
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.8 AUGUST 2014
2057

PAPER

Applying Association Analysis to Dynamic Slicing Based Fault
Localization

Heling CAO†, Shujuan JIANG†a), Xiaolin JU†,††, Yanmei ZHANG†, Nonmembers, and Guan YUAN†, Member

SUMMARY Fault localization is a necessary process of locating faults
in buggy programs. This paper proposes a novel approach using dynamic
slicing and association analysis to improve the effectiveness of fault local-
ization. Our approach utilizes dynamic slicing to generate a reduced candi-
date set to narrow the range of faults, and introduces association analysis to
mine the relationship between the statements in the execution traces and the
test results. In addition, we develop a prototype tool DSFL to implement
our approach. Furthermore, we perform a set of empirical studies with
12 Java programs to evaluate the effectiveness of the proposed approach.
The experimental results show that our approach is more effective than the
compared approaches.
key words: dynamic slicing, fault localization, association analysis, exe-
cution trace

1. Introduction

Program debugging is generally estimated to consume 50%
or more of the total development and maintenance effort [1],
[2]. Fault localization is one of the most difficult and time-
consuming tasks in program debugging [4], [7]. To allevi-
ate this problem, developers usually use debugging tools to
manually place breakpoints, observe the error states, and
then backtrack to fix faults. Obviously, this process is quite
laborious and time-consuming. To reduce the cost of pro-
gram debugging and improve software quality, researchers
have investigated methods of helping to automate the pro-
cess of fault localization [3]–[7].

Automated fault localization approaches usually try to
narrow the range of faults significantly. Delta debugging [2]
compares memory states of the passed and failed runs and
narrows the differences between these states to a subset of
suspicious variables through manipulating memory states of
the two runs. Dynamic slicing, which is firstly proposed
by Korel and Laski [8], narrows the search space to a set
of statements which influence an output variable. Zhang
et al. [3] proposed dynamic slicing for fault localization,
Wen [12] utilized dynamic slicing with statistical analysis
to locate faults.

Coverage-based fault localization approaches are an-
other effective ways to locate faults. In general, they uti-
lize statistical analysis to compute the suspiciousness of the

Manuscript received November 28, 2013.
Manuscript revised March 20, 2014.
†The authors are with School of Computer Science and Tech-

nology, China University of Mining and Technology, Xuzhou,
China.
††The author is with School of Computer Science and Technol-

ogy, Nantong University, Nantong, China.
a) E-mail: shjjiang@cumt.edu.cn

DOI: 10.1587/transinf.E97.D.2057

statements being faulty, and generate a ranking list of state-
ments in terms of the suspiciousness. Tarantula is a typical
coverage-based fault localization technique, which is pro-
posed by Jones et al. [10]. Ochiai is proposed by Abreu
et al. [16] to augment the Tarantula technique. Naish1 [11]
and Wong1 [17] are the maximal risk evaluation formulas
that are theoretically proved by Xie et al. [18]. One limita-
tion of these approaches is that they only focus on the sus-
piciousness of the statements and do not take into account
association information within the program, leading to the
inaccuracy of fault localization. In fact, there is the relation-
ship between the suspicious code and the failed test results.
Association analysis [9] is introduced to obtain some corre-
lations between program statements and the corresponding
test results from a large number of program executions.

In this paper, we propose a novel fault localization ap-
proach FLDA (Fault Localization based on Dynamic slicing
and Association analysis) to locate faults effectively. First,
dynamic slicing is utilized to narrow the range of the faults.
Second, we propose a ranking strategy RSA (a Ranking
Strategy based on Association analysis), which is applied
to reduce the cost of fault localization. Association analy-
sis is introduced to find the correlations between the state-
ments in the execution traces and the failed test results, and
then a ranking strategy is introduced to generate a more rea-
sonable ranking list. Finally, developers examine suspicious
statements guided by this ranking list. To evaluate the ef-
fectiveness of the proposed approach, we perform empirical
studies with 12 Java programs. The results indicate that our
approach has a significant improvement over the compared
ones and reduces almost 2.26% to 8.47% of the cost on av-
erage.

The main contributions of this paper can be summa-
rized as follows:

• A novel fault localization approach combining dy-
namic slicing with association analysis is proposed to
improve the effectiveness of fault localization.
• A new ranking strategy for the statements based on as-

sociation analysis is designed to generate a ranking list.
• An evaluation for the effectiveness of our approach is

performed with 6 fault localization approaches across
12 Java programs. The experimental results show that
our approach can outperform the compared ones.

The rest of this paper is organized as follows. Sec-
tion 2 presents a motivating example for fault localization.
Section 3 presents our approach and its detailed description.

Copyright© 2014 The Institute of Electronics, Information and Communication Engineers

2058
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.8 AUGUST 2014

Section 4 illustrates the experimental study and its data anal-
ysis. Section 5 presents some related work and Sect. 6 draws
conclusions and discusses some potential future work.

2. Motivation

In this section, the program function() with one faulty
statement s2 in Fig. 1 is taken as an example. As shown in
Table 1, there are eight test cases: t1, t2 and t7 are failed
test cases, t3, t4, t5, t6 and t8 are passed test cases. The
symbol ‘

√
’ denotes that a statement is executed. The first

column shows the number of statements. The second col-
umn shows coverage information under eight test cases. The
columns to the right of coverage information column give
the suspiciousness and ranking by Tarantula [10] (i.e., for-
mula (1)), and ranking by RSA, respectively, for statements
based on coverage information. The fifth column shows dy-
namic slices. The columns to the right of dynamic slices col-
umn give the suspiciousness and ranking by Tarantula, and
ranking by RSA, respectively, based on dynamic slices un-
der eight test cases. Row True/Fail shows the test results
(i.e., True (T) or Fail (F)), row fault rank. illustrates the
number of the examined statements (e.g., “4–9” means of
examining 4 up to 9 statements) to locate faults and row
loc.cost (%) presents the cost of fault localization.

Fig. 1 A motivating example.

Table 1 Comparisons of fault localization on a motivating example.

program
coverage information Tarantula RSA dynamic slices Tarantula RSA

t1 t2 t3 t4 t5 t6 t7 t8 sus. rank. rank. t1 t2 t3 t4 t5 t6 t7 t8 sus. rank. rank.

s1 √ √ √ √ √ √ √ √ 0.50 4 1 √ √ √ √ √ √ √ √ 0.50 3 1
s2 (faulty) √ √ √ √ √ √ √ √ 0.50 4 1 √ √ √ √ √ √ √ √ 0.50 3 1
s3 √ √ √ √ √ √ √ √ 0.50 4 1 √ √ √ 0.45 8 8
s4 √ √ √ √ √ √ √ √ 0.50 4 1 √ √ √ √ √ √ √ √ 0.50 3 1
s5 √ √ √ √ √ 0.53 2 8 √ √ √ √ √ 0.53 2 7
s6 √ √ √ √ √ 0.53 2 8 √ √ √ 0.45 8 9
s7 √ √ √ √ √ √ √ √ 0.50 4 1 √ √ √ √ √ √ √ √ 0.50 3 1
s8 √ √ √ √ 0.62 1 7 √ √ √ √ 0.62 1 6
s9 √ √ √ √ 0.36 10 10 √ √ √ √ 0.36 10 10
s10 √ √ √ √ √ √ √ √ 0.50 4 1 √ √ √ √ √ √ √ √ 0.50 3 1
True/Fail F F T T T T F T F F T T T T F T
fault rank. 4–9 1–6 3–7 1–5
loc. cost (%) 40–90 10–60 30–70 10–50

Tarantula(s) =

failed(s)
totalfailed

failed(s)
totalfailed +

passed(s)
totalpassed

(1)

In formula (1), failed(s) and passed(s) denote the
number of the statement s, which was executed by failed
and passed test cases, respectively, while totalfailed and
totalpassed denote the number of failed and passed test
cases. For example, statement s1 has a suspiciousness of
0.5 because it is executed by three failed test cases out of a
total of three failed test cases (i.e., The ratio is 1.), and it is
executed by five passed test cases out of a total of five passed
test cases (i.e., The ratio is 1.). We obtain 1/(1 + 1), or 0.5
by formula (1). Similarly, the maximum suspiciousness is
equal to 0.62 corresponding to the ranking of 1.

The statements are examined to locate the fault in de-
scending order of the suspiciousness. Based on coverage
information, 4 statements (i.e., s8, s5, s6, s2) need to be ex-
amined in the best case and 9 statements (i.e., s8, s5, s6, s1,
s3, s4, s7, s10, s2) need to be examined in the worst case by
Tarantula until faulty statement s2 is located, because state-
ments s8, s5, s6 have higher suspiciousness than s2 and state-
ments s1, s3, s4, s7, s10 have the same suspiciousness as s2.
If we construct dynamic slices and calculate suspiciousness,
Tarantula successfully locates faulty statements s2 only by
examining 3 to 7 statements (row fault rank.). This mo-
tivates us to adopt dynamic slices to improve the accuracy
of fault localization.

However, dynamic slices [8] are a set of statements rel-
evant to the fault, and the elements in it are treated equally.
When developers examine the statements in dynamic slices,
what is the order? To address this problem, we use asso-
ciation analysis to explore some correlations between state-
ments in the execution traces and the failed test results, and
we use a new ranking strategy based on association analy-
sis to improve the ranking of the fault (see Sect. 3.3). From
Table 1, we can observe that our approach (RSA) needs to
examine 1 to 6 statements based on coverage information
and needs to examine 1 to 5 statements based on dynamic
slices to locate the faults. The cost of our approach is lower
than that of Tarantula. Therefore, in this paper, association

CAO et al.: APPLYING ASSOCIATION ANALYSIS TO DYNAMIC SLICING BASED FAULT LOCALIZATION
2059

analysis and ranking strategy will be implemented to reduce
the cost of fault localization.

3. Fault Localization Guided by Dynamic Slicing and
Association Analysis

In this section, we present the details of FLDA. First, dy-
namic slices are calculated according to data dependency
and control dependency of program entities in order to re-
duce the search domain of faults. Second, association anal-
ysis is applied to explore the correlations between the state-
ments in the execution traces and the failed test results, and
then the ranking strategy we presented is applied to generate
a more effective ranking list of the statements.

3.1 Dynamic Slicing

Dynamic slicing, which is calculated with respect to each in-
terest point (called a slice criterion) in the source code, is in-
troduced to analyze a program and constructed by dynamic
dependency during the process of program execution. When
analyzing the execution trace under a particular test case, we
only need to analyze the statements in dynamic slices.

Definition 1 (Execution trace): Let I be a given input, the
execution trace T of a program run is a statement sequence.
Each element of trace T is given a unique timestamp de-
noted as timestamps, which represents the serial number of the
statement executed. According to the test results, they are
divided into failed execution traces T f and passed execution
traces Tp.

Definition 2 (Dynamic slicing criterion): Dynamic slicing
criterion is a triple C = <I, s,V>, where I is a program
input, s is an interest point corresponding to a statement and
V is a subset of variables in statement s.

Definition 3 (Dynamic slicing): Given a slice criterion
C = <I, s,V>, dynamic slicing is a set of statements, which
directly or indirectly affect variable V in statement s, where
I is a program input [8].

Dynamic slicing is computed to get a subset of the exe-

Algorithm 1 Forward Computation of Dynamic Slices
Require:

i s, which means current execution instance
Ensure:

slice[v], v ∈ Def [s]
1: slicetemp = {i};
2: for each u in Use[s] do
3: slicetemp = slicetemp ∪ slice[u];
4: end for
5: dcd = the statement in CD[s] which has the maximum timestamp

value;
6: slicetemp = slicetemp ∪ slice[dcd];
7: for each v in Def [s] do
8: slice[v] = slicetemp;
9: end for

10: return slive[v];

cuted statements which actually affect the value of the vari-
able at that point. In this paper, dynamic slice algorithm is
forward, which means that the dynamic slice is created as
soon as this statement has been executed.

Algorithm 1 illustrates forward computation of dy-
namic slices algorithm. The algorithm takes current execu-
tion instance i s as input, and takes slice[v] as output. Lines
1–4 calculate dynamic slice of variable u in Use[s]. Use[s]
and Def [s] denote the dynamic sets of variables which are
defined and used by statement s, respectively. Similarly,
Lines 5–9 calculate dynamic slice of variable v in Def [s].
CD[s] denotes the set of predicate statements on which s
is control dependent. Dynamic control dependency of i s is
recorded as dcd. The algorithm returns slice[v] of defined
variable v as output. After execution of instance i s, the dy-
namic slice of defined variables in statement s is computed,
including the following statements: statements that belong
to the latest dynamic slices of variables used by i s; state-
ments that belong to the dynamic slice of predicate on which
i s is dynamic control dependent; and the statement s itself.
If variable v is defined in statement s, the latest dynamic
slice for variable v is slice[v].

Now we apply Algorithm 1 on the example program in
Fig. 1 to illustrate the dynamic slice. A dynamic slice of the
program is computed for the slice criterion C = <(x = 4, y =
2, z = 1), s10, ret> in Table 2.

3.2 Association Analysis

In this section, association analysis searches for the correla-
tions between the statements in dynamic slices and the test
results. After that, a ranking strategy is applied to prioritize
the statements.

The value of discriminating function f (s) is 1 when
statement s is only executed by failed executions, otherwise
its value is 0. That is to say, if f (s) value of a statement is
equal to 1, the higher priority is assigned to the statement.
The definition of f (s) is as follows:

f (s) =

{
1 s ∈ T f ∧ s � Tp

0 otherwise
(2)

Definition 4 (Association Rule): An association rule is an
implication expression of the form A ⇒ B, where A ⊂ D,
B ⊂ D, and A ∩ B = ∅. A is called the antecedent of the
rule and B is called the consequent of the rule [9]. The rule

Table 2 Forward computation of dynamic slices under test case t2.

i s Def[s] Use[s] CD[s] dynamic slices
1 s1 {x,y,z} ∅ ∅ {s1}
2 s2 {x} {x,y} ∅ {s1, s2}
3 s3 {m} {y} ∅ {s1, s3}
4 s4 ∅ {x} ∅ {s1, s2, s4}
5 s5 {m} {x} 4 s4 {s1, s2, s4, s5}
6 s6 {x} {x,y} 4 s4 {s1, s2, s4, s6}
7 s7 ∅ {m} ∅ {s1, s2, s4, s5, s7}
8 s9 {ret} {y,z} 7 s7 {s1, s2, s4, s5, s7, s9}

9 s10 ∅ {ret} ∅ {s1, s2, s4, s5, s7, s9, s10}

2060
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.8 AUGUST 2014

is measured by support and confidence.
Let D = {D1, D2, · · · , Dm} be the set of all items

and T = {T1, T2, · · · , Tn} be the set of all transactions.
Each transaction Ti contains a subset of items chosen from
D. Let A is item set, and transaction T contains A if and
only if A ⊆ T . In the context of fault localization, a pro-
gram execution is viewed as a transaction, and all program
executions construct transactions T . The statements in the
execution traces are referred as the antecedent of the rule,
and the failed test result as the consequent of the rule.

Definition 5 (Support): Support determines how often a
rule is applicable to a given data set, which is the proba-
bility of transactions that simultaneously contain A and B,
where a rule A ⇒ B is recorded as support(A ⇒ B), which
is the probability of P(A ∪ B) [9]. The formal definition of
support is

support(A⇒ B) = P(A ∪ B) (3)

where min support = 1
N

In the context of fault localization, symbol A represents the
statements in a program, and symbol B represents the failed
test results. The threshold value of support equals to 1

N (N =
|Tp| + |T f |), because at least one failed test case is necessary
to reveal the presence of the faults.

Definition 6 (Confidence): Confidence determines how
frequently item set B appears in the transactions that con-
tain A [9], which is the conditional probability of P(B | A).
The formal definition of confidence is

confidence(A⇒ B) = P(B | A) =
support(A ∪ B)

support(A)
(4)

where min confidence = 1
N

The threshold value of confidence is equal to 1
N , because at

least one failed test case is necessary to reveal the presence
of the faults, and the faulty statements are covered by all
execution traces in extreme cases.

Most existing coverage-based fault localization ap-
proaches compute the suspiciousness of statements based on
the following three assumptions [10], [13], [15], [17].

• The suspiciousness of the statement is positive to the
number of the statement that is covered by the failed
executions.
• The suspiciousness of the statement is inverse to the

number of the statement that is not covered by the
failed executions.
• The suspiciousness of the statement is inverse to the

number of the statement that is covered by the passed
executions.

In light of the three assumptions, the three-level ranking
strategy is proposed as follows:

(1) Rank the statements according to their f (s) values. The
larger its f (s) value is, the higher the priority is. That is
to say, we set the highest priority to the statement when

its f (s) value is equal to 1.
(2) Rank the statements according to their support values,

when multiple statements have the same f (s) values.
The larger its support value is, the higher the priority
is. That is to say, the more the statement is covered
by the failed executions, the higher priority assigned to
this statement.

(3) Rank the statements according to their confidence val-
ues, when multiple statements have the same support
values. That is to say, the less the statement is covered
by the passed executions, the higher priority assigned
to this statement.

Algorithm 2 presents association analysis and ranking strat-
egy algorithm. The algorithm takes slice (i.e. a set of dy-
namic slices of all tests), min support and min confidence
as inputs. The algorithm returns a sorted statement sequence
S ′ as output. Line 1 initializes a list S ′. Lines 2–6 compute
f (s), support and confidence by formula (2), (3) and (4), re-
spectively. The symbol “Fail” in line 4 represents the failed
test result. Association analysis is applied to mine the rela-
tionship between the statements in the execution traces and
the test results by setting min support and min confidence
and then the ranking strategy is applied to generate a rank-
ing list (lines 7–17). Line 18 returns a statement sequence S ′
sorted by ranking strategy. Additionally, function comp() in
line 10 is used to compare statements s1 with s2. The return
value of comp() is true when satisfying the three conditions
as follows:

(1) f (s1) < f (s2);
(2) f (s1) = f (s2) ∧ support(s1) < support(s2);
(3) f (s1) = f (s2) ∧ support(s1) = support(s2)
∧ confidence(s1) < confidence(s2).

Algorithm 2 Association Analysis and Ranking Strategy
Require:

slice
min support
min confidence

Ensure:
S ′

1: list S ′ = InitInput();
2: for each s in Slice do
3: computef (s);
4: support = P(s ∪ Fail);
5: confidence = P(s ∪ Fail)/P(s);
6: end for
7: for i = 1; i < S ′.size; i + + do
8: for j = 1; j < S ′.size − i; j + + do
9: if support≥ min support&&condence≥ min confidence then

10: if comp(S ′[j], S ′[j + 1]) == True then
11: swap(S ′[j], S ′[j + 1]);
12: end if
13: else
14: delete(s);
15: end if
16: end for
17: end for
18: return S ′;

CAO et al.: APPLYING ASSOCIATION ANALYSIS TO DYNAMIC SLICING BASED FAULT LOCALIZATION
2061

3.3 Fault Localization

We developed a prototype tool DSFL (Dynamic Slicing
Fault Locator) to implement the proposed approach. The
Soot analysis framework is applied to obtain the data flow
and control flow information. And the construction of
the execution traces is achieved by instrumenting the code
through Java Debug Interface (JDI). JDI is a high-level de-
bugging interface in Java platform architecture and provides
the ability of accessing and controlling the target virtual ma-
chine for a debugger.

We use the program function() in Fig. 1 to illustrate
the proposed approach. First, dynamic slices are calculated
as follows. The program function() is executed on in-
put I. The dynamic slices shown in Table 3 are obtained
for a slice criterion <I, s10, {t}> when the last statement was
executed. Second, association analysis is implemented on
the basis of dynamic slices and then ranking strategy is im-
plemented to generate a ranking list of the statements. As-
sociation analysis is applied to explore the correlations be-
tween the statements in the execution traces and test re-
sults by setting min support and min confidence in Algo-
rithm 2. Before association analysis, we illustrate how their
metrics are computed. For example, statement s2 is exe-
cuted by both failed and passed test cases, so the value of
f (s2) is equal to 0 by formula (2); statement s2 is executed
by three failed test cases and a total of test cases is eight,
so support(s2 ⇒ Fail) = 3/8 by formula (3); and state-
ment s2 is executed by all test cases, support(s2) = 1, so
confidence(s2 ⇒ Fail) = support(s2 ∪ Fail)/support(s2) =
0.375 by formula (4).

Table 4 gives the details of the three-level ranking strat-
egy as follows:

(1) The first level ranking is shown in row 2. The state-
ment is examined firstly when its f (s) value is equal to
1. Multiple statements are further prioritized accord-
ing to their support values when they have the same
f (s) values. The statements of the program in Table 1

Table 3 Dynamic slices for program function().

test case input test result dynamic slices
t1 {1,2,1} Fail s1, s2, s3, s4, s8, s9, s10

t2 {4,2,1} Fail s1, s2, s4, s5, s7, s9, s10

t3 {9,1,1} True s1, s2, s4, s5, s6, s7, s8, s10

t4 {−4,−2,1} True s1, s2, s4, s5, s7, s9, s10

t5 {4,−2,1} True s1, s2, s3, s4, s7, s9, s10

t6 {2,−1,1} True s1, s2, s3, s4, s7, s9, s10

t7 {8,2,2} Fail s1, s2, s4, s5, s6, s7, s8, s10

t8 {5,1,1} True s1, s2, s4, s5, s6, s7, s8, s10

Table 4 A ranking strategy based on association analysis.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

f (s) 0 0 0 0 0 0 0 0 0 0
support 3/8 3/8 1/8 3/8 2/8 1/8 3/8 2/8 1/8 3/8
confidence 0.375 0.375 0.333 0.375 0.4 0.333 0.375 0.5 0.25 0.375
ranking 1 1 8 1 7 9 1 6 10 1

are executed by both failed and passed test cases, so
the f (s) value of each statement is equal to 0 by for-
mula (1).

(2) The second level ranking is shown in row 3. The state-
ments, such as s1, s2, s4, s7 and s10, should be exam-
ined firstly because they have the larger support values
than the other statements. Next, statement s5 or s8 will
be examined. Multiple statements are further priori-
tized according to their confidence values when they
have the same support values.

(3) The third level ranking is shown in row 4. The state-
ments should be examined firstly when they have the
larger confidence values. For example, statement s8 is
examined before statement s5 because it has the larger
confidence values than statement s5.

Finally, if multiple statements have the same support and
confidence values, it is possible to be prioritized according
to their serial numbers. Therefore, developers can examine
the source code in order s1 → s2 → s4 → s7 → s10 → s8 →
s5 → s3 → s6 → s9. Similar is the computation process of
the ranking based on coverage information.

If we prioritize the statements by the reverse above
ranking strategy, or if we cancel the first level ranking when
the faulty statement is only executed by failed test cases, the
accuracy of fault localization will decrease.

Now we utilize the program function() in Fig. 1 to
illustrate the effectiveness of our approach. The compara-
tive experiments are conducted between Tarantula and RSA
in Table 1. Based on coverage information, we need to ex-
amine 40% to 90% of the code using Tarantula, whereas, we
need to examine 10% to 60% of the code using RSA. Simi-
larly, based on dynamic slices, we need to examine 30% to
70% of the code using Tarantula, whereas, we need to exam-
ine 10% to 50% of the code using RSA. The experimental
results show that RSA outperforms Tarantula in both cases.

In the next section, we will perform empirical studies
to further evaluate the effectiveness of our approach and the
compared ones using complex and large scale programs.

4. Experimental Study

To evaluate the effectiveness of FLDA, we implemented it
in a prototype tool DSFL and performed empirical studies
across 12 Java programs. In our study, we want to address
the following research questions:

• RQ1: Can FLDA outperform the compared slice-based
fault localization approaches?
• RQ2: Can FLDA perform better than the compared

coverage-based fault localization approaches?

2062
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.8 AUGUST 2014

Table 5 Subjects, test cases and faults.

subject description LOC faults test cases
print tokens lexical analyzer 478 7 4130
print tokens2 lexical analyzer 410 5 4115

schedule priority scheduler 290 9 2650
schedule2 priority scheduler 317 8 2710

tcas collision avoidance 131 31 1608
tot info information measure 283 10 1052

NanoXML v1 XML parser 3497 7 214
NanoXML v2 XML parser 4009 7 214
NanoXML v3 XML parser 4608 8 216

XML-security v1 XML encryption 21613 7 92
XML-security v2 XML encryption 22318 5 94
XML-security v3 XML encryption 19895 7 84

• RQ3: Can FLDA improve the effectiveness of fault lo-
calization significantly?

4.1 Subjects for Analysis

Table 5 lists the subjects we evaluated and provides the de-
scription, lines of code (LOC) excluding the number of non-
blank and non-commented lines of Java code, the number
of faults and the number of test cases. The former 6 sub-
ject programs were the Siemens suite, which Santelices et
al. [15] had translated from C version to Java version†. Spe-
cially, the Siemens suite was chosen for evaluation because
it was widely used in many empirical studies [10], [12], [14].
Three releases of NanoXML and XML-security, which are
large scale program obtaining from Software Infrastructure
Repository (SIR) with faults and test cases††, were studied
in our experiment. We excluded the faulty versions of the
programs that caused no failure because at least one failed
test case is necessary in order to trigger the failure. In total,
111 faulty versions of the programs were examined under
the single-fault scenario.

4.2 Experimental Design

To verify the effectiveness of dynamic slicing and associa-
tion analysis, we evaluate association analysis based on dy-
namic slicing (i.e., FLDA) or association analysis based on
coverage information (i.e., RSA), respectively. FLDA per-
forms better than RSA. Therefore, the approach FLDA we
proposed combines association analysis with dynamic slic-
ing. We evaluate the effectiveness of FLDA in terms of the
average cost, EXAM score and Wilcoxon signed-rank test
and evaluate the effectiveness of RSA only in terms of the
average cost. In addition, because multiple statements pos-
sibly have the same suspiciousness, the faulty statement is
examined first in the best case and last in the worst case.
Without generality, we adopt the average between the best
and the worst.

†http://www3.nd.edu/˜rsanteli/subjects/
††http://sir.unl.edu/portal/index.php

4.3 Data Analysis

Table 6 illustrates the average fault localization cost (the ra-
tio of the cumulative number of examined statements to the
executable statements) for all faulty versions on each sub-
ject. We group all subjects into two and choose the first 6
subjects for one group and the remaining 6 programs for the
other because of the different characteristics of programs.
Table 7 shows the average cost and the standard deviation
of the cost for groups. The table shows both (i) the aver-
age cost of the two groups and (ii) the average cost of all
subjects.

To compare two approaches M and N for the effective-
ness, the reduced cost of M over N is computed by subtract-
ing the average cost of M from the average cost of N. For ex-
ample, in the fifth row of Table 7, the average cost of FLDA
is 4.80% and the average cost of Tarantula is 12.54%, then
the reduced cost of FLDA over Tarantula is 7.74%, which
means developers would examine 7.74% fewer code if they
used FLDA. We next present the effectiveness comparisons
between the fault localization approaches.

(1) Comparing RSA with coverage-based fault local-
ization approaches (i.e., Tarantula [10], Ochiai [16],
Naish1 [11] and Wong1 [17]). From Table 6, for each
subject, we can observe that RSA is more effective than
the compared approaches except for Ochiai, Naish1 for
print tokens. From Table 7, for group GR1 and GR2,
we can observe that the average cost of RSA is al-
ways less than that of the compared approaches, re-
spectively. For all subjects, it shows that the average
cost of RSA (i.e., 8.71%) is less than that of the com-
pared approaches, and that the reduced cost of RSA
over Tarantula, Ochiai, Naish1 and Wong1 are 3.83%,
2.69%, 2.56% and 4.56%, respectively. In addition, the
standard deviation of RSA is much smaller than that
of the compared approaches, whether GR1, GR2 or all
subjects, therefore, RSA is more stable in the effective-
ness than the compared approaches.

(2) Comparing FLDA with coverage-based and slice-
based fault localization approaches. From Table 6, for
each subject, we can observe that FLDA is more ef-
fective than the compared approaches except for FS [3]
and JHSA [12]. The average cost of FLDA is higher
than that of JHSA for XML-security v2, and higher
than that of FS for print tokens and XML-security v2.
From Table 7, for group GR1 and GR2, we can ob-
serve that FLDA is more effective than the compared
approaches. For all subjects, it shows that the aver-
age cost of FLDA (i.e., 4.80%) is less than that of
the compared approaches, and that the reduced cost of
FLDA over Tarantula, Ochiai, Naish1, Wong1, FS and
JHSA are 7.74%, 6.60%, 6.47%, 8.47%, 4.30% and
2.26%, respectively. In addition, the standard devia-
tion of FLDA is the smallest one in that of the com-
pared approaches, therefore, FLDA is more stable in

CAO et al.: APPLYING ASSOCIATION ANALYSIS TO DYNAMIC SLICING BASED FAULT LOCALIZATION
2063

Table 6 Comparisons of the average cost of fault localization for each subject.

group subject FLDA FS JHSA RSA Tarantula Ochiai Naish1 Wong1

GR1

print tokens 5.32% 16.50% 8.37% 11.98% 18.05% 8.73% 10.73% 14.97%
print tokens2 8.78% 12.98% 14.34% 9.37% 24.39% 25.12% 24.54% 25.17%
schedule 4.56% 14.56% 8.58% 4.98% 6.70% 7.16% 5.36% 9.66%
schedule2 8.52% 5.01% 9.58% 25.63% 31.43% 31.62% 31.31% 36.99%
tcas 9.36% 20.93% 13.54% 16.60% 23.52% 20.91% 22.97% 22.97%
tot info 8.83% 19.79% 14.06% 17.70% 19.43% 17.81% 18.73% 23.82%

GR2

NanoXML v1 4.46% 3.90% 5.72% 5.11% 7.19% 6.74% 5.72% 7.97%
NanoXML v2 1.10% 2.50% 1.58% 3.61% 4.57% 3.95% 3.66% 4.66%
NanoXML v3 1.57% 6.00% 2.03% 3.53% 6.84% 6.63% 4.51% 4.38%
XML-security v1 1.42% 3.90% 2.51% 1.52% 2.38% 2.25% 1.79% 2.31%
XML-security v2 1.20% 0.60% 0.65% 1.48% 2.20% 2.15% 2.20% 2.24%
XML-security v3 2.43% 2.50% 3.77% 3.01% 3.73% 3.71% 3.73% 4.05%

Table 7 Average cost and standard deviation for the group.

group statistics FLDA FS JHSA RSA Tarantula Ochiai Naish1 Wong1

GR1
average cost 7.56% 14.96% 11.41% 14.38% 20.59% 18.56% 18.94% 22.26%
standard dev 1.88% 5.23% 2.61% 6.60% 7.54% 8.62% 8.68% 8.57%

GR2
average cost 2.03% 3.23% 2.71% 3.04% 4.49% 4.24% 3.60% 4.27%
standard dev 1.17% 1.66% 1.64% 1.26% 1.96% 1.86% 1.33% 1.91%

All Subjects
average cost 4.80% 9.10% 7.06% 8.71% 12.54% 11.40% 11.27% 13.27%
standard dev 3.18% 7.03% 4.87% 7.40% 9.76% 9.50% 9.87% 10.93%

Fig. 2 EXAM-based comparisons on all subjects.

the effectiveness than the compared approaches.
(3) Comparing FLDA with RSA. From Tables 6, 7, for

each subject or groups, we can observe that the aver-
age cost of FLDA is lower than that of RSA. The re-
duced cost of FLDA over RSA mainly contributes to
the introduction of dynamic slices which remove fault-
irrelevant statements. For all subjects, the reduced cost
of FLDA over RSA is 3.91%.

The EXAM score, which is defined as the percentage of the
executable code that must be examined before the faults are
identified [4], [16], is an effective evaluation measurement.
Approach A performs better than approach B, which means
that approach A can locate more faults than approach B
when examining the same ratio of the code. Figure 2 shows
the effectiveness comparisons on the EXAM score between
our approach and the compared ones. The y-axis of each
subplot represents the percentage of the faults that are lo-
cated, while the x-axis represents the percentage of the code
that is examined. In Fig. 2 (a), when examining 20% of the
code, FLDA can locate 90% of the faults, while JHSA can
locate 83% of the faults and FS can locate 75% of the faults.

Similarly, in Fig. 2 (b), when examining 20% of the code,
Ochiai can locate 55% of the faults and Tarantula can locate
41% of the faults. And in Fig. 2 (c), when examining 20%
of the code, Naish1 can locate 63% of the faults and Wong1
can locate 47% of the faults. From Fig. 2 we observe that
FLDA is the most effective of the compared approaches.

Additionally, the Wilcoxon signed-rank test is also
conducted to identify whether FLDA is more effective than
the other approaches significantly. It is a nonparametric test,
which can test the difference for paired data. To identify
whether there is a significant difference between FLDA and
each compared approach in Table 6, the Wilcoxon signed-
rank test is performed as follows:

Step 1: present a null hypothesis that FLDA requires to
examine more statements than the other techniques. When
the null hypothesis is rejected, an alternative hypothesis
needs to be accepted. The null hypothesis is H0: μ1 = μ2,
while the alternative hypothesis is H1: μ1 > μ2.

Step 2: set the level of significance α = 0.05.
Step 3: specify the test statistic T, which is that FLDA

achieves better experimental results than another approach.
Step 4: supposing Xi and Yi are the paired experimental

2064
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.8 AUGUST 2014

results of FLDA and another approach. Define m = m++m−,
where m+ and m− denotes positive rank and negative rank
with Xi < Yi and Xi > Yi, respectively. Then the binomial
probability p-value is calculated.

Step 5: if the p-value is less than or equal to α, the
null hypothesis has to be rejected. In our experiment, it can
be found that the p-values of all test are less than 0.05, so
we reject the null hypothesis and consider that the difference
between FLDA and the other techniques is significant.

From the above empirical results, for all subjects, faults
and test cases in our experiment, we can answer the three
proposed research questions as follows:

• For RQ1, we can draw a conclusion that FLDA can im-
prove the performance of fault localization to some ex-
tent. Comparing with FS and JHSA, FLDA can reduce
the average cost by 2.26% to 4.30%.
• For RQ2, we can draw a conclusion that FLDA outper-

forms the compared coverage-based approaches. Com-
paring with Tarantula, Ochiai, Naish1 and Wong1,
FLDA can reduce the average cost by 6.47% to 8.47%.
• For RQ3, we can draw a conclusion that the differ-

ence of the experimental results between FLDA and the
compared approaches is significant at 95% confidence
level by the Wilcoxon signed-rank test.

4.4 Threats to Validity

The external validity of this experiment lies in generaliz-
ing our approach. Specifically, the results obtained using 12
Java programs in size from 131 to 22318 cannot be gen-
eralized to other diversity programs. However, all sub-
ject programs in our experiment are widely used in fault
localization researches (i.e., [10], [13], [15]), furthermore,
NanoXML and XML-security are the representative of real-
world software, this increases the reliability of our experi-
ment to some extent.

The internal validity of this experiment lies in the pre-
cision of dynamic slices obtained by our tool. However, we
utilized forward computation of dynamic slices algorithm
similar to the algorithm proposed by Beszedes et al. [25].
Dynamic slices are used to narrow the search space, and the
results show that dynamic slices we obtained are effective in
fault localization.

5. Related Work

There are many coverage-based fault localization ap-
proaches. Jones et al. [10] proposed the Tarantula fault
localization approach with the suspiciousness of the state-
ments indicating the probability of the statements being
faulty. Abreu et al. [16] presented the similarity coefficient
named Ochiai that originated in the molecular biology field
to compute the suspiciousness of statements. Xie et al. [18]
provided a theoretical proof on the effectiveness of the 30
suspiciousness formulas and proved that five out of the 30
suspiciousness formulas were maximal formulas. Xu et

al. [28] proposed a novel similarity coefficient with a noise
reduction to compute the suspiciousness of statements for
improving the effectiveness of fault localization.

Dynamic slices of multiple failed and passed test ex-
ecutions were exploited by Pan and Spafford [5], who pro-
posed a family of heuristics to compare the dynamic slices
of failed and passed test executions for identifying possi-
ble faulty statements. Zhang et al. [3] computed data slices,
full slices and relevant slices respectively. Their experimen-
tal results indicated that full slices and relevant slices had
better results than data slices in fault localization. In their
follow-up study, they [6] proposed another fault localization
approach based on dynamic slices by computing from mul-
tiple points (i.e. erroneous value, critical predicate). Yu et
al. [7] calculated approximate dynamic slices of test execu-
tions and then calculated the suspiciousness of each state-
ment using Tarantula based on the number of dynamic slices
of failed and passed test executions. Mao et al. [24] pre-
sented approximate dynamic backward slices to balance the
size and precision of the slices and then statistically com-
puted the suspiciousness. In the previous work [19], we pre-
sented a fault localization approach based on hybrid spec-
trum of full slices and execution slices and computed the
suspiciousness of statements by a maximal formula we de-
signed. Hofer et al. [26] combined spectrum-based fault
localization and slicing-hitting-set-computation to improve
the ranking of the faults. In their follow-up study, they [27]
combined spectrum-based fault localization and artificial in-
telligence techniques to improve diagnostic accuracy.

Similar to our work, Wotawa [29] proposed a fault
localization approach using dynamic slicing and model-
based diagnosis to improve the effectiveness. In addition,
Wen [12] combined dynamic slicing with statistical anal-
ysis to locate the faults. Comparing with our approach,
Wotawa’s approach used model diagnosis for computing the
probabilities of states to be faulty, Wen’s approach utilized
a suspicious metric similar to Tarantula to compute the sus-
piciousness of statements, whereas, our approach utilized a
ranking strategy based on association analysis to generate a
ranking list for locating faults.

Association analysis, a branch of data mining, was
firstly introduced by Agrawal [9]. One of the earliest ap-
plications of association analysis in fault localization was in
[20], where Denmat and Ducasse utilized the support and
confidence metrics to filter fault-related statements in exe-
cution traces. Wong et al. [21] presented a fault-localization
technique using N-gram analysis and association analysis.
They constructed the actual execution sequence of length N
and mined the correlations between the subsequences and
the test results. Cellier et al. [22] discussed the fault-failure
correlations using formal concept and association rule to lo-
cate faults. Different from previous research, we introduce a
novel application of association analysis to locate faults. We
applied it to the statements and do not construct a sequence
of length N to avoid expensive time overhead. In addition,
our approach combined association analysis with a ranking
strategy to generate a ranking list.

CAO et al.: APPLYING ASSOCIATION ANALYSIS TO DYNAMIC SLICING BASED FAULT LOCALIZATION
2065

6. Conclusions and Future Work

In this paper, we presented a novel approach, based on dy-
namic slicing and association analysis, to improve the ef-
fectiveness of fault localization. We implemented the pro-
posed approach in a prototype tool and designed a set of
empirical studies for evaluating the effectiveness of FLDA
with coverage-based and slice-based fault localization ap-
proaches. The experimental results indicate that FLDA
is more effective than the compared approaches, approxi-
mately reducing the fault localization cost from 2.26% to
8.47% on average.

In future work, we plan to apply our approach to locate
multiple faults. We also plan to apply another data mining
technique, such as clustering, classification, etc., to locate
faults.

Acknowledgments

We thank the anonymous reviewers for their valuable com-
ments. This work is supported by the Fundamental Re-
search Funds for the Central Universities under Grant
No. 2012LWB40.

References

[1] J.S. Collofello and S.N. Woodfield, “Evaluating the effectiveness
of reliability-assurance techniques,” J. Systems and Software, vol.9,
no.3, pp.191–195, 1989.

[2] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Softw. Eng., vol.28, no.2, pp.183–200,
2002.

[3] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental evalua-
tion of using dynamic slices for fault location,” Proc. International
Symposium on Automated Analysis-Driven Debugging, pp.33–42,
2005.

[4] W.E. Wong, V. Debroy, Y. Li, and R. Gao, “Software fault localiza-
tion using dstar (d*), “ Proc. International Conference on Software
Security and Reliability,” pp.21–30, June 2012.

[5] H. Pan and E.H. Spafford, “Heuristics for automatic localization of
software faults,” Technical Report, SERC-TR-116-P, Purdue Uni-
versity, 1992.

[6] X. Zhang, N. Gupta, and R. Gupta, “Locating faulty code by mul-
tiple points slicing,” Software: Practice and Experience, vol.37,
pp.935–961, 2007.

[7] R. Yu, L. Zhao, L. Wang, and X. Yin, “Statistical fault localization
via semi-dynamic program slicing,” Proc. International Conference
on Trust, Security and Privacy in Computing and Communications,
pp.695–700, 2011.

[8] B. Korel and J. Laski, “Dynamic slicing,” Inf. Process. Lett., vol.29,
no.3, pp.155–163, 1988.

[9] P.N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining,
Posts & Telecom Press, 2006.

[10] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of test infor-
mation to assist fault localization,” Proc. International Conference
on Software Engineering, pp.467–477, 2002.

[11] L. Naish, H.J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Software Engineering and
Methodology, vol.20, no.3, pp.11–43, 2011.

[12] W. Wen, “Software fault localization based on program slicing spec-
trum,” Proc. International Conference on Software Engineering,

pp.1511–1514, 2012.
[13] W.E. Wong, V. Debroy, and B. Choi, “A family of code coverage-

based heuristics for effective fault localization,” J. Systems and Soft-
ware, vol.83, no.2, pp.188–208, 2010.

[14] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments of
the effectiveness of dataflow- and control flow-based test adequacy
criteria,” Proc. International Conference on Software Engineering,
pp.191–200, 1994.

[15] R. Santelices, J.A. Jones, Y. Yu, and M.J. Harrold, “Lightweight
fault-localization using multiple coverage types,” Proc. International
Conference on Software Engineering, pp.56–66, 2009.

[16] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, “On the accuracy
of spectrum based fault localization,” Proc. Testing: Academic and
Industrial Conference, Practice and Research Techniques, pp.89–98,
Sept. 2007.

[17] W.E. Wong, Y. Qi, L. Zhao, and K.Y. Cai, “Effective fault localiza-
tion using code coverage,” Proc. Annual International Conference
on Computer Software and Applications, vol.1, pp.449–456, 2007.

[18] X. Xie, T.Y. Chen, F.C. Kuo, and B. Xu, “A theoretical analysis of
the risk evaluation formulas for spectrum-based fault localization,”
ACM Trans. Software Engineering and Methodology, vol.22, no.4,
pp.31–40, 2013.

[19] X. Ju, S. Jiang, X. Chen, X. Wang, Y. Zhang, and H. Cao, “HSFal:
Effective fault localization using hybrid spectrum of full slices and
execution slices,” J. Systems and Software, vol.90, pp.3–17, April
2014.

[20] T. Denmat, M. Ducasse, and O. Ridoux, “Data mining and cross-
checking of execution traces: A re-interpretation of Jones, Harrold
and Stasko test information,” Proc. International Conference on Au-
tomated Software Engineering, pp.396–399, 2005.

[21] S. Nessa, M. Abedin, W.E. Wong, L. Khan, and Y. Qi, “Software
fault localization using N-gram analysis,” Wireless Algorithms,
Systems, and Applications, Lecture Notes in Computer Science,
pp.548–559, 2008.

[22] P. Cellier, S. Ducasse, S. Ferre, and O. Ridoux, “Formal concept
analysis enhances fault localization in software,” Proc. International
Conference on Formal Concept Analysis, pp.273–288, 2008.

[23] N. DiGiuseppe and J.A. Jones, “On the influence of multiple faults
on coverage-based fault localization,” Proc. International Sympo-
sium on Software Testing and Analysis, pp.210–220, 2011.

[24] X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang, “Slice-based statistical
fault localization,” J. Systems and Software, vol.89, pp.51–62, 2014.

[25] A. Beszedes, T. Gergely, Z.M. Szabo, J. Csirik, and T. Gyimothy,
“Dynamic slicing method for maintenance of large C programs,”
Proc. European Conference on Software Maintenance and Reengi-
neering, pp.105–113, March 2001.

[26] B. Hofer and F. Wotawa, “Spectrum enhanced dynamic slicing for
better fault localization,” Proc. European Conference on Artificial
Intelligence, pp.420–425, 2012.

[27] B. Hofer, F. Wotawa, and R. Abreu, “AI for the win: Improving
spectrum-based fault localization,” ACM SIGSOFT Software Engi-
neering Notes, vol.37, no.6, pp.1–8, Nov. 2012.

[28] J. Xu, W.K. Chan, Z. Zhang, T.H. Tse, and S. Li, “A dynamic
fault localization technique with noise reduction for Java programs,”
Proc. International Conference on Quality Software, pp.11–20, July
2011.

[29] F. Wotawa, “Fault localization based on dynamic slicing and hitting-
set computation,” Proc. International Conference on Quality Soft-
ware, pp.161–170, July 2010.

2066
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.8 AUGUST 2014

Heling Cao is currently a Ph.D. candi-
date in school of computer science and technol-
ogy, China University of Mining and Technol-
ogy. The main areas of interest are software en-
gineering and data mining.

Shujuan Jiang is a Professor at School of
Computer Science and Technology, China Uni-
versity of Mining and Technology where she
teaches graduate and undergraduate courses of
software engineering, compiling technique and
conducts research in these domains. She had 6
month of experience as a visiting scholar in Col-
lege of Computing, Georgia Institute of Tech-
nology, Atlanta, Georgia, U.S.A. in the year
2008–2009.

Xiaolin Ju is currently a Ph.D. candidate
in school of computer science and technology,
China University of Mining and Technology.
The main area of interest is Software analysis
and testing.

Yanmei Zhang received the Ph.D. degree
from School of Computer Science and Technol-
ogy, China University of Mining and Technol-
ogy in 2012. The main areas of interest are soft-
ware engineering and software quality.

Guan Yuan received the Ph.D. degree from
School of Computer Science and Technology,
China University of Mining and Technology.
The main areas of interest are data mining and
software engineering.

