. Then, for each predictor,
the sum of eight ranks is computed and the one with the
smallest sum is selected as the best predictor.

4. Empirical Analysis

4.1 Prototype Applications and Test Environments

For our experiments, we implemented prototype mobile ap-
plications by applying the FREEMA framework [14] that
enables seamless execution of Android applications in the
cloud. The applications are a face recognition application
and a video transcoding application, which are frequently
used in mobile environments. The face recognition applica-
tion was implemented so that a module that extracts coordi-
nates of identified faces in a given image would be executed
in clouds. As for the video transcoding application, it down-
loads a video from a repository and converts it to a format
the device is able to play. Therefore, video downloading and
transcoding were implemented into a module that would be
executed in clouds.

In order to investigate the performance of our approach
under different mobile communication networks, we used
3G and Wi-Fi networks as well as high-speed 4G networks,
such as LTE. Energy consumption of the device was mea-
sured with an external power monitoring tool. All energy
measurements were collected by supplying the device with
a constant voltage of 3.9V and tracking the current with a
sampling rate of 5,000Hz. Table 1 shows the main fea-
tures of commercially available smartphones that we used
in the experiments, while Table 2 shows the sampling data
of consumed energy for the smartphone. When computing
the amount of energy required, energy components (Jcomp,
Jsend, Jreceive, and Jidle) in (1) are replaced with correspond-
ing sampled data. For instance, when the 4G network is used
for the mobile communication, Jcomp lte, Jsend lte, Jreceive lte,
and Jidle lte should be used. Individual mobile devices have
their own energy consumption profiles, and automatic col-
lection of these energy parameters may require support from
the underlying framework. For a cloud server, we used

Table 1 Device specifications.

Feature Specifications
3G HSDPA++

Wi-Fi IEEE 802.11g
4G LTE

CPU 1.5GHz Dual Core
Memory 1GB

OS Android 2.3
Battery 1850mAh

Table 2 Energy consumption profile.

Jcomp wi f i Processing with Wi-Fi enabled 15.90
Jcomp 3G Processing with 3G enabled 15.71
Jcomp lte Processing with LTE enabled 16.49
Jidle wi f i Idle with Wi-Fi disabled 7.83
Jidle 3G Idle with 3G disabled 7.72
Jidle lte Idle with LTE disabled 8.21
Jsend wi f i Sending data using Wi-Fi 22.68
Jsend 3G Sending data using 3G 21.15
Jsend lte Sending data using LTE 30.08
Jreceive wi f i Receiving data using Wi-Fi 14.61
Jreceive 3G Receiving data using 3G 17.79
Jreceive lte Receiving data using LTE 18.71

a high-performance server computer with a 3.4 GHz quad
core CPU and 16GB memory.

4.2 Analysis

In most cases, the computation time of an application is
highly dependent on its input. For example, in the cases of
the face recognition and video transcoding applications, the
image size and source video size are primary inputs that de-
termine the computation time. For the face recognition ap-
plication, we used different images with various resolutions
between 400×492 and 4800×3600. For the video transcod-
ing application, we used source video files in MP4 format
with sizes ranging from 6.4MB to 215MB for conversion
to AVI. Figure 4 shows distributions of execution times of
individual applications according to their primary input pa-
rameters. Given an application, it is not known which value
for a threshold used by the filtering technique performs best.
Therefore, we used four different values (0.05, 0.1, 0.15, and
0.2) for the threshold and the dynamic estimator eventually
selected the best one.

The resource monitoring activity of the mobile device
requires both CPU processing and network communications
and is an extra cost to enable accurate predictions. Figure 5
shows the amount of energy consumed for resource mon-
itoring. Although the amount of consumed energy for re-
source monitoring is different for different network types,
their magnitude is marginal. However, as the number of tar-
get cloud servers to monitor and the monitoring frequency
increase, the cost will also increase. One way to compensate
this extra cost is to allow several applications supporting of-
floading to share the resource status information.

According to Fig. 6, the proposed prediction technique
performs well in all prototype applications. For the face

LEE et al.: ADAPTIVE COMPUTATION OFFLOADING DECISION
1809

(a) Local execution

(b) Cloud execution

Fig. 4 Distributions of execution times of prototype applications.

recognition and video transcoding applications, the output
size is indeterministic in that the output is highly dependent
on not only the size of the input but also its content. How-
ever, for the face recognition application, because the num-
bers of faces appearing in the experimental input images did
not vary significantly, its prediction accuracy was relatively
higher than for the video transcoding application.

Figure 7 shows the accuracy of various predictors. In

Fig. 5 Resource monitoring energy.

Fig. 6 Prediction accuracy for the output sizes.

the face recognition application, predictors with filters out-
performed those with no filter. However, in the case of the
video transcoding application, the predictors without filters
showed slightly better performance. This can be explained
by the distributions of execution times of application in-
stances. As shown in Fig. 4, the distribution of the execution
time of the video transcoding application is almost linear.
On the other hand, as execution times of the face recog-
nition application does not show strong linearity, applying
linear regression analysis using the entire dataset generates
more errors than using subsets of history data. Another in-
teresting observation in Fig. 7 is that the threshold values
defining the closeness of data point to query point show dif-
ferent performances with different applications as well as
with different mobile communication networks. However,
since the dynamic estimator considers past prediction accu-
racy of individual predictors, its accuracy is close to that of
the best one under the given circumstances.

Figure 8 shows the energy saved by using offloading. It
compares the amount of actual energy consumed when the
offloadable modules were executed on the mobile device, on
the cloud server, and on the location selected by the offload-
ing decision based on the energy consumption predicted by
the dynamic estimator. When high-speed networks such as
Wi-Fi and LTE were used, the energy saved by offloading
was greater because data transmission time was less, result-
ing in reduced energy consumed for data communication.
However, in the case of the face recognition application, the
computation time is very small. Therefore, even if a high-
speed network is used, it is more likely that energy saved by

1810
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.7 JULY 2014

Fig. 7 Comparative prediction accuracy for energy consumption.

Fig. 8 Comparative energy consumption.

remote execution (Elocal − Eidle) is exceeded by the energy
consumed by data transmissions between the cloud and the
mobile device (Etx+Erx). In such cases, it is more profitable
to run the modules locally.

Interestingly, although in some cases the prediction er-
ror rate of the dynamic estimator is relatively high, energy
savings obtained by online offloading as decided by the dy-
namic estimator was improved. The goal of the offloading
decision is to select the best option for executing applica-

tion modules in terms of energy efficiency. Therefore, even
though individual predictions generated by the dynamic es-
timator may not be accurate, if their predictions are accurate
enough to rank the options in terms of energy consumption,
the offloading decision maker will make the correct deci-
sions, thus achieving energy savings.

5. Conclusion

In this paper, we proposed a novel technique for battery con-
sumption estimation without requiring detailed information
about the internal structure of a mobile application or its
execution behavior. In our approach, the relationship is de-
rived between variables that affect the battery consumption
(i.e., the input to the application, the transmitted data, and
resource status) and the actual consumed energy from the
past application run history. In addition, since it is difficult
to know which predictor generates the most accurate pre-
dictions in advance, we proposed a dynamic estimator that
dynamically selects a best predictor over time for the target
module by using previous prediction history.

In the current work, we used only independent vari-
ables to select relevant observations to the query point.
Therefore, we plan to extend the filtering technique so that
not only will the independent variables but also the depen-
dent variable be used to select observations that are close to
the query point and show strong linearity.

The response time is another important property when
choosing a mobile application or service. However, provid-
ing fast response time sometimes conflicts with energy sav-
ings. Therefore, we plan to investigate trade-offs between
user experience and energy consumption and to develop of-
floading decision algorithms to take into consideration both
the response time and the energy consumption, thus being
able to provide acceptable delay time while consuming as
little energy as possible.

Acknowledgments

This research was supported by the Basic Science Research
Program through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Education, Science,
and Technology (2011-0008552, 2012R1A1A1002133).

References

[1] M.A. Reddy and M. Fichtner, “Batteries based on fluoride shuttle,”
J. Materials Chemistry, vol.21, pp.17059–17062, Oct. 2011.

[2] D. Astely, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and
S. Parkvail, “LTE: The evolution of mobile broadband,” IEEE Com-
mun. Mag., vol.47, no.4, pp.44–51, 2009.

[3] L. Benini, A. Bogliolo, and G.D. Micheli, “A survey of design tech-
niques for system-level dynamic power management,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol.8, no.3, pp.299–316, June
2000.

[4] B. Brock and K. Rajamani, “Dynamic power management for em-
bedded systems,” Proc. 2003 IEEE International SOC Conference,
pp.416–419, Sept. 2003.

[5] Y. Chang and S. Hung, “Developing collaborative applications with

LEE et al.: ADAPTIVE COMPUTATION OFFLOADING DECISION
1811

mobile cloud? A case study of speech recognition,” J. Internet Ser-
vice and Information Security, vol.1, no.1, pp.18–36, 2011.

[6] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R.
Chandra, and P. Bahl, “MAUI: Making smartphones last longer with
code offload,” Proc. 8th International Conference on Mobile Sys-
tems, Applications, and Services, pp.49–62, June 2010.

[7] J. Devore, Probability and Statistics for Engineering and the Sci-
ences, 8th ed., Brooks/Cole, 2010.

[8] J. Furthmuller and O. Waldhorst, “Energy-aware resource sharing
with mobile devices,” Int. J. Computer and Telecommunication Net-
working, vol.56, no.7, pp.1920–1934, May 2012.

[9] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling
the cloud: Enabling mobile phones as interfaces to cloud applica-
tion,” Proc. ACM/IFIP/USENIX 10th International Conference on
Middleware, pp.83–102, 2009.

[10] D. Kovachev, T. Yu, and R. Klamma, “Adaptive computation of-
floading from mobile devices into the cloud,” Proc. IEEE 10th In-
ternational Symposium on Parallel and Distributed Processing with
Applications, pp.784–791, July 2012.

[11] K. Kumar, J. Liu, Y. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol.18, no.1, pp.129–140, Feb. 2013.

[12] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can of-
floading computation save energy?,” Computer, vol.43, no.4, pp.51–
56, 2010.

[13] K. Kumar, Y. Nimmagddda, and Y. Lu, “Energy conservation for
image retrieval on mobile systems,” ACM Trans. Embedded Syst.,
vol.11, no.3, pp.66–88, Sept. 2012.

[14] B. Lee, “A framework for seamless execution of mobile applica-
tions in the cloud,” Lecture Notes in Electrical Engineering, vol.126,
pp.145–153, 2012.

[15] J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson, and J.M.
Tour, “Graphene nanoribbon and nanostructured SnO2 composite
anodes for lithium ion batteries,” ACS Nano, vol.7, no.7, pp.6001–
6006, June 2013.

[16] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for VM-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol.8, no.4, pp.14–23, Oct. 2009.

[17] P. Svensson, “Smartphones now outsell dumb phones,” News NZ,
April 2013.

[18] C. Xian, Y. Lu, and Z. Li, “Adaptive computation offloading for en-
ergy conservation on battery-powered systems,” Proc. 13th Interna-
tional Conference on Parallel and Distributed Systems, pp.1–8, Dec.
2007.

Byoung-Dai Lee is an assistant professor
at the department of computer science, Kyonggi
University, Korea. He received his B.S. and
M.S. degrees in Computer Science from Yon-
sei University, Korea in 1996 and 1998 respec-
tively. He received his Ph.D. degree in Com-
puter Science and Engineering from University
of Minnesota, Minneapolis, U.S.A. in 2003. Be-
fore joining the Kyonggi University, he worked
at Samsung Electronics, Co., Ltd. as a senior en-
gineer from 2003 to 2010. During the period,

he has participated in many commercialization projects related to mobile
broadcast systems. His research interests include cloud computing, mobile
multimedia platform, and mobile multimedia broadcasting.

Kwang-Ho Lim is a master student at the
department of computer science, Kyonggi Uni-
versity, Korea. His current research interest in-
cludes sensor networks, cloud resource manage-
ments, and mobile platforms.

Yoon-Ho Choi is the assistant professor at
department of convergence security in Kyonggi
University, Suwon, Korea. He received the M.S.
and Ph.D. degrees from school of electrical and
computer engineering, Seoul National Univer-
sity, S. Korea, in Sept. 2004 and Sept. 2008,
respectively. He was a postdoctoral scholar
in Seoul National University, Seoul, S. Korea
from Sept. 2008 to Dec. 2008 and in Pennsylva-
nia State University, University Park, PA, USA
from Jan. 2009 to Dec. 2009. While working as

a senior engineer at Samsung Electronics from May 2010 to Feb. 2012,
he had deeply involved in developing commercial LTE CCC (Cloud Com-
munication Center) system. He has served as TPC members in various
international conferences and journals. His research interests include Deep
Packet Inspection (DPI), high-speed intrusion prevention, mobile comput-
ing security, vehicular network security and SNS security.

Namgi Kim is an associate professor at
the department of computer science, Kyonggi
University, Korea. He received the B.S. degree
in Computer Science from Sogang University,
Korea, in 1997, and the M.S. degree and the
Ph.D. degree in Computer Science from KAIST
in 2000 and 2005, respectively. From 2005 to
2007, he was a research staff of the Samsung
Electronics. Since 2007, he has been a faculty
of the Kyonggi University. His research inter-
ests include sensor system, wireless system, and

mobile communication

