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PAPER

Image Recognition Based on Separable Lattice Trajectory 2-D
HMMs

Akira TAMAMORI†a), Nonmember, Yoshihiko NANKAKU†b), and Keiichi TOKUDA†c), Members

SUMMARY In this paper, a novel statistical model based on 2-D
HMMs for image recognition is proposed. Recently, separable lattice 2-
D HMMs (SL2D-HMMs) were proposed to model invariance to size and
location deformation. However, their modeling accuracy is still insufficient
because of the following two assumptions, which are inherited from 1-D
HMMs: i) the stationary statistics within each state and ii) the conditional
independent assumption of state output probabilities. To overcome these
shortcomings in 1-D HMMs, trajectory HMMs were proposed and suc-
cessfully applied to speech recognition and speech synthesis. This paper
derives 2-D trajectory HMMs by reformulating the likelihood of SL2D-
HMMs through the imposition of explicit relationships between static and
dynamic features. The proposed model can efficiently capture dependen-
cies between adjacent observations without increasing the number of model
parameters. The effectiveness of the proposed model was evaluated in face
recognition experiments on the XM2VTS database.
key words: image recognition, hidden Markov models, separable lattice
2-D HMMs, trajectory HMMs

1. Introduction

With the wide spread of computers in recent years, the de-
velopment of a human interface that utilize visual and au-
ditory information is expected. It can be used to commu-
nicate with others in the same way as humans. In particu-
lar, speech recognition and image recognition are important
basic technologies for this interface and research has been
conducted actively. Moreover, with the recent advances of
computer hardware and information technology, statistical
approaches based on huge amounts of data are becoming
the mainstream in many research fields. For speech recogni-
tion, Hidden Markov model (HMM) based techniques have
been established [1]. However, in the field of image recog-
nition, various approaches have been mushrooming due to
the variety of the recognition objects and the complexity of
data. Therefore, it is valuable to construct the general sta-
tistical models for image recognition similar to HMMs for
speech recognition, which can be applied to various tasks
such as face recognition, hand-written character recognition,
gesture recognition, and lip reading.

The previous research of image recognition can be
roughly classified into the following two: i) techniques
developed by utilizing task-dependent information and ii)
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techniques considering image recognition as pattern clas-
sification problems on multi-dimentional feature space ob-
jectively. The former techniques take account of the prac-
ticality and high recognition performance can be obtained
even if a small amount of training data is available. On the
other hand, the latter techniques should be selected when
considering the general framework of image recognition.
However, the pre-processings such as segmentation, nor-
malization and feature extraction are still required to deal
with the image recognition problem as pattern classification
problem. These pre-processings have not been considered
in many studies on the latter techniques and the heuristic
normalization techniques have been applied. Additionally,
the final objective in image recognition is not to accurately
normalize images for human perception but to achieve bet-
ter recognition performance. Therefore, it is a good idea
to integrate the normalization processes into classifiers and
optimize them based on a consistent criterion to improve
recognition performance.

HMM based techniques for image recognition have
been proposed to reduce the influence of geometric varia-
tions [2]–[12]. Geometric matching between input images
and model parameters is represented by discrete hidden vari-
ables, and the normalization process is included in calculat-
ing probabilities. For an earlier work, Samaria et al. applied
HMMs to human face identification tasks [2]. The observa-
tion sequence was composed of over-lapping window/line
blocks extracted from each sample image and modeled by
ergodic/top-to-bottom HMMs, provided that image data had
to be treated as if it was 1-D data sequence. This leads to
lack of robustness to geometric variations. It was therefore
natural for many researchers to consider extending HMMs
to multi-dimensional ones.

However, the above extension generally leads to an ex-
ponential increase in the amount of computation for its train-
ing algorithm. To reduce the computational complexity, the
model structure needs to be constrained by limiting the num-
ber of possible alignments and assuming independence be-
tween hidden variables. For such model structures, pseudo
2-D HMMs [3] (embedded HMMs [4]) were proposed and
applied to many image recognition tasks. A pseudo 2-D
HMM has a composite state structure for a better 2-D rep-
resentation while avoiding the complexity burden of a fully
connected 2-D HMM. The states of a superior HMM in the
horizontal direction are called super-states and each super-
state has a one-dimensional HMM in the vertical direction
instead of a probability density function. This assumption
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reduces the computational complexity and the maximum
likelihood training algorithm has been proposed [5]. How-
ever, the state alignments of consecutive observation lines
in the vertical direction are calculated independently of each
other and this assumption does not always hold true in prac-
tice.

Essentially, the studies of 2-D dynamic programming
(2D-DP) treat the same problem of the 2-D HMMs. The
main difference between these studies is the definition of the
cost function; The 2D-DP focuses on finding the mapping
between two images with a pre-defined cost function, while
the likelihood of 2-D HMMs is defined between an input
image and the distribution which is estimated from multiple
training images. Although some efficient approximation al-
gorithms have been proposed for the 2D-DP problem [13]–
[16], they still need high complicated costs and prior knowl-
edge to determine the cost function is required for repre-
senting an accurate elastic matching dependently on image
variations.

For another HMM based approach, separable lattice
2-D HMMs (SL2D-HMMs) were proposed [8] to reduce
computational complexity while retaining good properties
that model multi-dimensional data. Furthermore, hidden
Markov eigenface models have been proposed [9] where the
eigenface methods are integrated into SL2D-HMMs. SL2D-
HMMs can perform elastic matching both horizontally and
vertically, which makes it possible to model not only invari-
ance to the size and location of an object but also nonlinear
warping in all dimensions. Nevertheless, due to the model
structure of SL2D-HMMs which consists of two indepen-
dent 1-D Markov chains, SL2D-HMMs have the same con-
straints as 1-D HMMs [17] in that (i) the statistics of each
state do not change dynamically and (ii) the output proba-
bility of an observation vector depends only on the current
state, not on any other states nor observations.

To overcome the above shortcomings, it has been con-
firmed that augmenting the dimensionality of an acous-
tic static feature vector (e.g., cepstral coefficients) by ap-
pending its dynamic feature vectors (e.g., 1st and 2nd or-
der delta cepstral coefficients) [18] can enhance the perfor-
mance of HMM-based speech recognizers. It can be consid-
ered that augmented feature vectors can capture dependen-
cies between adjacent acoustic feature vectors. Based on
this knowledge, SL2D-HMMs can also enhance the recog-
nition performance by appending dynamic features [12],
[19], where first-order derivative coefficients in horizontal
and vertical direction were applied. However, static and
dynamic features are assumed to be independent variables
and the relationships between them are ignored even though
these relationships are essentially deterministic. As a result,
inconsistency between the static and dynamic features is tol-
erated.

In previous work [20], trajectory HMMs were proposed
and successfully applied to speech recognition and speech
synthesis. The standard HMM is reformulated by impos-
ing the explicit relationship between static and dynamic fea-
tures, in order that the constraint of HMMs such as the

conditional independence and the constant statistics in each
state can be relaxed. In this paper, we propose a novel gen-
erative model that reformulates SL2D-HMMs as a trajectory
model, referred to as separable lattice trajectory 2-D HMMs
(SLT2D-HMMs). The proposed model can overcome the
shortcomings of SL2D-HMMs and capture the dependen-
cies of adjacent observations, without increasing the number
of model parameters. Consequently, the modeling ability
can be significantly improved.

The rest of the paper is organized as follows. In Sect. 2,
SL2D-HMMs are explained briefly. In Sect. 3, the struc-
ture of the proposed model is defined. In Sect. 4, we derive
the training algorithm for the proposed model. In Sect. 5,
we describe face recognition experiments on the XM2VTS
database [21] and finally conclude in Sect. 6.

2. Separable Lattice 2-D HMMs

Separable lattice 2-D hidden Markov models (SL2D-
HMMs) [8] are defined for modeling two-dimensional data.
The observations of two-dimensional data, e.g., pixel values
of an image are assumed to be given on a two-dimensional
lattice:

O = {Ot | t = (t(1), t(2)) ∈ T}, (1)

where t denotes the coordinates of the lattice in two dimen-
sional space T and t(m) = 1, . . . ,T (m) is the coordinate of
the m-th dimension. The observation Ot is emitted from the
state indicated by the hidden variable St ∈ K. The hidden
variables St ∈ K can take one of K = K(1)K(2) states, which
are assumed to be arranged on a two-dimensional state lat-
tice K = {(1, 1), (1, 2), . . . , (1,K(2)), (2, 1), . . . , (K(1),K(2))}.
In other words, a set of hidden variables, {St | t ∈ T}, repre-
sents a segmentation of observations into the K states, and
each state corresponds to a segmented region in which the
observation vectors are assumed to be generated from the
same distribution. Since the observation Ot is dependent
only on the state St as in ordinary HMMs, dependencies
among hidden variables determine the properties and mod-
eling ability of two-dimensional HMMs.

To reduce the number of possible state sequences, the
hidden variables of a SL2D-HMM are constrained to be
composed of two Markov chains:

S = {S(1),S(2)}, (2)

S(m) = {S (m)
1 , . . . , S

(m)
t(m) , . . . , S

(m)
T (m) }, (3)

where S(m) is the Markov chain along with the m-th co-
ordinate and S (m)

t(m) ∈ {1, . . . ,K(m)}. In the separable lat-
tice 2-D HMMs, the composite structure of hidden vari-
ables is defined as the product of hidden state sequences:
St = (S (1)

t(1) , S
(2)
t(2) ). This means that the segmented regions of

observations are constrained to be rectangles and this allows
an observation lattice to be elastic in both vertical and hori-
zontal directions. Using this structure, the number of possi-
ble state sequences can be reduced from {∏m K(m)}∏m T (m)

to
∏

m{K(m)}T (m)
. Figures 1 and 2 show the model struc-

ture and graphical model representation of SL2D-HMMs,
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Fig. 1 Model structure of the separable lattice 2-D HMMs: hidden state
sequences are composed of independent two Markov chains.

Fig. 2 Graphical model representation of the separable lattice 2-D
HMMs: The rounded box represents a group of variables and the arrow
to the box represents the dependency to all variables in the box instead of
drawing arrows to the all variables. The observations are emitted from the
product of horizontal and vertical hidden state sequences.

respectively.
In SL2D-HMMs, the joint probability of observation

vectors O and hidden variables S can be written as

P(O,S | Λ) (4)

= P(O | S,Λ) ·
∏

m=1,2

P(S(m) | Λ)

=
∏

t

P(Ot | St ,Λ)

×
∏

m=1,2

⎡⎢⎢⎢⎢⎢⎢⎣P(S (m)
1 | Λ)

T (m)∏
t(m)=2

P(S (m)
t(m) | S (m)

t(m)−1
,Λ)

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

where Λ is a set of model parameters of SL2D-HMMs. The
model parameters of SL2D-HMMs are summarized as fol-
lows:

• Parameters for state transition probability:

1) Π(m) = {π(m)
i | 1 ≤ i ≤ K(m)}: the initial state prob-

ability distribution, where

π(m)
i = P(S (m)

1 = i | Λ) (6)

is the probability of state i at t(m) = 1 in the m-th
state sequence S(m).

2) A(m) = {a(m)
i j | 1 ≤ i, j ≤ K(m)}: the transition prob-

ability matrix, where

a(m)
i j = P(S (m)

t(m) = j | S (m)
t(m)−1

= i,Λ) (7)

is the transition probability from state i to state j
in the m-th state sequence S(m).

• Parameters for output probability distribution:
B = {bk(Ot) | k ∈ K}: the output probability distri-
butions, where bk(Ot) is the probability of observation
vector Ot at the state k on the state lattice K and as-
sumed to be a single Gaussian distribution:

P(Ot | St = k) = N(Ot | μk,Σk) (8)

where μk and Σk denote the “state level” mean vec-
tor and the covariance matrix, respectively. Note that
SL2D-HMMs have K(1)K(2) Gaussians directly as the
parameters on a lattice unlike factorial HMMs [22]†.

The evaluation of the exact likelihood is computationally in-
tractable because the joint probability P(O,S | Λ) must be
evaluated over all the possible state transitions and the or-
der becomes O

(∏
m{K(m)}T (m)

)
. Similarly, the exact EM al-

gorithm also becomes infeasible. To cope with this prob-
lem, the training algorithm for SL2D-HMMs using the vari-
ational EM algorithm were derived in [8], where the log-
likelihood can be approximated by the variational lower
bound. Although some extensions of SL2D-HMMs have
been proposed, e.g., a structure for rotational variations [10],
explicit state duration modeling [11], and a structure with
multiple horizontal/vertical Markov chains [12], this paper
uses an original form of SL2D-HMMs.

3. Separable Lattice Trajectory 2-D HMMs

In the previous section, we described the structure of SL2D-
HMMs, where the hidden variables are composed of two
independent 1-D Markov chains. Therefore, similar to the
1-D HMMs, the following two limitations are imposed on
SL2D-HMMs [17]:

i) The statistics of each state do not change dynamically.

†Factorial HMMs have
(
K(1) + K(2)

)
Gaussians along with

Markov chains and they contribute linearly to the output proba-
bility distributions.
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ii) The output probability of the observation is condi-
tionally independent, given the horizontal and vertical
states.

To overcome these shortcomings, augmenting the dimen-
sionality of static feature vectors (e.g., pixel values) by ap-
pending their dynamic feature vectors (e.g., delta and delta-
delta coefficients) [18] to capture dependencies between ad-
jacent observations can enhance the performance of the
HMM-based speech recognizers [23]. Generally, dynamic
features are calculated as regression coefficients from their
neighboring static features and can be represented as a lin-
ear combination of static features. In other words, the rela-
tionship between static and dynamic features is linear, and
therefore, deterministic. However, this relationship is ig-
nored and static and dynamic features are modeled as in-
dependent statistical variables in the standard HMM frame-
work. Before deriving the proposed model, applications of
dynamic feature in 1-D and 2-D case will be described in
the next section. Then, in Sect. 3.2, the proposed model will
be derived in order to avoid the above problem.

3.1 Applications of Dynamic Features

3.1.1 Dynamic Features for Speech Data

This section describes dynamic features for acoustic fea-
tures (e.g., Mel-Frequency Cepstral Coefficients) which
were developed in 1-D time-domain. This have often
been used to model speech signals by HMMs. Let o =
[o1, o2, . . . , oT ] be the sequence of speech parameter vec-
tors, where ot is a speech parameter vector at time t. In
a typical speech recognition system, it is assumed that the
speech parameter vector ot is a 3M × 1 vector consisting of
an M-dimensional acoustic static feature

ct = [ct(1), ct(2), . . . , ct(M)] (9)

and its first and second order dynamic feature vectors, Δct

and Δ2ct, that is

ot =
[
c�t ,Δc�t ,Δ

2c�t
]
. (10)

The dynamic features are often calculated as regression co-
efficients from their neighboring static features, i.e.,

Δct =

L(1)
+∑

τ=−L(1)
−

w(1)(τ)ct+τ, (11)

Δ2ct =

L(2)
+∑

τ=−L(2)
−

w(2)(τ)ct+τ, (12)

where {w(d)(τ)}τ=−L(d)
− ,...,L

(d)
+

are window coefficients to calcu-
late the d-th order dynamic feature. Usually, the maximum
window length L is set to 1–4. The relationship between

the observation vector sequence o =
[
o�1 , o

�
2 , . . . , o

�
T

]�
and

static feature sequence c =
[
c�1 , c

�
2 . . . , c

�
T

]�
can be arranged

Fig. 3 An example of relationship between the observation vector se-
quence o and the static feature vector sequence c in a matrix form [20],
where the dynamic feature vectors are calculated using Eqs. (11) and (12)
with L(1)

− = L(1)
+ = L(2)

− = L(2)
+ = 1, w(1)(−1) = −0.5, w(1)(0) = 0.0,

w(1)(1) = 0.5, w(2)(−1) = 1.0, w(1)(0) = −2.0, w(2)(1) = 1.0.

in a matrix form as

o =Wc, (13)

where W is a 3MT × MT window matrix and the elements
of W are given as follows:

W =
[

W1 . . . Wt . . . WT

]� ⊗ IM×M , (14)

Wt =
[
w(0)

t ,w
(1)
t ,w

(2)
t

]
, (15)

w(d)
t =

[
0, . . . , 0︸��︷︷��︸
t−L(d)

− −1

, w(d)(−L(d)
− ), . . . , w(d)(0),

. . . , w(d)(L(d)
+ ), 0, . . . , 0︸��︷︷��︸

T−
(
t+L(d)

+

)
]�
, d = 0, 1, 2 (16)

where L(0)
− = L(0)

+ = 0, w(0) = 1, and ⊗ denotes the Kro-
necker product for matrices. An example of the relationship
is shown in Fig. 3.

3.1.2 Dynamic Features for Image Data

In 2-D image case, the observation vector Ot is assumed to
consist of the M-dimensional static feature vector

Ct = [C t(1),C t(2), . . . ,C t(M)]� (17)

and horizontal/vertical dynamic feature vectors, Δ(H)Ct and
Δ(V)Ct , that is†

Ot =
[
C�t ,Δ

(H)C�t ,Δ
(V)C�t

]�
, (18)

†Using higher-order dynamic features is straightforward.
Moreover, dynamic features in other directions, e.g., diagonal dy-
namic features can be adopted easily.
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where t =
(
t(1), t(2)

)
. Likewise 1-D case described in the pre-

vious section, these dynamic features are calculated as re-
gression coefficients from their neighboring static features:

Δ(H)Ct =

L(H)
+∑

τ=−L(H)
−

w(H)(τ)C(t(1)+τ,t(2)), (19)

Δ(V)Ct =

L(V)
+∑

τ=−L(V)
−

w(V)(τ)C(t(1),t(2)+τ), (20)

where
{
w(H)(τ)

}
τ=−L(H)

− ,...,L
(H)
+

and
{
w(V)(τ)

}
τ=−L(V)

− ,...,L
(V)
+

are win-

dow coefficients to calculate the horizontal and vertical dy-
namic features, respectively. The observation vectors and
static feature vectors on the 2-D lattice can be rewritten in
MT (1)T (2) size vector forms as

O =
[

O�(1,1) . . . O�t . . . O�(T (1),T (2))

]�
, (21)

C =
[

C�(1,1) . . . C�t . . . C�(T (1),T (2))

]�
, (22)

where both elements of O and C are aligned in raster order
of the 2-D lattice.

A linear relationship between O and C in 2-D case,
which is similar to Eq. (13) in 1-D case, can be obtained
as

O =WC, (23)

where W is a 3MT (1)T (2) × MT (1)T (2) window matrix given
as

W =
[

W(1,1) . . . Wt . . . W(T (1),T (2))

]�⊗ IM×M ,

(24)

Wt =
[
w(S )

t ,w
(H)
t ,w

(V)
t

]
, (25)

where w(S )
t , w(H)

t , and w(V)
t are T (1)T (2) size vectors. They are

defined so that following relationships are satisfied based on
Eqs. (18), (19), (20) and (25):

Ct =
(
w(S )

t
� ⊗ IM×M

)
C, (26)

ΔC(H)
t =

(
w(H)

t
� ⊗ IM×M

)
C, (27)

ΔC(V)
t =

(
w(V)

t
� ⊗ IM×M

)
C, (28)

Ot =
(
W�

t ⊗ IM×M

)
C. (29)

The functions of window vectors w(S )
t , w(H)

t , and w(V)
t can be

explained as follows: From Eq. (26), w(S )
t is a vector which

extract the static feature vector at t =
(
t(1), t(2)

)
from image

data. Furthermore, from Eqs. (27) and (28), w(H)
t and w(V)

t
are vectors which extract the gradients of horizontal and ver-
tical direction centered at t, respectively. Examples of w(S )

t ,
w(H)

t , and w(V)
t are shown in Fig. 4, where the maximum win-

dow length L = 1 and M = 1 for simplicity.

3.2 Model Definition

Based on the relationship O and C in Eq. (23), the definition

Fig. 4 Examples of w(S )
t , w(H)

t , and w(V)
t , where L(H)

− = L(H)
+ = L(V)

− =

L(V)
+ = 1, w(H)(−1) = w(V)(−1) = −0.5, w(H)(0) = w(V)(0) = 0.0,
w(H)(1) = w(V)(1) = 0.5 from Eqs. (19) and (20). The circles in the top
box represent the static features. Also, the squares in the bottom box rep-
resent the elements of each window vector. The arrow from the top to the
bottom represents a multiplication between the corresponding static feature
vector and the element of window vector. The resultants of those sums are
dynamic feature vectors as shown in Eqs. (26), (27), and (28).

of the proposed model can be derived. The output probabil-
ity P(O | S,Λ) of SL2D-HMMs is given by

P(O | S,Λ) = N(O | μS,ΣS) =
∏

t

N(Ot | μSt
,ΣSt ),

(30)

where N(· | μ,Σ) denotes the Gaussian distribution with a
mean vector μ and a covariance matrix Σ, and μS and ΣS

are the “image level” mean vector and covariance matrix
given state sequences S, respectively. They are constructed
by concatenating the “state level” mean vectors and covari-
ance matrices in accordance with state sequences S:

μS =

[
μ�S(1,1)

. . . μ�St
. . . μ�S

(T (1),T (2))

]�
, (31)

ΣS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΣS(1,1) 0
. . .

ΣSt
. . .

0 ΣS
(T (1),T (2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (32)

However, Eq. (30) becomes an invalid probabilistic distribu-
tion over C because the integral of Eq. (30) over C is not
equal to 1. Namely, Eq. (30) is not normalized as the prob-
ability distribution of C. To yield a valid probability dis-
tribution over C, Eq. (30) can be re-normalized and written
as

P(C | S,Λ)=
1
ZS
N(WC | μS,ΣS) = N(C | CS, PS), (33)
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(a) Covariance matrix of SL2D-HMMs (b) Covariance matrix of SLT2D-HMMs

Fig. 5 Examples of covariance matrix. (a) shows the covariance matrix ΣS of SL2D-HMMs in
Eq. (32) and (b) shows the covariance matrix PS of SLT2D-HMMs in Eq. (36) where static, 1st order
horizontal and vertical dynamic feature vectors were applied. They were estimated from pixel values of
face images where the size of the face images was 32 × 32. The rows and columns are aligned in raster
order of the 2-D lattice (see Fig. 2).

ZS =

∫
N(WC | μS,ΣS) dC (34)

=

√
(2π)MT (1)T (2) |PS|√
(2π)3MT (1)T (2) |ΣS|

× exp

{
−1

2

(
μ�SΣ

−1
S μS − r�S PSrS

)}
, (35)

where ZS is a normalization term, and CS and PS are the
MT (1)T (2) mean vector and the MT (1)T (2) × MT (1)T (2) co-
variance matrix, respectively. Also, rS, CS and PS are given
as

RS = W�Σ−1
S W = P−1

S , (36)

rS = W�Σ−1
S μS, (37)

CS = PSrS. (38)

Using the above distribution, the joint distribution of static
feature vectors C and hidden variables S can be written as:

P(C,S | Λ) = P(C | S,Λ)
∏

m=1,2

P(S(m) | Λ). (39)

In the proposed model, the hidden variables are composed
of two independent Markov chains, similar to SL2D-HMMs
(see Eq. (2)). Therefore, P(S | Λ) can be factorized into the
product of horizontal and vertical state transition probabili-
ties, as shown in Eq. (39). By marginalizing P(C,S |Λ) over
all possible state sequences S, SL2D-HMMs can be refor-
mulated as follows:

P(C | Λ) =
∑

S

P(C,S | Λ)

=
∑

S

P(C | S,Λ)
∏

m=1,2

P(S(m) | Λ), (40)

P(C | S,Λ) =
1
ZS

∏
t

N(WCt | μSt
,ΣSt ) (41)

=
1
ZS
N(WC | μS,ΣS) (42)

= N(C | CS, PS), (43)

whereΛ is a set of model parameters of the proposed model.
In this paper, the proposed model is referred to as sepa-
rable lattice trajectory 2-D HMMs (SLT2D-HMMs). The
term “trajectory” suggests that the above formalization of
the proposed model is analogous to that of 1-D trajectory
HMMs and the advantageous properties will also be in-
herited to the proposed model as well. It should be noted
that the summation over S in Eq. (40) can be performed by
O
(∏

m{K(m)}T (m)
)
, which is the exactly same order as SL2D-

HMMs. Therefore, similar to SL2D-HMMs, the evaluation
of the exact likelihood of the proposed model is computa-
tionally intractable. In Sect. 4, a strategy will be described
to make this problem computationally tractable. It should be
also noted that covariance matrix PS is generally full even
when using the completely same model parameter set as
SL2D-HMMs. Therefore, the inter-pixel correlation can be
modeled by the covariance matrix PS. As a result, the pro-
posed model can mitigate the limitations of SL2D-HMMs.

Figure 5 shows examples of covariance matrix ΣS of
SL2D-HMMs and covariance matrix PS of SLT2D-HMMs
in which static, 1st order horizontal and vertical dynamic
feature vectors were applied. The covariance matrix was
estimated from pixel values of face images, where the size
of the face images was 32 × 32. The detail of the train-
ing data and conditions will be described in Sect. 5.1. Note
that both the rows and columns are aligned in raster order
of the 2-D lattice (see Eq. (1) and Fig. 2), because the rows
of C in Eq. (22) are aligned in raster order. In both figures,
white color represents higher value and black color repre-
sents lower value. It can be observed from Fig. 5 (a) that
only diagonal elements have higher value. On the other
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hand, from Fig. 5 (b), it can be observed that not only di-
agonal elements but also non-diagonal, especially, band-
diagonal elements have higher value. This is the one of the
evidences that SLT2D-HMMs can capture the correlation of
adjacent observations, while SL2D-HMMs cannot capture
it.

3.3 Relation to Other Statistical Models

It has been discussed in [24] that there exists the relation-
ship between the trajectory HMMs [20] and the product of
experts (PoE) [25], especially, product of Gaussian experts
(PoG) [26]. PoE combines multiple models by taking their
product in the likelihood and normalizing it to form a new
likelihood function. It can be viewed as an intersection of all
distribution while MoE [27] which combines each models
by summation can be viewed as a union of all models. PoG
is a particular case of PoE where each expert is an unnormal-
ized Gaussian, and Gaussian Mixture model (GMM) [28] is
a particular case of MoE where each expert is a normal-
ized Gaussian. According to [24], PoE (PoG) is an efficient
way to represent high-dimensional data which simultane-
ously satisfies many different low-dimensional constraints.
In Eq. (41), N(WCt | μSt

,ΣSt ) is an unnormalized Gaussian
as a probability distribution of Ct . The output probability
of SLT2D-HMMs can be viewed as PoG where the rela-
tionship between static and dynamic features are modeled
by Gaussian experts. The normalization term ZS in Eq. (41)
can be represented in a closed form as Eq. (35), without any
approximation. Therefore, the output probability P(C |S,Λ)
can be evaluated strictly and this helps the great simplifica-
tion of model training, compered to the general case of PoE.
This is an advantageous property of SLT2D-HMMs.

SLT2D-HMMs can also be viewed as hidden Gaus-
sian Markov random fields [29] from the interesting discus-
sion of the relationship between 1-D trajectory HMMs and
Markov random fields in [24]. The graphical model rep-
resentation of SLT2D-HMMs can be specified by the win-
dow matrix W, where clique potential functions are given by
Gaussian distributions and edges depend on cliques that are
specified by the window coefficients. By changing the win-
dow matrix according to the situation, the graphical model
structure of SLT2D-HMMs can be changed. This is also an
advantageous property of SLT2D-HMMs.

4. Training Algorithm

The parameters of the proposed model can be estimated via
the expectation maximization (EM) algorithm [30] which
is an iterative procedure for approximating the Maximum
Likelihood (ML) estimate. This algorithm maximizes the
expectation of the complete data log-likelihood so called Q-
function:

Q(Λ,Λ′) =
∑

S

P(S | C,Λ) log P(C,S | Λ′). (44)

By maximizing the Q-function with respect to model pa-
rameters Λ, the re-estimation formula in the M-step can be

easily derived. However, the evaluation of the posterior dis-
tribution P(S | C,Λ) over all possible state sequences S is
computationally intractable due to its combination of hid-
den variables. In this paper, the single-path Viterbi approx-
imation was applied to make this problem computationally
tractable. As a result, the problem is broken down into the
following two maximization problems:

Smax = arg max
S

P(C,S | Λ), (45)

Λ̂ = arg max
Λ

P(C,Smax | Λ). (46)

However, it is still difficult to solve the problem of Eq. (45)
because the covariance matrix PS is generally full.

4.1 Estimation of Sub-Optimum State Sequence

In this section, the Viterbi approximation [31] to solve the
maximization problem of Eq. (45) is described. This ap-
proximation is based on the following relationship

Smax = arg max
S

P(C,S | Λ) (47)

= arg max
S

P(C | S,Λ)P(S | Λ) (48)

= arg max
S

1
ZS
N(O | μS,ΣS)P(S | Λ) (49)

≈ arg max
S
N(O | μS,ΣS)P(S | Λ), (50)

where the Viterbi approximation is applied in Eq. (50). Let
Ssub =

(
S(1)

sub,S
(2)
sub

)
be a sub-optimum state sequence for

SLT2D-HMMs. In order to obtain Ssub from all possi-
ble state sequence, following approximation strategy was
adopted in this paper:

Step 1 Initialize Ssub with the Viterbi state sequence Svit =(
S(1)
vit ,S

(2)
vit

)
of SL2D-HMMs.

Step 2 Add small variations on each boundary of S(1)
sub and

S(2)
sub and collect resulting state sequences as candidates.

In this paper, the small variations were shift of ±1 of
bounding position.

Step 3 Select the best state sequence from the candidates in
the sense that the likelihood function is most increased.

Step 4 Replace the current state sequence with the best
state sequence.

Step 5 If the log-likelihood function has not converged, re-
turn to Step 2. Otherwise, stop the iteration.

4.2 Estimation of Model Parameters

In this section, the maximization problem of Eq. (46) is de-
scribed. The problem is equivalent to maximizing the log-
likelihood

log P(C | S,Λ)

= −1
2

{
MT (1)T (2) log(2π) − log |RS| + C�RSC

+r�S PSrS − 2r�S C
}

(51)
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with respect to a supervector m and supermatrix φ which
are defined by concatenating the mean vectors and precision
matrices of all independent states, that is

m =
[
μ�(1,1) . . . μ

�
k . . . μ�

(K(1),K(2))

]�
, (52)

φ =
[
Σ−1

(1,1) . . . Σ
−1
k . . . Σ−1

(K(1),K(2))

]�
. (53)

We define a 3MT (1)T (2) × MK(1)K(2) matrix FS whose ele-
ments are 0 or 1 determined according to the state sequence
S so that the following relationships are satisfied:

μS = FSm, Σ−1
S = diag[FSφ]. (54)

By using FS, Eqs. (36) and (37) can be written as

RS = W� · diag[FSφ] ·W = P−1
S , (55)

rS = W� · diag[FSφ] · FSm. (56)

According to (55) and (56), Eq. (51) can be re-written as

log P(C | S,Λ)

= −1
2

{
MT (1)T (2) log(2π) − log

∣∣∣W�diag[FSφ]W
∣∣∣

+C�W�diag[FSφ]WC

+m�F�S (diag[FSφ])W�PSW(diag[FSφ])FSm

−2m�F�S (diag[FSφ])W�C
}
. (57)

Therefore, a partial derivative of Eq. (51) with respect to m
and φ can be written as

∂ log P(C | S,Λ)
∂m

= F�SΣ
−1
S W
(
C − CS

)
, (58)

∂ log P(C | S,Λ)
∂φ

=
1
2

F�S diag−1
[
WGSW�

+2μS(C − CS)�W�] , (59)

where GS = PS + CSC
�
S − CC� and diag−1 denotes the ex-

traction of only diagonal elements from a square matrix. By
setting Eq. (58) equals to 03MK(1)K(2) and solving the resultant
linear equation, the following re-estimation formula for the
supervector m maximizing Eq. (51) can be obtained:

m̂ = A−1b, (60)

where A and b are defined as

A = G�SΣ
−1
S W PSW�Σ−1

S GS, (61)

b = G�SΣ
−1
S WC. (62)

For maximizing Eq. (51) with respect to φ, a gradient
method can be applied using its first derivative of Eq. (59).

4.3 Training Procedure

The training procedure of SLT2D-HMMs can be summa-
rized as follows:

Step 1 Initialize the model parameters and the state se-
quences of SLT2D-HMMs using the parameters and

Viterbi state sequences of SL2D-HMMs, respectively.
Step 2 Update m and φ.
Step 3 Search sub-optimal state sequences in accordance

with the procedure as summarized in Sect. 4.1.
Step 4 If the Viterbi-approximated Q-function has not con-

verged, return to Step 2. Otherwise, stop the iteration.

5. Experiments

5.1 Experimental Conditions

To demonstrate the effectiveness of the proposed model,
experiments on modeling faces from the XM2VTS
database [21] were conducted. The face images were ex-
tracted from the original images (720×576 pixels and trans-
formed into gray-scale) and then sub-sampled to 16×16 and
32×32 pixels. The images of 16×16 pixels were used for im-
age recognition experiments and the images of 32 × 32 pix-
els were used for state alignment experiments. Two datasets
were prepared with this process:

• “dataset 1”: size-location normalized data (the original
size and location in the database are used).
• “dataset 2”: data with size and location variations.

The sizes and locations were randomly generated by
Gaussian distributions almost within the location shift
of 40× 20 pixels from the center and the range of sizes
500 × 500 ∼ 600 × 600 with a fixed aspect ratio.

Figure 6 shows the examples of two datasets where the size
of face image is 16 × 16. The output distribution for each
state was single-Gaussian distribution. The transition proba-
bilities for each state sequence were assumed to be a left-to-
right and top-to-bottom no skip topology. The observation
vectors O were constructed by appending (i) the 1st order
horizontal and vertical dynamic feature vectors and (ii) the
1st order horizontal, vertical and diagonal dynamic feature
vectors to the static features C. In the case of (ii), an obser-
vation vector Ot can be constructed as

Ot =
[
Δ(S )C�t ,Δ

(H)C�t ,Δ
(V)C�t ,Δ

(D1)C�t ,Δ
(D2)C�t

]�
,

(63)

where Δ(D1)Ct and Δ(D2)Ct are diagonal dynamic feature
vectors defined as

Δ(D1)Ct =

L
(D1)
+∑

τ=−L
(D1)
−

w(D1)(τ)C(t(1)−τ,t(2)+τ), (64)

Δ(D2)Ct =

L
(D2)
+∑

τ=−L
(D2)
−

w(D2)(τ)C(t(1)+τ,t(2)+τ). (65)

For each case, the corresponding window matrix W was de-
signed to satisfy Eq. (23). In the case of (i),

L(H)
+ = L(H)

− = L(V)
+ = L(V)

− = 1.0, (66)

w(H)(−1) = w(V)(−1) = −0.5, (67)
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(a) No variation (b) Size and location variations

Fig. 6 Examples of training data; with no variation (a) and with variations of size and location (b).
The size of face image is 16 × 16.

w(H)(0) = w(V)(0) = 0.0, (68)

w(H)(1) = w(V)(1) = 0.5. (69)

Additionally, in the case of (ii),

L(D1)
+ = L(D1)

− = L(D2)
+ = L(D2)

− = 1.0, (70)

w(D1)(−1) = w(D2)(−1) = −0.5, (71)

w(D1)(0) = w(D2)(0) = 0.0, (72)

w(D1)(1) = w(D2)(1) = 0.5. (73)

Although it was already confirmed that the recognition per-
formance was significantly improved with appropriate fea-
ture vectors such as 2-D discrete cosine transform coeffi-
cients, the pixel intensity values were used as features in this
paper. This is because the objective of this experiment was
not to obtain the best performance of the proposed model
but to demonstrate the property of the proposed model to
normalize size and location variations. For the purpose of
improving the recognition performance, SL2D-HMMs were
extended by integrating with a linear feature extraction such
as probabilistic PCA or factor analyzers [9]. In the paper, it
was confirmed that SL2D-HMMs and their extensions ex-
ceed the eigenface methods and subspace methods in face
recognition experiments. The structure proposed in this pa-
per can be integrated with a linear feature extraction as [9]
for improving recognition performance.

The model parameters of SLT2D-HMMs were esti-
mated in accordance with the training procedure as sum-
marized in Sect. 4. To make the concatenated covariance
matrix φ be positive, log (φ) was used in optimizing φ,
where log(·) denotes elementwise logarithm operator. The
Rprop method [32], a first order gradient-based optimization
method, was adopted for optimizing log (φ) in this paper.

5.2 Face Recognition Experiments

Face recognition experiments on the XM2VTS database
were conducted. We prepared eight images (two images ×
four sessions) of 100 subjects; six images (three sessions)
were used for training and two images (remaining one ses-
sion) for testing. Based on 4-fold cross validation method
by alternating the sessions for training and testing, all the
recognition rates were evaluated. In this experiment, the size
of face images was 16×16 and they were modeled by SL2D-
HMMs and SLT2D-HMMs with 4×4, 6×6, 8×8, 10×10, and
12 × 12 states. Figure 7 shows recognition rates of SL2D-
HMMs and SLT2D-HMMs. Figures 7 (a) and (b) show the
results on “dataset1” and “dataset2,” in which 1st order hor-
izontal and vertical dynamic features were applied, respec-
tively. Figures 7 (c) and (d) show the results on “dataset1”

and “dataset2,” in which not only horizontal and vertical fea-
tures but also diagonal features were applied, respectively.
In these figures, “SL2D” means SL2D-HMMs, and “NoUp-
date” means SLT2D-HMMs with the same model param-
eters as SL2D-HMMs, which were equivalent to the initial
parameters of SLT2D-HMMs. In other words, their parame-
ters were not optimized for SLT2D-HMMs. “ParamUpdate”
means SLT2D-HMMs with the state sequences fixed, while
“FullUpdate” means SLT2D-HMMs with both the model
parameters and the state sequences. In “ParamUpdate” and
“FullUpdate,” the initial model parameters were the same as
“SL2D”.

First, the recognition rates in Fig. 7 (b) were higher than
those in Fig. 7 (a) as a whole. Especially, in Fig. 7 (a), the
recognition rate of 51.5% was obtained at 8 × 8 states of
“ParamUpdate,” while, in Fig. 7 (b), the highest recognition
rate of 54.3% was obtained at the same states of “ParamUp-
date.” Similar tendency could be observed from Fig. 7 (c)
and Fig. 7 (d). This indicates that both SL2D-HMMs and
SLT2D-HMMs could successfully reduce the influence of
the variations due to the ability to normalize the size and
location variations. Moreover, from our further inspection,
it could be observed that the values of the variance param-
eters estimated from dataset 2 were bigger than that from
dataset 1 as a whole. This fact suggests that the moderate
variance parameters were estimated due to the size and lo-
cation variations and over-fitting was slightly mitigated, and
also helps to understand the reason why the recognition rates
on dataset 2 were better than that on dataset 1. It can also
be seen that “NoUpdate” was lower than “SL2D,” though
the same model parameters were used between them. This
is obviously because the parameters were not optimized for
the likelihood function of SLT2D-HMMs. After the model
parameters were optimized, “ParamUpdate” and “FullUp-
date” achieved better results than “SL2D” and “NoUpdate.”
However, when comparing “ParamUpdate” and “FullUp-
date,” significant improvement of the performance could not
be obtained. The reason for this result can be explained as
follows: Since the observations depend on horizontal and
vertical state sequences, it must be taken into account that
the combinations of both state sequences affect the likeli-
hood at the re-estimation stage for state sequences. Never-
theless, the search algorithm for state sequences as summa-
rized in Sect. 4.1 is strongly approximated in the sense that
it finds only one state boundary from all of the candidates of
the horizontal and vertical state boundary at one time. Ide-
ally, for each candidate of state boundary, small variations
should be added to the other boundaries and the likelihood
should be evaluated over all of these combinations. How-
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Fig. 7 Recognition rates of SL2D-HMMs and SLT2D-HMMs. Two figures on the top, (a) and (b)
show the results on “dataset1” and “dataset2,” in which 1st order horizontal and vertical dynamic fea-
tures were applied, respectively. On the other hand, two figures on the bottom, (c) and (d) show the
results on “dataset1” and “dataset2,” in which not only horizontal and vertical features but also diagonal
features were applied, respectively. The size of face image is 16 × 16. All the recognition rates were
evaluated by using 4-fold cross validation method.

ever, much more computational time will be required in this
strategy.

From Figs. 7 (a) and (c), it can be seen that the recog-
nition rates in Fig. 7 (c) were slightly lower than those in
Fig. 7 (a). In particular, the highest recognition rate of
50.0% at 8×8 states of “FullUpdate” in Fig. 7 (c) was lower
than that of 51.6% at the same states of “FullUpdate” in
Fig. 7 (a). This is partly because the model over-fitted to the
training data with size and location variations.

5.3 State Alignment Experiments

To demonstrate the advantageous property of SLT2D-
HMMs for image recognition, an state alignment experi-
ment was conducted on “dataset1” and “dataset2,” where
the size of the face images was 32 × 32 and the number of
HMM-states was 16×16. Figure 8 shows the test image and
its state alignments of SL2D-HMMs and SLT2D-HMMs on
“dataset 1” and “dataset 2,” respectively. The alignments of

SL2D-HMMs are represented by the images that each pixel
value of the input images is replaced with the mean value
of the aligned states. The numerical values below the im-
ages represent the estimated log-likelihoods of the test data
per pixel given the optimized state alignments. When the
visualized alignment is similar to the test data, it means that
the model appropriately normalized the variations of the test
data. The likelihood of the test data can also be regarded
as an objective measure of the similarity; higher likelihood
means more preferable matching was obtained in terms of
the maximum likelihood criterion.

From “SL2D” of Fig. 8 (a), it can be seen that a rectan-
gular state alignment was obtained by using SL2D-HMMs,
because of the constraint that the statistics within a state
do not change dynamically. In comparison, it can be seen
that the mean vector CS of “NoUpd” seemed smoother than
the state alignment of “SL2D”. This indicates that the con-
straint of the SL2D-HMMs of constant statistics was mit-
igated. However, the detailed parts of the test data (e.g.,
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(a) No variation

(b) Size and location variations

Fig. 8 Visualization of state alignment with no variation (a) and with variations of size and loca-
tion (b). “SL2D” means the state alignments of SL2D-HMMs to the test data. “NoUpd” means the
mean vectors of SLT2D-HMMs without parameters optimized. “ParamUpd” means the mean vectors of
SLT2D-HMMs with parameters optimized. The size of face image is 32 × 32 and the number of states
is 16 × 16. The L means the estimated log-likelihood per pixel to test data.
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eyes and nose) became blurred in “NoUpd”, since the model
parameters were not optimized for SLT2D-HMMs. After
the model parameters were optimized, it can be observed
that the details became clearer in “ParamUpd” of Fig. 8 (a).
Moreover, it can also be seen from “SL2D” of Fig. 8 (b) that
SL2D-HMMs could deal with size and location variation
by changing the each state duration. From “NoUpd” and
“ParamUpd” of Fig. 8 (b), this property also holds true in
SLT2D-HMMs. These results also explain the improvement
of the recognition performance.

From both Figs. 8 (a) and (b), the log-likelihoods of
“ParamUpd” were higher than “NoUpd” as a whole. This
fact indicates that the model parameters were optimized
properly and kept the generalization ability to the test data.
The one reason why the log-likelihoods of “SL2D” were
lower than that of “NoUpd”and “ParamUpd” on the whole
was that the constant statistics within each state of SL2D-
HMMs. The another reason was that the observation vec-
tors O in SL2D-HMMs were composed of the static and
dynamic features, while the observation vectors in SLT2D-
HMMs were the only static features C. Since the negative
log-likelihood to the test data represents roughly the squared
error between the test data and aligned mean vectors con-
sidering the covariance, the error itself will be increased by
augmenting the dimensionality of the observation. As a re-
sult, this leads to an decrease in the likelihood of SL2D-
HMMs. The fact that the log-likelihoods of “SL2D” in
Figs. 8 (a) and (b) on the right side (horizontal, vertical and
diagonal) were lower than that on the left side (horizontal
and vertical) also follows the same reason.

6. Conclusion

In this paper, a novel statistical model based on 2-D HMMs
for image recognition was proposed. It has been known
that SL2D-HMMs have shortcomings inherited from stan-
dard HMMs, that is, the stationary statistics within each
state and the conditional independent assumption of state
output probabilities. To overcome these shortcomings of
SL2D-HMMs, the proposed model can be derived by refor-
mulating SL2D-HMMs and imposing explicit relationships
between static and dynamic features. As a result, the pro-
posed model can capture the dependencies of adjacent ob-
servations, without increasing the number of model parame-
ters. Experiments on image recognition and state alignment
were conducted on the XM2VTS database. The proposed
model achieved better results than SL2D-HMMs.

For future work, we are planning to append not only 1st
order dynamic features, but also more higher order dynamic
features. Implementing more precise search algorithms such
as the delayed decision Viterbi algorithm [20] will also be
future work.
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