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Mean Polynomial Kernel and Its Application to Vector Sequence
Recognition

Raissa RELATOR†a), Yoshihiro HIROHASHI†∗, Eisuke ITO†, Nonmembers, and Tsuyoshi KATO†b), Member

SUMMARY Classification tasks in computer vision and brain-
computer interface research have presented several applications such as
biometrics and cognitive training. However, like in any other discipline, de-
termining suitable representation of data has been challenging, and recent
approaches have deviated from the familiar form of one vector for each data
sample. This paper considers a kernel between vector sets, the mean poly-
nomial kernel, motivated by recent studies where data are approximated by
linear subspaces, in particular, methods that were formulated on Grassmann
manifolds. This kernel takes a more general approach given that it can also
support input data that can be modeled as a vector sequence, and not neces-
sarily requiring it to be a linear subspace. We discuss how the kernel can be
associated with the Projection kernel, a Grassmann kernel. Experimental
results using face image sequences and physiological signal data show that
the mean polynomial kernel surpasses existing subspace-based methods on
Grassmann manifolds in terms of predictive performance and efficiency.
key words: kernel methods, support vector machines, Grassmann distance
and kernels, face recognition, brain-computer interface, vector sequence,
binary classification

1. Introduction

Among currently trending fields, research efforts particu-
larly related to computer vision and brain-computer inter-
face (BCI) have been aimed at modeling data either as a
low-dimensional subspace or a sequence of vectors. There
have been studies in these areas dedicated to algorithms for
such type of input [1]–[9]. For computer vision, this ap-
proach may be motivated by the presence of abundant ma-
terial derived from videos and sets of image sequences [1]–
[7] such as in Fig. 1 (a). Each video image extracted is rep-
resented by a vector, while the whole vector sequence, con-
catenated as a matrix, approximates the video for a given
time frame. As for BCI adopting a similar approach, this
may be induced by the nature of the data, which is com-
monly time series, such as electroencephalography (EEG)
signals collected while subjects perform motor tasks or dur-
ing induction of visual stimuli [8], [9]. EEG data is gener-
ated by placing several sensors accordingly on the head of
the subject as shown in Fig. 2, and each sensor records neu-
ral activity depicted by the signals. The vector sequence
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illustrated in Fig. 1 (b) corresponds to the signals collected
from all sensors.

Appropriate data representation has been considered as
one of the most important challenges in dealing with classi-
fication tasks. Vector form may be the simplest and most
common representation of samples in existing literatures,
especially when using popular techniques such as support
vector machines (SVM) and kernel methods. However, this
may not be the best representation to encompass significant,
if not all, attributes and information useful for discrimina-
tion. To address this problem, new modes of data represen-
tation are constantly being explored [5], [10]–[24]. Along
with this, various feature extraction techniques and discrimi-
nation methods are also being investigated, and several stud-
ies have proven kernel methods to be a flexible technique
in supporting various data structures, such as graphs [10]–
[15], strings [16]–[19], and even subspaces and sets of vec-
tors [5], [20]–[24].

Kernel-based algorithms [25], [26] have come a long
way since their introduction. Aside from the fact that kernel
functions have provided algorithms a bridge between lin-
earity and nonlinearity, their performance have been proven
comparable to, if not better than, existing algorithms in vari-
ous areas where they have been applied. Moreover, applying
the so-called ‘kernel trick’ is very straightforward and new
kernels can be easily derived from old kernels. Compared to
other methods, the dimension of the feature space can also
be treated more lightly since the technique can be reduced
to simply performing inner products between data images
on the space, thus making the algorithm computationally in-
expensive.

In this paper, we focus on data represented as sets of
vectors. Different algorithms have been formulated in such
a way that data are approximated by low-dimensional lin-
ear subspaces [1]–[7], [22]. However, as previously pointed
out [2], the task of appropriately handling data has become
an issue, such as inconsistency in strategy when feature ex-
traction is done in a Euclidean space while non-Euclidean
metrics are used. For this purpose, they proposed a uni-
fied framework for subspace-based approaches by formu-
lating the problem on the Grassmann manifold, a space of
linear subspaces with a fixed dimension. On the other hand,
these methods involve dimension reduction, and even with
the use of the usual dimension reduction techniques such as
Principal Component Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA), there is always a possibility of infor-
mation loss. This makes the selection of the subspace di-
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(a) Video sequence data.

(b) EEG signals.

Fig. 1 Examples of data modeled as vector sequences. (a) For video
sequences, each image frame extracted is represented as a vector of pixel
intensity values. The vector sequence is usually concatenated to represent
the vector set input. (b) For BCI, EEG signals are recorded over a certain
time interval using several channels or sensors. Each vector in the sequence
corresponds to a channel used in the procedure, and vector entry represents
an instantaneous signal intensity.

Fig. 2 Sample position map of sensors for EEG.

mension a crucial step. Furthermore, methods such as PCA
and LDA usually employ eigendecomposition, and hence,
may be very time consuming especially for high dimen-
sional data.

With the aforementioned issues in mind, the goal of
this paper is to examine a kernel function, which we refer
to as the mean polynomial kernel, that can retain data infor-
mation while being computationally inexpensive. Also, as a
more general approach than kernels for subspaces, we treat
data as a common collection of vectors, instead of a linear
subspace. The kernel is invariant of the permutation order of
the vectors in the set. In addition, we present an interesting
relationship between this kernel and the Projection kernel,
which is a known Grassmann kernel. We give emphasis to
face recognition and BCI applications posed as binary clas-
sification problems, which are of particular interest due to
their practicality in various areas, biometrics and cognitive
training and improvement, among others. Experimental re-

sults using real data modeled as vector sequences show that,
aside from being computationally efficient, the performance
of the mean polynomial kernel is comparable to methods
employing kernels in the Grassmann manifold and subspace
methods using Grassmann distances.

2. Preliminaries

Consider a set of data x1, . . . , x� ∈ Rd, where � is the number
of data points. Let us denote the hth entry in the ith data
point xi by xh,i. A sample statistic,

1
�

�∑
i=1

d∏
h=1

xph

h,i,

is said to be the qth order moment if the d-dimensional vec-
tor p ∈ (N∪{0})d satisfies p1 + · · ·+ pd = q. The uncentered
covariance matrix defined by

1
�

�∑
i=1

xixT
i

contains all the second order moments. Indeed, the (h, k)th
entry in the uncentered covariance matrix is the the second
order moment with p = eh + ek, where eh is a unit vector
whose hth entry is one and the rest of the entries are zero.
Let x̄ = [x̄1, . . . , x̄d]T be the mean vector of the data points.
With the d-dimensional vector p satisfying p1+ · · ·+ pd = q,
the qth order central moment is defined as

1
�

�∑
i=1

d∏
h=1

(xh,i − x̄h)ph .

Every second order central moment is included in the cen-
tral covariance matrix

1
�

�∑
i=1

(xi − x̄)(xi − x̄)T,

which is usually referred to simply as the covariance matrix.
For succeeding sections, we refer to a matrix U as

orthonormal if UTU = I, and define the vectorization
of an m × n matrix A as the column vector vec(A) =
[a11, a12, . . . , a1n, . . . , am1, am2, . . . , amn]T.

3. Grassmann Kernels and Related Methods

We give a concise discussion of the Grassmann kernels [2],
[22], [27], their analogy with the mean polynomial kernel,
and some related methods.

A Grassmann manifold, or Grassmannian, is defined as
a set of linear subspaces with a fixed number of dimensions,
say, m. Several metrics used in literatures have been speci-
fied in this manifold, mostly incorporating principal angles
or angles between subspaces in their characterization [1],
[2], [4]–[7], [22], [27]. Moreover, kernels over these mani-
folds have also been introduced. In particular, we are inter-
ested in the following kernels:
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(a) Flow for Grassmann kernels. (b) Flow for Mean Polynomial kernel.

Fig. 3 Flow of methodology for computing values for Grassmann kernels and the mean polynomial
kernel. Grassmann kernels are defined on a Grassmann manifold which is a set of linear subspaces.
When employing these kernels, each vector sequence, represented by a set of data points on space, is
approximated by a principal subspace obtained via PCA. However, this poses a threat of some degree
of information loss, and is more likely to consume more time due to eigendecomposition. The mean
polynomial kernel, on the other hand, can be directly applied to compute the kernel value between the
sets of data points. It can avoid information loss while being more time efficient.

Definition 1. Let Ux and Uy be orthonormal matrices whose
columns are bases of linear subspaces. The Projection ker-
nel is defined as

kPROJ(Ux,Uy) =
∥∥∥UT

x Uy

∥∥∥2
F ,

where ‖·‖F denotes the Frobenius norm, and the Binet-
Cauchy kernel is given by

kBC(Ux,Uy) = (det UT
x Uy)2 = det UT

x UyUT
y Ux.

Many existing problems can be realized on nonlin-
ear manifolds such as the Grassmannian. This being said,
various methods in the Grassmannian setting have been
proposed. One such technique is the use of Grassmann
kernels in conjunction with support vector machines (GK-
SVM) [5]. This approach entails the computation of kernel
matrices, which then proceed as the SVM input. Analo-
gously, the mean polynomial kernel given in Sect. 4 is ap-
plied in this manner when SVM is the classifier. Figure 3
gives a general illustration of the flow of computation of
the Grassmann kernels and the mean polynomial kernel, and
also highlights the difference between the two kernels.

Another comparable method is the Grassmann Dis-
tance Mutual Subspace Method (GD-MSM) [5]. This tech-
nique integrates the Grassmann metrics in the Mutual Sub-
space Method (MSM) [7]. Furthermore, the task of sub-
space classification can be approached in two ways. The
first one, which is referred to as the subject-wise dictionary,
is done by assuming that one subject or object corresponds
to one principal subspace. During the training stage, the to-
tal of principal subspaces calculated is the same as the num-
ber of subjects. These serve as the bases to which the unla-
beled principal subspaces of test subjects are compared to,
and the subspace with the minimal Grassmann distance from
the unlabeled subspace is determined. The second approach
is done by assuming one principal subspace per class. The
principal subspaces, which in this case is referred to as the
class-wise dictionary, are derived from each class among the
training data. This being said, we have only two principal
subspaces in the case of binary classification, regardless of

the number of subjects. In the testing stage, unlabeled prin-
cipal subspaces are classified according to which subspace
they are closer to in terms of metric.

The score function can be considered for the two afore-
mentioned mutual subspace methods. The SVM score can
serve as a confidence level. Namely, a higher score may
provide higher certainty of assigning the data to the positive
class. For the class-wise dictionary, the difference between
the distance to the subspace of the negative class, d−, and the
distance to the subspace of the positive class, d+, represents
how confidently unknown labels are classified as positive.
Hence, we define the score function as d− − d+. For the
subject-wise dictionary, we define the score function by the
difference between the minimal distance to negative class
subspaces and the minimal distance to the positive class sub-
spaces.

4. Mean Polynomial Kernel

In this section, we discuss the details of the mean polyno-
mial kernel, which can be directly applied to data in the form
of vector sets.

Consider two sets of vectors X = {xi}�i=1 and Y =
{y j}�′1 , where xi, y j ∈ Rd. To define a kernel for such types
of data, we introduce a notation of a set of vector sequences
as S = {{zi}ni=1| n ∈ N and ∀i ∈ Nn, zi ∈ Rd}, where N is the
set of natural numbers, and Nn = {i ∈ N | i ≤ n}, such that S
is the input domain for the kernel defined as follows.

Definition 2. Let kq : S × S→ R such that

kq(X,Y) =
1
��′

�∑
i=1

�′∑
j=1

〈
xi, y j

〉q
,

where X,Y ∈ S and q ∈ N. We shall refer to kq as the qth
order mean polynomial kernel.

It can be shown that this kernel is a special case of
the multi-instance kernels [28] when instances involve lin-
ear kernels or polynomial kernels with constant c = 0. With
regards to its characterization, we can easily confirm that
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for the case q = 2, the covariance matrix is directly used
as a feature vector. For instance, consider two matrices,
X = [x1, x2, · · · , x�] and Y = [y1, y2, · · · , y�′ ], for the set
of vectors X and Y , respectively. Then their respective un-

centered covariance matrices are given by Σx =
1
�

∑�
i=1 xixT

i

and Σy =
1
�′

∑�′
j=1 y jyT

j . By defining a feature map φ(X) =

vec(Σx), we have

〈φ(X),φ(Y)〉 = 〈vec(Σx), vec(Σy)〉 = tr
(
ΣxΣy

)
=

1
��′

�∑
i=1

�′∑
j=1

tr
(
xixT

i y jy j
T) = 1

��′

�∑
i=1

�′∑
j=1

tr
(
y j

TxixT
i y j

)

=
1
��′

�∑
i=1

�′∑
j=1

〈
xi, y j

〉2
. (1)

Hence, the Euclidean inner product of vectorized covari-
ance matrices is precisely the second order mean polyno-
mial. Furthermore, all information contained within the un-
centered matrices are preserved and can be exploited.

If we rewrite the definition of the kernel as

k̄q(X,Y) =
1
��′

�∑
i=1

�′∑
j=1

〈
xi − x̄, y j − ȳ

〉q
, (2)

where x̄ and ȳ are the mean vectors of X and Y, respectively,
then the kernel is the inner product among centered covari-
ance matrices when q = 2.

More generally, we can say that the qth order mean
polynomial kernel contains all qth order moments as feature
vectors. Indeed, if we let Pq = {p ∈ (N ∪ {0})d |pT1 = q} and
xh,i be the hth entry in xi, enumerating all qth order moments
allows us to define

φp(X) =
1
�

√
q!

p1! · · · pd!

�∑
i=1

d∏
h=1

xph

h,i.

By using the feature map given by φ(X) = [φp(X)]p∈Pq , we
can derive the following equality

kq(X,Y) = 〈φ(X),φ(Y)〉, (3)

as given in Appendix A. Existence of a feature vector en-
sures the positive semidefiniteness of the mean polynomial
kernel. Similarly for the centered version of the mean poly-
nomial kernel, the features can be explicitly expressed as a
set of all the qth order central moments (See Appendix C).

5. Mean Polynomial Kernel and Projection Kernel Re-
lationship

We aim to establish a relationship between the mean poly-
nomial kernel and the Projection kernel. In principle, Grass-
mann kernels are considered as kernel functions for princi-
pal subspaces. Eigendecomposition of two symmetric ma-
trices Σx and Σy is essential for the computation of the Pro-
jection kernel value between two vector sequences X and

Y . Moreover, it can be shown that the bases of the principal
subspaces are exactly the m major eigenvectors. To obtain
the value of the Projection kernel between two subspaces X
andY , the m eigenvectors are initially stored in the matrices
Ux and Uy. Let us define Σ′x = UxUT

x and Σ′y = UyUT
y , the

uncentered covariance matrices where the m major eigenval-
ues are replaced with ones and the rest of the eigenvalues are
disregarded. Then the two kernels are related by the equality

kPROJ(Ux,Uy) =
〈
vec(Σ′x), vec(Σ′y)

〉
, (4)

with the derivation given in Appendix B.
An assessment of both Eqs. (1) and (4) suggests that

while the second order mean polynomial kernel preserves
every bit of information in the uncentered covariance matri-
ces, the Projection kernel possesses the possibility to disre-
gard and lose information of each dimension of the principal
subspaces, and all the information on their orthogonal com-
plements. A similar case can be said for the centered version
of the mean polynomial kernel (2) versus the Projection ker-
nel, by using the centered covariance matrices. Although the
first dilemma of the Projection kernel has been addressed by
Hamm and Lee [22] by extending the kernel, resulting to the
scaling of information of each dimension in linear subspaces
and their preservation, data on the orthogonal complement
are still overlooked. As with all dimension reduction tech-
niques, there is always a risk of losing information when
employing the Grassmann kernel. Though the hope is to re-
tain the dimensions that are most discriminant, dimension
number selection must be done with care and has become a
critical stage in the implementation process. Furthermore,
implementation via eigenvalue decomposition adds to the
computational cost of kPROJ, and also kBC, giving the mean
polynomial kernel an efficiency advantage, especially when
presented with very high dimensional data.

6. Experiments and Discussion

We evaluate the performance of the mean polynomial ker-
nel in binary classification tasks using data with underly-
ing subspace structures. Techniques using the Grassmann
kernels and Grassmann Distance Mutual Subspace method
(GD-MSM) were also performed for comparison.

6.1 Face Membership Authentication

An important application of face recognition is face mem-
bership verification. The goal of this operation is to deter-
mine whether a subject is a ‘member’ or not. Moreover, we
can also extend this to determining whether the given query
is the authorized user or owner, which are common situa-
tions in accessing secured buildings or offices, logging on
to computers, unlocking mobile phones, availing of online
services, and other access control systems. The task can eas-
ily be modeled as a binary classification problem. For this
purpose, we attempt to classify image sequences extracted
from videos. The data was from the MOBIO database [29],
and contains video data taken from 152 persons, each having
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Fig. 4 Average performance of all methods for the face membership au-
thentication task. The bar plot represents the average accuracy, average
AUC, and average F-measure values computed.

12 video sessions divided into two: 6 sessions for Phase 1,
and 6 sessions for Phase 2. Only data from 25 subjects and
the 6 sessions from Phase 1 were used for the face mem-
bership verification task. Each session contains 21 image
sequences of varying length. For the experiments, we set
the sequence length to 25 images, where each image is a
cropped face image of the subject, obtained using a face de-
tection program, transformed to gray scale and resized to
25 × 25 pixels. Among the 25 subjects, 10 were randomly
selected and labeled as ‘member’ (+1), and the remaining
15 as ‘nonmember’ (−1).

Two methods were employed: one using kernels with
SVM and the other one using GD-MSM. For the first
method, three types of kernel functions were utilized: the
Grassmann kernels, Projection (PROJ) and Binet-Cauchy
(BC) kernels, and the mean polynomial kernel (MP). For the
GD-MSM, eight metrics were used for comparison: aver-
age distance, Binet-Cauchy metric, Geodesic distance, max-
imum correlation, minimum correlation, Frobenius norm
based Procrustes distance, 2-norm based Procrustes dis-
tance, and Projection metric, as defined in [5]. For the SVM
setting, 6-fold cross-validation was employed to evaluate the
performance of the kernels such that one session per sub-
ject is used as test data while the remaining five sessions are
used for training. On the other hand, class-wise (GDMSM-
CD) and subject-wise (GDMSM-SD) dictionaries were im-
plemented for the GD-MSM, as described in Sect. 3.

As for the parameters of the kernel methods, the value
of q for the MP kernel was varied from 1 to 5, while the di-
mension of the subspace, m, was varied from 1 to 10. The
regularization parameter C for SVM was varied over the set
{100, 101, 102, 103, 104, 105}. To optimize the tuning of the
said parameters, we implemented a 3-fold cross-validation
grid search of the pairs (q,C) and (m,C) on the training data,
for each cross-validation set. Values of the pairs were cho-
sen such that the highest accuracy value is obtained. Varia-
tion and selection of the value of m for GDMSM was also
done in a similar manner. The area under the ROC curve
(AUC), accuracy, and F-measure values were considered for
evaluating the performance of each method.

Figure 4 illustrates the average accuracy, AUC, and F-

Fig. 5 Cumulative ratio distribution of the eigenvalues of the face video
sequences as dimension m is varied.

measure values of each method for all 6 cross-validation
sets. From the graph, it is evident that the MP kernel out-
performs the other methods on all three benchmarks (with
accuracy, AUC and F-measure values of 81.5%, 0.866,
and 0.783, respectively). Meanwhile, PROJ, BC, and
GDMSM-CD obtained the second best accuracy (79.9%),
AUC (0.845), and F-measure (0.776), respectively. The val-
ues presented here for the two GDMSM’s are the highest
obtained among all eight metrics used, which, interestingly,
is the maximum correlation. We can therefore conclude that
the method employing the MP kernel plus SVM is better
than the GD-MSM regardless of the selected metric.

The cumulative ratio distributions of the eigenvalues of
the image sequences as the dimension parameter m of the
Grassmann methods is varied are presented as box plots in
Fig. 5. As evident in the figure, even when dimension m = 1,
median of the cumulative ratio is acceptably high (0.827).
This gradually increases to 0.974 when m = 10, which is the
maximum dimension we considered for the cross-validation
in setting the parameter m. Values of the cumulative sum,
in general, are relatively high, which may give decent repre-
sentation of data using only the leading components. How-
ever, even with such decent representation, we experience a
significant difference in the variance of the cumulative ratio
as the dimension increases, and a significant difference in
the performance of the MP kernel and Grassmann kernels.
One factor affecting the performance of the Projection ker-
nel may be due to the several outliers that can be observed
below the minimum of the first quartile of each box plot
which are quite low in value (at least 0.420), having a large
discrepancy from the maximum (at most 0.557 difference).

6.2 EEG Signal Task Classification

We also compared the performances of MP, PROJ, BC,
GDMSM-CD and GDMSM-SD on the BCI competition III-
IVa dataset [8]. The data contains recorded measurements of
five subjects (aa, al, av, aw, and ay) during motor imagery
tasks (right hand and right foot movement) using 118 chan-
nels of electrodes. The EEG signals were recorded for 3.5
seconds with 1000 Hz sampling rate for each trial. However,
we used the available downsampled version (at 100 Hz) of
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Fig. 6 Average performance of all methods for the EEG signal task clas-
sification. The bar plot represents the average accuracy, average AUC, and
average F-measure values computed.

Fig. 7 Cumulative ratio distribution of the eigenvalues of the EEG signal
sequences as dimension m is varied.

the data, and utilized the 0.5 to 3.5-second interval from the
visual cues for each trial, resulting to a time range of 3.0 sec
per trial. For data preprocessing, frequency band selection
was done, and data was filtered between frequencies of 10 to
35 Hz. For each subject, 140 trials were conducted for each
task, for a total of 280 trials per subject. Settings similar
to the previous application were applied to the experiments
using BCI data, including the approach on parameter selec-
tion.

The average values of the performance evaluators for
all subjects over the 5 cross-validation sets are given in
Fig. 6. As expected, the MP kernel bests the other ap-
proaches, with accuracy, AUC, and F-measure values of
84.0%, 0.896, and 0.876, respectively. This is followed by
the PROJ method, with values 82.2%, 0.881, and 0.863, re-
spectively. The GD-MSM results are also of the best per-
forming metric, which in this case is also the maximum cor-
relation. Hence, in a parallel logic to the previous experi-
ments, we also conclude that the proposed method surpasses
the GD-MSM approach for this task, irrespective of the met-
ric used.

Figure 7 shows the box plots of the cumulative ratio
distribution of the EEG signal sequences for each dimension
m = 1 to 10. In contrast to the ratios presented in Fig. 5, the
values for the EEG data are very low. At minimum, the me-
dian is 0.127 (m = 1), and maximum is 0.544 (m = 10). The

Table 1 Time complexity comparison of the kernels.

Training Stage Testing Stage
(For kernel (For prediction

matrix computation) of a single sequence)
MP O(n2

tra�
2d log2 q) O(nsv�

2d log2 q)

PROJ

For covariance matrix computation
O(d2�ntra) O(d2�)

Eigendecomposition
O(k3ntra) O(k3)

Kernel value computation
O(dm2n2

tra) O(d2mnsv)

BC

For covariance matrix computation
O(d2�ntra) O(d2�)

Eigendecomposition
O(k3ntra) O(k3)

Kernel value computation
O(m3n2

tra) O(d2mnsv)

cumulative ratios also vary significantly as the dimension
changes. Outliers can be observed above the fourth quar-
tile, but not as much as in the face video data. Moreover,
the difference between the maximum (outlier) and the mini-
mum in each respective box plot is at least 0.157 and at most
0.263, which are significantly lower than those in the previ-
ous dataset. This may explain why the Projection kernel and
most of the other Grassmann-based methods perform better
in terms of AUC and F-measure values on this data set.

6.3 Efficiency Comparison

We investigate the time complexity of the MP kernel, and
compare it with the Grassmann kernels. Suppose we are
given ntra number of training samples, and nsv number of
support vectors. For simplicity, we will assume that every
(feature) vector sequence has length �, and that each vector
has length d. Moreover, we denote the dimension of the
principal subspace as m for the Grassmann kernels, and let
k = min(�, d). In Table 1, we give the computation time
for each step in the calculation of the kernels. From this
table, we conclude that the MP kernel is not only better in
terms of performance, but it is also more efficient in terms
of computational cost compared to the Grassmann kernels.
This was confirmed empirically, as the average CPU time
recorded for the MP kernel, for any value of q, is around 383
seconds for the MOBIO data, and 58 sec for the EEG data.
On the other hand, computation of both Grassmann kernel
matrices is around 1.21×104 sec when m = 5, and 1.24×104

sec for PROJ, and 1.25×104 sec for BC when m = 10, using
the MOBIO data. On the EEG data, CPU time of PROJ is
about 1.20 × 103 for any m, while the BC takes 1.22 × 103

and 1.23 × 103 when m = 5 and m = 10, respectively. It is
also worth mentioning that should the number of features d
increase, the computational time for the Grassmann kernels
will drastically increase, whereas the increase with the MP
kernel is only linear.

6.4 Discussion

We conclude this section by considering an extension of
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the mean polynomial kernel. There are many possible ex-
tensions, one of which is by replacing the sample mean〈
xi, y j

〉q with the expected value with respect to a proba-
bilistic distribution: k′q(X,Y) = E

( 〈x, y〉q )
. From this, the

mean polynomial kernel can be derived as a special case
when px(x) = 1

�

∑�
i=1 δ

(
x− xi

)
and py(y) = 1

�′
∑�′

i=1 δ
(
y− yi

)
,

where δ(·) is the Dirac delta function.
Another choice of a probabilistic distribution can be

Gaussian mixture. Suppose we are given two Gaussian mix-
tures

px(x) =
�∑

i=1

πx,iN(
x;μx,i,Σx,i

)
and

py(y) =
�′∑

i=1

πy,iN(
y;μy,i,Σy,i

)
,

where � and �′ are the number of Gaussian components for
the two probabilistic distributions px and py, respectively,
πz,i is the mixing coefficient satisfying

∑n
i=1 πz,i = 1, and μz,i

and Σz,i are the mean vector and covariance matrix of the ith
Gaussian component, respectively. The second order mean
polynomial kernel can be readily computed as

k2(px, py) =
�∑

i=1

�′∑
j=1

πx,iπx, j

((
μT

x,iμy, j
)2
+

tr
(
Σx,iΣy,i

)
+ μT

x,iΣy, jμx,i +

μT
y, jΣx,iμy, j

)
.

This example includes the original definition of the mean
polynomial kernel in Definition 2, which can be shown by
letting

πx,i = 1/�, μx,i = xi, Σx,i = σ
2
x,iI,

πy, j = 1/�′, μy, j = y j, Σy, j = σ
2
y, jI,

for all i ∈ N� and j ∈ N�′ , and taking the limit as σ2 → 0.
When one wishes to weight each frame in image sequences,
the weights can be set to πx,i or πy, j. Positive σ2

x,i or positive
σ2

y, j can be used to represent uncertainties in observations,
Similar to the original mean polynomial kernel, we can

explicitly represent features of the extended mean polyno-
mial kernel, as given in Appendix C.

7. Conclusion

We have examined the mean polynomial kernel as a ker-
nel for binary classification of data modeled as vector sets
or sequences. Analogy and connection to related methods,
Grassmann Projection kernel in particular, have also been
drawn. The effectiveness of the MP kernel was empirically
supported using data of face image sequences, and motor
imagery EEG recordings. Furthermore, we present a com-
parison of computational costs between methods, and some

interesting extensions of the MP kernel by considering the
probabilistic distribution of the data. In brief, the mean poly-
nomial kernel excels known methods from literature, both
in performance and efficiency. In addition to the performed
experiments, application to data vector sets in a multi clas-
sification problem setting may prove to be an interesting di-
rection.
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Appendix A: Derivation of Eq. (3)

Proposition 3. A mapping function of mean polynomial ker-
nel is

φ(X) =

[
1
�

√
q!

p1! · · · pd!

�∑
i=1

d∏
h=1

xph

h,i

]
,

where p ∈ (N ∪ {0})q such that pT1 = q.

Proof: Let xh,i and yh,i be the (h, i)th entries in X and
Y, respectively.

Let d be the number of rows in X and Y,

kq(X,Y) =
1
��′

∑
i, j

〈
xi, y j

〉q

=
1
��′

∑
i, j

( d∑
h=1

xh,iyh, j

)q

.

Using the multinomial theorem, we get

kq(X,Y) =
1
��′

∑
i, j

∑
p

q!
p1! · · · pd!

d∏
h=1

xph

h,iy
ph

h, j

=
∑

p

(
1
�

√
q!

p1! · · · pd!

�∑
i=1

d∏
h=1

xph

h,i

)
×

(
1
�′

√
q!

p1! · · · pd!

�′∑
j=1

d∏
h=1

yph

h, j

)

=
〈
φ(X), φ(Y)

〉
,

where p ∈ (N ∪ {0})q such that pT1 = q.

Appendix B: Derivation of Eq. (4)

Suppose the transformed covariance matrices are given by
Σ′x = UxΛxUT

x = UxUT
x and Σ′y = UyΛyUT

y = UyUT
y , ob-

tained via eigendecomposition of the covariance matrices
Σx and Σy, and setting the major eigenvalues to one and the
minor eigenvalues to zero. Then we can write

kPROJ
(
Ux,Uy

)
=

∥∥∥UT
x Uy

∥∥∥2

F
= tr

(
UT

x UyUT
y Ux

)
= tr

(
UxUT

x UyUT
y
)
= tr

(
Σ′xΣ

′
y
)
=

〈
vec

(
Σ′x

)
, vec

(
Σ′y

)〉
.

This concludes the derivation of Eq. (4).

Appendix C: Explicit Representation of Features

In Sect. 4, we have shown that the features of the mean poly-
nomial kernel can be represented explicitly. Features of the
centered mean polynomial kernel are represented by the qth
central moments:

φ̄p(X) =
1
�

√
q!

p1! · · · pd!

�∑
i=1

d∏
h=1

(
xh,i − x̄h

)ph .

The features that produce the extended mean polyno-
mial kernel are given by

φp
(
px

)
=

√
q!

p1! · · · pd!
E

( d∏
h=1

xph

h,i

)

for all p ∈ (N ∪ {0})d such that pT1 = q, and the features for
the extended centerized mean polynomial kernel are given
by

φ̄p
(
px

)
=

√
q!

p1! · · · pd!
E

( d∏
h=1

(
xh − E(xh

))ph

)
.
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