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Character Recognition∗
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SUMMARY In this paper, we propose a representation method based
on local spatial strokes for scene character recognition. High-level seman-
tic information, namely co-occurrence of several strokes is incorporated
by learning a sparse dictionary, which can further restrain noise brought by
single stroke detectors. The encouraging results outperform state-of-the-art
algorithms.
key words: robust character recognition, local spatial stroke, co-
occurrence, sparse dictionary

1. Introduction

Text information contained in scene images is very help-
ful for image understanding. A robust scene-text-extraction
system could be used in many areas, like image retrieval,
intelligent transportation, robot vision, etc. Text detection
and text recognition are performed sequentially to extract
scene text information. In the text detection stage, regions
containing scene texts are localized from entire images. Af-
terwards, text recognition block performs scene character
recognition based on cropped text blocks. Language models
are often incorporated to generate whole-word recognition
results. We focus on scene text recognition, especially scene
character recognition in this paper.

In general, scene text recognition methods can be di-
vided into two categories: traditional Optical Character
Recognition (OCR) based methods and object recognition
based methods. Relying on the highly developed OCR
techniques, OCR based methods [1], [2] focus on binariz-
ing scene text blocks before feeding binarized texts into
the off-the-shelf OCR engines. However, traditional OCR
techniques are designed for clean scanned documents while
binarization of scene text blocks is very difficult due to
low resolutions, different illumination conditions and com-
plex backgrounds as shown in Fig. 1 (a). Object recognition
based methods [3]–[5] skip the binarization step and regard
each kind of scene character as a special object. These meth-
ods usually extract features from one image patch which is
considered as containing only one character and then feed
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Fig. 1 Our motivation: (a) scene characters are not easy to binarize due
to low resolutions, different illumination conditions and complex back-
grounds; (b) discriminative part of ‘E’ (in red rectangles) appearing in
another location of ‘F’; (c) co-occurrence of several local spatial strokes
which may be discriminative (in red rectangles).

the features into various classifiers to obtain a class label.
Moreover, language models are often incorporated to get
whole-word recognition results. Wang et al. [4] choose ran-
dom ferns as the classifier and use pictorial structures to
model lexicons. Mishra et al. [5] utilize multi-class SVMs to
recognize scene characters and CRF is used to take all detec-
tion results into consideration to form the final words. Re-
cently, object recognition based methods are inspiring more
and more enthusiasm from the computer vision community
for their effectiveness and robustness.

Object bank is firstly proposed in [6] to generate high-
level image representation for scene categorization. It uses
maximal output of base detectors sliding at multi-scales
on one whole image as features for second-layer classi-
fiers. When different strokes are regarded as different ob-
jects, we can build a stroke bank for character recognition.
If a stroke bank is applied to scene character recognition
directly, multi-scales sliding window search means every
stroke detector in the bank should be applied to classify dif-
ferent sizes of windows in global image range. That may
not be necessary as strokes are highly spatially related. Ac-
tually, global search may result in classification confusion.
It is because one part of a character may appear in a differ-
ent location of another character, such as ‘E’ and ‘F’ like
Fig. 1 (b). Besides, the original stroke bank is only able
to model appearance of single strokes. However, character
strokes are highly correlated which means co-occurrence of
several strokes may be more discriminative for classification
as shown in Fig. 1 (c).

In this paper, we proposes to build a stroke bank for
scene character recognition. All character training images
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Fig. 2 Overview of the proposed method.

are labeled manually in order to collect stroke training sam-
ples for stroke detectors. To overcome the two drawbacks of
object bank mentioned above, we mainly make two contri-
butions: (1) the response regions for one stroke detector are
limited to positions of positive training samples, which alle-
viates computation burden and retains discrimination power
at the same time; (2) rather than training second-layer clas-
sifiers directly on stroke detectors’ outputs, a sparse dic-
tionary is further learned to model co-occurrence of sev-
eral strokes. Then reconstruction coefficients are used as
final feature vectors. Experiments on two public datasets
ICDAR2003 and CHARS74K prove the effectiveness of
our method and the results outperform state-of-the-art al-
gorithms.

The paper is organized as follows. In Sect. 2, overview
of the proposed method is given. Section 3 details every
stage of the system. Experiments are given in Sect. 4 and
conclusions are drawn in Sect. 5.

2. Framework

The proposed method consists of four parts: (1) labeling
key points for character training images and choosing dis-
criminative strokes for every character; (2) collecting stroke
training samples and training stroke detectors; (3) learning a
sparse dictionary to model co-occurrence of several strokes;
(4) multi-class classifier training and testing. The overall
framework is given in Fig. 2.

3. Proposed Method

3.1 Key Points Labeling and Discriminative Strokes Se-
lection

To collect training samples for stroke detectors in the next
section, we propose to label key points for every training
images of all character categories. Then once a desired
stroke is selected on one character training image, the same
strokes can be extracted from other training images of the
same character category automatically based on labeled key
points. The procedure is as follows.

Before key points’ labeling, all training images are
scaled to size H∗W using bilinear normalization. Key points
are designed for every kind of scene character as shown in
Fig. 3.

When selecting key points for class ci (i ∈
{1, 2, 3, . . . ,Nc}, Nc is the number of character categories),

Fig. 3 Labeled characters (red points) and selected stroke structures (red
rectangles).

Fig. 4 Collecting positive samples for a stroke detector: (a) recording
key points and extending factors for selected stroke on a training image; (b)
collecting positive strokes from other training images of the same category
based on recorded key points and extending factors. Green rectangles are
for key points bounding and the red rectangle are positive stroke patches.

labeled key points should cover the main structures of char-
acters as shown in Fig. 3. Then based on these densely la-
beled key points, we can select discriminative strokes from
character ci as desired. The numbers of labeled key points
for 0-9, A-Z and a-z are 8, 6, 8, 9, 8, 10, 8, 7, 7, 8, 10, 10,
7, 7, 9, 9, 9, 11, 9, 6, 9, 6, 9, 7, 8, 8, 10, 10, 9, 8, 7, 7, 9, 9,
7, 9, 9, 8, 7, 8, 8, 8, 8, 7, 4, 6, 9, 5, 7, 8, 8, 8, 6, 7, 9, 9, 8, 7,
9, 9, 8 and 9 respectively. For any training images from any
character categories, key points are labeled manually.

For every character ci, we choose Nstroke,ci discrimi-
native strokes, namely selecting Nstroke,ci rectangles on one
training image belonging to ci like Fig. 3. The picked train-
ing image can be a random one, because after strokes’ se-
lection, the same strokes will be extracted from all training
images of ci in the next section. When selecting the Nstroke,ci

rectangles bounding certain strokes, discriminative strokes
that can tell class ci from other classes should be chosen.
For example, if one stroke only belongs to ci, this stroke
should be selected. To help extracting the same strokes
from other training samples of ci, the following informa-
tion needs to be recorded for every selected stroke struc-
ture S trokeci, j as shown in Fig. 4 (a) (i ∈ {1, 2, 3, . . . ,Nc},
j ∈ {1, 2, 3, . . . ,Nstroke,ci }):

(1) key points falling into the selected rectangle R (as-
sume coordinates of left, right, top and bottom boundary are
Rl, Rr, Rt and Rb respectively) denoted by Kci, j;

(2) calculate the minimal rectangle r bounding the
above key points (assume coordinates of left, right, top and
bottom boundary are rl, rr, rt and rb respectively; then width
is rwidth = rr − rl + 1 and height is rheight = rb − rt + 1.);

(3) compute and record extending factors of left, right,
top and bottom as: E fle f t = (rl − Rl + 1)/rwidth, E fright =
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(Rr− rr+1)/rwidth, E ftop = (rt−Rt+1)/rheight and E fbottom =

(Rb − rb + 1)/rheight.

3.2 Stroke Samples Collection and Stroke Detectors
Training

Based on the labeled key points and reserved information of
selected strokes, stroke samples are collected. Then stroke
detectors are trained using these extracted samples.

When collecting a positive training sample for detector
S trokeci, j on a training image from character ci, we firstly
locate the minimal rectangles r′ (coordinates of left, right,
top and bottom boundaries are r′l , r′r, r′t and r′b; then width is
r′width = r′r−r′l +1 and height is r′height = r′b−r′t +1) containing
key points Kci, j and then calculate coordinates of the positive
stroke sample as follows: R′l = r′l + 1 − E fle f t ∗ r′width, R′r =
r′r − 1 + E fright ∗ r′width, R′t = r′t + 1 − E ftop ∗ r′height and
R′b = r′b − 1 + E fbottom ∗ r′height.

When this positive stroke sample is extracted as in
Fig. 4 (b), Nneg/pos negative patches are extracted from ran-
dom training images of random remaining character cate-
gories with the same patch coordinates (R′l ,R

′
r,R
′
t ,R
′
b). It

should be noted that positions of all positive samples need
to be reserved for every stroke detector S trokeci, j forming a
set denoted by Areaci, j. Every member in Areaci, j is a posi-
tive sample’s coordinates denoted as (R′l ,R

′
r,R
′
t ,R
′
b).

All positive and negative stroke samples are scaled to
hs ∗ws. Based on these samples, stroke detectors are trained.
HOG feature [7] calculate histogram of oriented gradients to
represent objects’ shapes and has been widely used by the
computer vision community for its efficiency and effective-
ness. Here, HOG [7] is extracted for every stroke samples,
and linear SVM [8] is used as the detector style for its sim-

plicity. Totally we get Ns =
Nc∑
i=1

Nstroke,ci stroke detectors in

the stroke bank, in which each member corresponds to a re-
sponse region set Areaci, j.

3.3 Learning a Sparse Dictionary to Model Co-occurrence
Strokes

For every training image of a character, each detector in the
stroke bank is applied to classify its corresponding response
regions Areaci, j. The maximal value outputed by the corre-
sponding linear SVM is denoted as Outci, j. Then confidence
vector for this training image is as:

f = (Outc1,1, . . . ,Outc1,Nstroke,c1
, . . . ,OutcNc ,1,

. . . ,OutcNc ,Nstroke,cNc
) (1)

Restricting detectors’ classification areas to positions
of positive stroke samples can alleviate computation burden.
Besides, it also retains more discrimination power. It’s be-
cause when one part of a character appears in a different
location of another character (like ‘E’ and ‘F’ in Fig. 1 (b)),
global search may result in classification confusion. Similar
conditions may happen between ‘L’ and ‘E’, ‘X’ and ‘Y’,

‘V’ and ‘W’ and so on.
If confidence vectors f are directly fed into multi-class

linear SVMs [8] for training, we are only able to model sin-
gle stroke appearing in one position while failing to model
co-occurrence of several structures in different locations. In-
tuitively, modeling co-occurrence of different stroke struc-
tures can introduce high-level semantic information and
may restrain noise brought by single stroke detectors. So it’s
appealing to find an appropriate way to model co-occurrence
strokes.

To model co-occurrence of several strokes, we propose
to learn a sparse dictionary D = [d1, d2, . . . , dND ] ∈ RNs×ND

(Ns is the number of stroke detectors and ND is the dictio-
nary size) based on the confidence vectors f using elastic
net [9] as in [10]. The learned dictionary D should be sparse.
It means most entries of di ∈ RNs are zeros. The non-zero
entries often correspond to co-occurrence of some strokes,
which will be demonstrated in the experiment section.

Given a set of training images represented as confi-
dence vectors F = { f1, f2, f3, . . . , fi, . . . , fN} ( fi ∈ RNs and N
is the number of training images), sparse reconstruction co-
efficient wi is learned simultaneously when learning sparse
dictionary D as in Eq. (2). Then given an image represented
as confidence vector f , sparse coefficient w is computed so
that f can be reconstructed from D like Eq. (3).

min
D∈C,W∈R

N∑

i=1

(
1
2
‖ fi − Dwi‖22 + λ ‖wi‖1) (2)

min
w∈RND

1
2
‖ f − Dw‖22 + λ ‖w‖1 (3)

where W = [w1, w2, . . . , wN] ∈ RND×N , λ is a regular-
ization parameter and C is the convex set which D belongs
to. The convex set C can be constructed as follows:

C = {D ∈ RNs×ND , s.t.∀i, ‖di‖1 + γ2 ‖di‖22 ≤ 1} (4)

The sparsity requirement of dictionary D is achieved
by enforcing l1-norm and l2-norm on convex set C. This is
called the elastic-net [9]. In the two optimization problems,
Eq. (3) is convex and Eq. (2) is convex with respect to each
of the two variables Ds and W when the other one is fixed.
We use SPASM toolbox [11] to solve the two optimization
problems.

3.4 Multi-class Classifier Training and Testing

Coefficients W computed from character training samples
in Eq. (2) are used to train multi-class linear SVMs [8]. The
regularization parameter is set to the best by cross validation
on the training set.

In the test stage, given a test image (scaled to H ∗ W
already), all stroke detectors are used to classify their corre-
sponding response regions to obtain confidence vector f in
Eq. (1). Afterwards, w are calculated as in Eq. (3). Finally, w
is fed into pre-trained multi-class SVMs to obtain a class la-
bel. The procedure is shown in Fig. 5. Note that test images
don’t need to be manually labeled.
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Fig. 5 Illustration of how to classify one testing image based on co-
occurrence strokes.

4. Experiments

4.1 Dataset and Settings

We employ two public scene text character datasets: IC-
DAR2003 [12] and CHARS74K [13]. Both of these two
datasets contain 62 character classes, namely digits 0-9, up-
per English letters A-Z and lower English letters a-z. IC-
DAR2003 dataset contains 6185 training patches and 5430
testing patches cropped from 509 scene images. It is orig-
inally designed for Robust Reading Competition of scene
text detection and recognition so the contained samples
can cover different conditions in natural scenes, such as
heavy occlusions, different illuminations and complex back-
grounds. Character samples from ICDAR2003 testing set
are shown in Fig. 6. Similarly, CHARS74K has totally
12503 scene character images cropped from various nat-
ural scenes and these samples are not split into training
and testing datasets. Previous algorithms [4], [13]–[16] of
scene character recognition usually report their results on
these two datasets so it’s reasonable for us to test the pro-
posed method on these two datasets. When performing
CHARS74K-15 evaluation, we split training and testing set
as in [16].

All of the image patches are normalized to W =

32,H = 64. Positive and negative samples for stroke de-
tectors are scaled to hs = 16, ws = 16. HOG features are
extracted with bin number 9, cell size of 4 pixels and block
size of 2*2 cells. Nstroke,ci is set uniformly for all characters
from 3 to 15 with step 3. Nneg/pos is set to be 2. Referring
to [10], parameters of sparse dictionary learning are set em-
pirically. ND is set to be 400 and 600 for ICDAR2003 and
CHARS74K respectively. λ in Eq. (2) and Eq. (3) is set to
be 0.1 and γ in Eq. (4) is set to be 0.3.

4.2 Learning Co-occurrence of Local Spatial Strokes

When high level semantic information, namely co-
occurrence of different strokes, is incorporated, the learned

Fig. 6 Scene character samples from ICDAR2003 testing set.

Fig. 7 Learned sparse dictionary with size of 400 for ICDAR2003
dataset. In the dictionary, red points indicate large magnitudes while blue
color represents small magnitudes. (a) illustration of DT ; (b) large non-zero
entries of rows often correspond to co-occurrence of several strokes from
the same character.

sparse dictionary from ICDAR2003 training set with size of
400 is shown in Fig. 7. From Fig. 7, we can see that dic-
tionary D is very sparse. Given a row of DT as shown in
Fig. 7 (a), elements with large magnitudes correspond to the
co-occurrence strokes which usually belonging to the same
character category as shown in Fig. 7 (b). On the contrary,
the deep blue color with zeros entries correspond to the ir-
relevant strokes.

Comparison between modeling co-occurrence of char-
acter structures and training SVMs directly on confidence
vectors is shown in Fig. 8. From Fig. 8, we can see that
more stroke detectors may result in better performance in
a range before coming to a peak point. Incorporating co-
occurrence strokes always works better than only modeling
single strokes’ appearance.

4.3 Comparison with Other Algorithms

Recent published methods on scene character recognition
mainly focus their attention on feature representation. For
example, [13] compares different feature representations for
scene character recognition. Tian et al. [14] propose to use
co-occurrence histogram of oriented gradients (Co-HOG) to
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Fig. 8 Superiority of co-occurrence strokes over single stroke: left figure
is for ICDAR2003 dataset and right figure is for CHARS74K dataset.

Table 1 Character recognition results on ICDAR2003 and CHARS74K
dataset (%).

Algorithm ICDAR2003 CHARS74K-15
ABBYY [13], [14] 26.6 31.1

HOG+NN [4] 51.5 58
SYNTH+FERNS [4] 52 47
NATIVE+FERNS [4] 64 54

MSER [18] 67 -
Global HOG [16] 76 62

Co-HOG [14] 79.4 -
Coates’ method [15] 81.7 -

Geometrical blur+SVM [13] - 53
Multiple Kernel Learning [13] - 55

HOG Columns [17] - 66.5
Our method (single) 79.5 65.7

Our method (co-occurrence) 80.3 66.8

recognize scene characters. Coates el al. [15] introduce un-
supervised feature learning for robust character recognition
and report promising recognition results. Yi et al. [16] gen-
erate Global HOG (GHOG) by computing HOG descrip-
tor from global sampling for scene character recognition.
Newell and Griffin [17] propose two extensions of the HOG
descriptor to include features at multiple scales and demon-
strate superiority of these new features over HOG for robust
character recognition.

When Nstroke,ci is set to be 15 and 12 for ICDAR2003
and CHARS74K datasets respectively, results of our method
outperform state-of-the-art algorithms as in Table 1. Espe-
cially for ICDAR2003 dataset, we only use training samples
from ICDAR2003 training set while other methods [14],
[15] often introduce other training samples to avoid over-
fitting. Referring to [13] and [14], recognition results of
commercial OCR software ABBYY FineReader are also re-
ported to demonstrate the superiority of object recognition
methods over traditional OCR techniques for scene charac-
ter classification.

It should be noted that, by incorporating co-occurrence
strokes rather than simply using single stroke detectors’ re-
sponses, 0.8 percent and 1.1 percent improvement are re-
alized upon ICDAR2003 dataset and CHARS74K dataset
respectively.

5. Conclusion

This paper propose a high-level feature representation based

on local spatial strokes for scene character recognition. We
model co-occurrence of different strokes in different loca-
tions by learning a sparse dictionary and using reconstruc-
tion coefficients as final features. The results outperform
state-of-the-art algorithms. If combined with sliding win-
dow technique and some language models, the proposed
method can be extended to perform word-level recognition.
That will be our future work.

References

[1] X. Chen and A.L. Yuille, “Detecting and reading text in natural
scenes,” CVPR, pp.366–373, 2004.

[2] L. Neumann and J. Matas, “Real-time scene text localization and
recognition,” CVPR, pp.3538–3545, 2012.

[3] C. Shi, C. Wang, B. Xiao, Y. Zhang, S. Gao, and Z. Zhang, “Scene
text recognition using part-based tree-structured character detec-
tion,” CVPR, pp.2961–2968, 2013.

[4] K. Wang, B. Babenko, and S. Belongie, “End-to-end scene text
recognition,” ICCV, pp.1457–1464, 2011.

[5] A. Mishra, K. Alahari, and C. Jawahar, “Top-down and bottom-up
cues for scene text recognition,” CVPR, pp.2687–2694, 2012.

[6] L.J. Li, H. Su, L. Fei-Fei, and E.P. Xing, “Object bank: A high-
level image representation for scene classification & semantic fea-
ture sparsification,” NIPS, pp.1378–1386, 2010.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” CVPR, pp.886–893, 2005.

[8] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin, “Lib-
linear: A library for large linear classification,” J. Machine Learning
Research, vol.9, pp.1871–1874, 2008.

[9] H. Zou and T. Hastie, “Regularization and variable selection via
the elastic net,” J. Royal Statistical Society: Series B (Statistical
Methodology), vol.67, no.2, pp.301–320, 2005.

[10] B. Yao, X. Jiang, A. Khosla, A.L. Lin, L. Guibas, and L. Fei-Fei,
“Human action recognition by learning bases of action attributes and
parts,” ICCV, pp.1331–1338, 2011.

[11] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for ma-
trix factorization and sparse coding,” J. Machine Learning Research,
vol.11, pp.19–60, 2010.

[12] S.M. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and R. Young,
“ICDAR 2003 robust reading competitions,” ICDAR, pp.682–687,
2003.

[13] T.E.D. Campos, B.R. Babu, and M. Varma, “Character recogni-
tion in natural images,” Computer Vision Theory and Applications,
pp.273–280, 2009.

[14] S. Tian, S. Lu, B. Su, and C.L. Tan, “Scene text recognition using
co-occurrence of histogram of oriented gradients,” ICDAR, pp.912–
916, 2013.

[15] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang,
D.J. Wu, and A.Y. Ng, “Text detection and character recognition in
scene images with unsupervised feature learning,” ICDAR, pp.440–
445, 2011.

[16] C. Yi, X. Yang, and Y. Tian, “Feature representation for scene text
character recognition: A camparative study,” ICDAR, pp.907–911,
2013.

[17] A.J. Newell and L.D. Griffin, “Multiscale histogram of oriented
gradient descriptors for robust character recognition,” ICDAR,
pp.1085–1089, 2011.

[18] L. Neumann and J. Matas, “A method for text localization and recog-
nition in real-world images,” ACCV, pp.770–783, 2010.


