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PAPER

Smoothing Method for Improved Minimum Phone Error Linear
Regression

Yaohui QI†,††,†††a), Fuping PAN††, Fengpei GE††, Nonmembers, Qingwei ZHAO††, Member,
and Yonghong YAN†,††, Nonmember

SUMMARY A smoothing method for minimum phone error linear re-
gression (MPELR) is proposed in this paper. We show that the objective
function for minimum phone error (MPE) can be combined with a prior
mean distribution. When the prior mean distribution is based on maximum
likelihood (ML) estimates, the proposed method is the same as the previ-
ous smoothing technique for MPELR. Instead of ML estimates, maximum
a posteriori (MAP) parameter estimate is used to define the mode of prior
mean distribution to improve the performance of MPELR. Experiments on
a large vocabulary speech recognition task show that the proposed method
can obtain 8.4% relative reduction in word error rate when the amount of
data is limited, while retaining the same asymptotic performance as conven-
tional MPELR. When compared with discriminative maximum a posteriori
linear regression (DMAPLR), the proposed method shows improvement
except for the case of limited adaptation data for supervised adaptation.
key words: speaker adaptation (SA), maximum likelihood linear regres-
sion (MLLR), maximum a posteriori linear regression (MAPLR), minimum
phone error linear regression (MPELR), discriminative maximum a poste-
riori linear regression (DMAPLR)

1. Introduction

Speaker adaptation is a effective way to improve the perfor-
mance of speech recognition and has become an important
component of automatic speech recognition systems. It re-
duces the mismatch between the training and testing data
caused by the speaker variability. Model-based adaptation
methods, which adjust the parameters of the original hidden
Markov model (HMM) set to fit the actual acoustic charac-
teristics by using some adaptation data from the target user,
have been popular for many years.

Transformation-based maximum likelihood linear re-
gression (MLLR) [1], [2] is one of model-based adaptation
methods. MLLR is effective when the amount of adap-
tation data is limited and has a wide range of applica-
tions [3]. It uses affine transformation to map the origi-
nal acoustic model to the speaker adaptation (SA) acous-
tic model. For MLLR, a transformation matrix can be used
for large number of model parameters, which allowed those
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model parameters that have not been observed in the adap-
tation data to be adapted. MLLR uses maximum likelihood
(ML) criterion to estimate the parameters of linear trans-
forms and a sufficient amount of data is required before it
begins to be effective. To address this problem, maximum
a posteriori (MAP) [4] based linear regression, which esti-
mates the transformation matrixes using the MAP criterion,
has been proposed. Maximum a posteriori linear regression
(MAPLR) [5]–[9] and structural MAPLR (SMAPLR) [10]
are notable examples. These approaches incorporate the
prior knowledge to address the potential over-fitting prob-
lem and have been shown to be successful. Another ex-
tension to MLLR is the use of discriminative criterion for
transform parameter estimation. The previous methods
include H-criterion based discriminative linear transform
(H-cri DLT) [11], minimum phone error linear regression
(MPELR) [12], [13], minimum classification error linear re-
gression (MCELR) [14], [15], minimum word classification
error linear regression (MWCELR) [16] and soft margin es-
timation linear regression (SMELR) [17]. These methods
were proposed to increase the separation between parame-
ters. Recently, discriminative maximum a posteriori linear
regression (DMAPLR) [18] is proposed to increase the dis-
criminative capability of MAP based linear regression esti-
mation and has shown better performance.

In this paper we revisit the smoothing technique for
MPELR. We show that the objective function for MPE can
be combined with a prior mean distribution. The perfor-
mance of MPELR can be improved by using MAP estimates
of the Gaussian parameters as the center of prior. The use
of MAP statistics to smooth the discriminative statistics is
motivated by the idea of behind minimum phone error max-
imum a posterior (MPE-MAP) [19]. Considering there may
not be enough data to estimate the ML Gaussian parameters
in the context of adaptation, MPE-MAP uses MAP statis-
tics to estimate the center of prior used to smooth the MPE-
trained parameters. A large vocabulary continuous speech
recognition task is used to assess the effectiveness of the
proposed method for supervised and unsupervised adapta-
tion and to compare its performance with that of MLLR,
MAPLR, and DMAPLR.

The remainder of this paper is organized as below. In
Sect. 2, we review the theory of model-based linear regres-
sion method for speaker adaptation. In Sect. 3, the method
of using MAP statistics to smooth the MPE statistics in
MPELR is given. Experiments are described in Sect. 4. The
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results are given on a large vocabulary recognition task for
supervised and unsupervised adaptation. Finally, a summary
and conclusion are presented in Sect. 5.

2. Model-Based Linear Regression Adaptation Meth-
ods

Given a set of acoustic models, λ, transformation-based
model space adaptation approaches apply a transformation
function Fϕ to map λ to a new set of acoustic models, λ̂.
The parameters, ϕ, of the transformation function is derived
from the adaptation data.

Affine transformation is used in linear regression adap-
tation methods. Mean transform is investigated initially
since means are assumed to characterize the main differ-
ences between speakers [1]. Then, the variance parameters
are also updated [20]. However, compared to mean trans-
forms, the improvement of recognition performance is lim-
ited [21]. In this paper, we focus on mean adaptation. We
obtain the adapted mean μ̂ according to

μ̂ = Aμ + b = Wξ

where W is an D × (D + 1) matrix [b A]; ξ = [1 μT ]T is the
extended mean vector (D is the dimension of the features); μ
is the original mean. In linear regression model-space adap-
tation, W is the transformation parameter.

Many optimization criteria have been used for estima-
tion of the transformation parameters. In this paper, MLLR,
MAPLR, MPELR and DMAPLR are examined.

2.1 MLLR

The ML criterion is initially used to estimate the transfor-
mation matrix because of its simplicity. Given R adaptation
observation sequences {O1,O2, . . . ,Or, . . .OR}, we estimate
transformation matrix W based on the ML criterion [1]:

ŴML = arg max
W
{

R∑

r=1

log P(Or | sref
r ,W, λ)} (1)

where sref
r is the corresponding reference of adaptation ob-

servation Or.
MLLR estimates the transformation matrix W to maxi-

mize the likelihood of the adaptation data given the adapted
model. The values of W are found by optimizing the follow-
ing auxiliary function which ignores the other parameters
independent of W [1]:

QML(W, Ŵ) =
R∑

r=1

M∑

m=1

Tr∑

t=1

γm(t) log N(Or(t), Ŵξm,Σm)

(2)

Where ξm and Σm are the extended mean vector and covari-
ance matrix for Gaussian component m; Or(t) is the obser-
vation vector at time t; γm(t) is the posterior probability of
Gaussian component m at time t. For the diagonal covari-
ance case a closed form of Ŵ can be obtained. The inverse

of the i-th row of Ŵ is given by [1]

Ŵ (i)T = G(i)−1K(i) (3)

G(i) =

M∑

m=1

R∑

r=1

Tr∑

t=1

γm(t)

σ(i)2
m

ξmξ
T
m (4)

K(i) =

M∑

m=1

R∑

r=1

Tr∑

t=1

γm(t)O(i)
r (t)

σ(i)2
m

ξm (5)

where σ(i)2
m is the i-th element of the diagonal variance and

O(i)
r (t) is the i-th element of the feature vector at time t.

2.2 MAPLR

ML estimation assumes that W is fixed but unknown pa-
rameters. W depends only on the original acoustic model
and the adaptation data. When very small amount of adap-
tation data is available the MLLR adapted acoustic model
performs even worse than the SI acoustic model. So MAP
criterion is used for the estimation of the transformation pa-
rameters to take into consideration the prior density. The
prior of the transformation matrix itself [5] and the mean
parameters [6]–[9] can both use for the MAPLR estimation.
In this paper, we use mean prior.

MAPLR estimates the transformation matrix W by [7]:

ŴMAP = arg max
W
{

R∑

r=1

log[P(Or | sref
r ,W, λ) p(W, λ)]} (6)

where p(W, λ) is the joint prior distribution of W and λ.
The multivariate Normal distribution is generally used as the
prior distribution for the m-th Gaussian [7]

p(W, ξm) =
exp[−1

2
(Wξm − ηm)T (βVm)−1(Wξm − ηm)]

(2π)D/2| βVm |1/2
(7)

where ηm and Vm are hyper parameters; β is a scaling factor
that controls the contribution of the prior distribution. The
ML estimation is a special case of MAP estimation when
β approaches infinity. The auxiliary function is written by
ignoring the parameters independent of W [6]:

QMAP(W, Ŵ) = QML(W, Ŵ)

+

M∑

m=1

1
β

[−1
2

(Ŵξm−ηm)T V−1
m (Ŵξm−ηm)]

(8)

where QML(W, Ŵ) is the auxiliary function for MLLR esti-
mation. With the prior as in Eq. (7), the MAP estimation
of transformation matrix Ŵ can be obtained with a similar
derivation to that in the MLLR approach. For the diagonal
covariance case, the calculation for Ŵ is as Eq. (3) but with
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[7]:

G(i) =

M∑

m=1

(

R∑

r=1

Tr∑

t=1

γm(t)

σ(i)2
m

+

1
β

v(i)2
m

)ξmξ
T
m (9)

K(i) =

M∑

m=1

(

R∑

r=1

Tr∑

t=1

γm(t)O(i)
r (t)

σ(i)2
m

+

1
β
η(i)

m

v(i)2
m

)ξm (10)

where v(i)2
m and η(i)

m are the i-th element of Vm and ηm re-
spectively. For small amounts of adaptation data the prior
statistics are important. As more data becomes available,
the adaptive statistics will become dominant.

2.3 DMAPLR

MAP estimation has the learning advantages of being effec-
tive and stable. In order to increase the discriminative power
on the MAP-based linear regression adaptation method a
new objective function is proposed. This function com-
bines the MAP objective function and likelihood ratio (LR)
score [18]:

ŴDMAP =

arg max
W
{α1

R∑

r=1

log[P(Or | sref
r ,W, λ) p(W, λ)]

+ α2

R∑

r=1

N∑

n=1

εn log
p(Or | sref

r ,W, λ)
p(Or | sn

r ,W, λ)
} (11)

where α1 and α2 are weighting parameters; εn is a scaling
factor which is used to control the weight of each of the

N-best hypothesis and satisfies
N∑

n=1

εn = 1; sn
r is the n-th

competing word sequence corresponding to observation Or.
With the multivariate Normal distribution as in Eq. (7),

DMAPLR calculates the transformation matrix for the case
of diagonal covariance also using Eq. (3) but with [18]:

G(i) =

R∑

r=1

∑

m∈sref
r

(

(α1 + α2)
Tr∑

t=1

γm(t)

σ(i)2
m

+

α1

β

v(i)2
m

)ξmξ
T
m

−
R∑

r=1

N∑

n=1

∑

l∈sn
r

εn

α2

Tr∑

t=1

γl(t)

σ(i)2
l

ξlξ
T
l (12)

K(i) =

R∑

r=1

∑

m∈sref
r

(

(α1 + α2)
Tr∑

t=1

γm(t)O(i)
r (t)

σ(i)2
m

+

α1

β
η(i)

m

v(i)2
m

)ξm

−
R∑

r=1

N∑

n=1

∑

l∈sn
r

εn

α2

Tr∑

t=1

γl(t)O
(i)
r (t)

σ(i)2
l

ξl (13)

where l ∈ sn
r and refers to the Gaussian belonging to a com-

peting model in the n-th best hypothesis.

2.4 MPELR

Due to the successful application in acoustic model training,
the minimum phone error (MPE) criterion is also used for
the estimation of transformation parameters to increase the
discriminative ability of model.

MPELR estimates the transformation matrix W by
[13]:

ŴMPE=arg max
W
{

R∑

r=1

∑

si∈slat
r

P(si |Or,W, λ)A(si, s
ref
r )} (14)

where slat
r is the corresponding word lattice of Or and is used

as an approximation to the hypothesis space; si is one of
hypothesized word sequences in slat

r ; P(si |Or,W, λ) is the
posteriori probability of hypothesis si given Or; A(si, sref

r ) is
the phone accuracy of hypothesis si compared with the cor-
responding reference phones and could usually be approxi-
mated to the sum of the phone accuracy over all phones in
si.

The weak-sense auxiliary function is proposed [19] for
the optimization of discriminative criteria. For the case of
MPE, the auxiliary function is based on the log likelihood
of phone arc q, log p(q). The auxiliary function for MPE-
based mean transform estimation is written by ignoring the
parameters independent of the transform W [12]:

QMPE(W, Ŵ)

=

R∑

r=1

∑

q∈slatt
r

eq∑

t=sq

γqm(t)γMPE
q log N(Or(t), Ŵξm,Σm)

+

M∑

m=1

Dm[−1
2

(Wξm − Ŵξm)T Σ̂−1
m (Wξm − Ŵξm)]

=

R∑

r=1

∑

q∈slatt
r

eq∑

t=sq

γqm(t) max(0, γMPE
q ) log N(Or(t), Ŵξm,Σm)

−
R∑

r=1

∑

q∈slatt
r

eq∑

t=sq

γqm(t) max(0,−γMPE
q ) log N(Or(t), Ŵξm,Σm)

+

M∑

m=1

Dm[−1
2

(Wξm − Ŵξm)T Σ̂−1
m (Wξm − Ŵξm)] (15)

where q ∈ slat
r denotes a phone q arc that belongs to the word

lattice slat
r ; sq and eq are the start and end times of phone arc

q respectively; γqm(t) is the posterior probability at state j,
mixture component m on the condition of arc q at frame t;

γMPE
q =

1
k
∂FMPE(λ)
∂ log p(q)

is a quantity defined for MPE training

and k is the acoustic scale; Dm is the smoothing factor with

a constant E, Dm = E
R∑

r=1

∑

q∈slat
r

eq∑

t=sq

γqm(t) max(0,−γMPE
q ).
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Eq. (15) has two parts, which are analogous to the numer-
ator and denominator terms in the maximum mutual infor-
mation (MMI) auxiliary function. But the definition of the
numerator and the denominator are different from those in
the MMI. The numerator statistics is accumulated with the
arcs whose γMPE

q is positive, while the denominator statistics
is accumulated with arcs whose γMPE

q is negative.
By calculating the partial differential of the Eq. (15)

with respect to each row of the transformation matrix Ŵ a
closed form can be obtained from Eq. (3) for the case of di-
agonal covariance but with [12]:

G(i) =

M∑

m=1

(
γnum

m − γden
m + Dm

σ(i)2
m

)ξmξ
T
m (16)

K(i) =

M∑

m=1

(
θnum

m (O(i)) − θden
m (O(i)) + Dmμ̃

(i)
m

σ(i)2
m

)ξm (17)

where μ̃m is the adapted mean vector with the initial MLLR
transform matrix W; γnum

m , θnum
m (O(i)) and γden

m , θden
m (O(i)) are

the numerator and denominator statistics with the following
forms [22],

γnum
m =

R∑

r=1

∑

q∈slat
r

eq∑

t=sq

γqm(t) max(0, γMPE
q )

θnum
m (O(i))=

R∑

r=1

∑

q∈slat
r

eq∑

t=sq

rqm(t) max(0, γMPE
q )O(i)

r (t) (18)

γden
m =

R∑

r=1

∑

q∈slat
r

eq∑

t=sq

γqm(t) max(0,−γMPE
q )

θden
m (O(i))=

R∑

r=1

∑

q∈slat
r

eq∑

t=sq

γqm(t) max(0,−γMPE
q )O(i)

r (t) (19)

Here, the calculation of γMPE
q is as follows:

γMPE
q = γq(cq − cavg)

where γq is the posterior probability for phone q in the lat-
tice; cavg is the average phone accuracy over all word se-
quences in the lattice; cq is the expected phone accuracy
over all word sequences containing a phone arc q. The cal-
culation of cq and cavg is based on the phone accuracy of
each phone arc in the word lattice.

3. The Smoothing Technique for MPELR

For MPELR, in order to prevent overfitting, ML statistics
is used to smooth the discriminative statistics over each
Gaussian component. To achieve this end, an extra term
associated with the ML estimate is added to the auxiliary
function, which is given by ignoring the parameters inde-
pendent of Ŵ:

log P(Ŵ) =

M∑

m=1

−1
2

[
τI

γml
m

∑

t

γml
m (t)(O(t) − Ŵξm)TΣ−1

m (O(t) − Ŵξm)]

(20)

where γml
m (t) is the Gaussian occupation probability at time

t and is obtained by ML training.
In this paper, we consider the prior of mean parame-

ters. The log joint prior distribution of W and λ is added
to the objective function for MPE. The multivariate Normal
distribution as in Eq. (7) is used. Furthermore, hyper param-
eter Vm is set to be the unadapted variance Σm and β is set to

be
1
τI

. Any function is both a weak and strong-sense auxil-

iary function of itself around any point [19]. So the auxiliary
function for MPELR is written by ignoring the parameters
independent of Ŵ:

Q(W, Ŵ) = QMPE(W, Ŵ)

+

M∑

m=1

τI[−1
2

(Ŵξm−ηm)T Σ̂−1
m (Ŵξm−ηm)] (21)

where τI is the smoothing factor. If ηm is obtained by
ML training, the result is the same as the above smoothing
method. The numerator statistics will be altered as follow:

γnum′
m = γnum

m + τI

θnum′
m (O(i)) = θnum

m (O(i)) + τI θ
ml
m (O(i))

γml
m

(22)

where θml
m (O(i)) and γml

m are the statistics calculated by ML
training.

In the context of adaptation, it may not be robust to use
ML estimates of state means to define the mode of the prior
distribution. This is because there is limited data to estimate
Gaussian parameters. In this case, it is preferable to use
MAP estimates of the Gaussian parameters to smooth the
MPE statistics. Hence, the numerator statistics for MPE-
based mean transform estimation will be modified as fol-
lows:

γnum′
m = γnum

m + τI

θnum′
m (O(i)) = θnum

m (O(i)) + τI θ
ml
m (O(i)) + τMAPμ

orig
m

γml
m + τ

MAP
(23)

where μorig
m is the speaker independent (SI) mean; τMAP is

the prior weight factor.

4. Experiments

In this section, we describe the evaluation of the proposed
smoothing method for MPELR for speaker adaptation on a
large vocabulary continuous speech recognition task.

4.1 Experimental Setup

All data used in the experiment is from the National 863
High-Tech Project. The training data is about 65 hours from
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140 speakers. The test data is from 6 speakers, 3 female and
3 male. There are 260 sentences for each speaker.

Speech signals were sampled at 8 kHz. The analysis
frame is 25 ms wide with a 15 ms overlap. Each speech
frame was parameterized into a 52-dimensional feature vec-
tor composed of 13 Mel-frequency-based perceptual linear
prediction coefficients (MF-PLP, [23]) and the first, second
and third order time derivatives of these features. Cepstral
mean and variance normalization [24] was performed for all
frames. Then a heteroscedastic linear discriminant analy-
sis (HLDA) [25] transformation was applied to project these
normalized features to a 39 dimensional space.

Acoustic models (AMs) used in experiments were
state-tied, cross-word triphone HMM. The phone set is com-
posed of 179 phonemes: 27 initials, 150 tonal finals, a si-
lence (sil) and a short pause (SP). All acoustic units had
a left-to-right topology. The SP model consisted of a sin-
gle emitting state. The other models had three emitting
states. The system had 5955 shared states resulted from a
decision tree state tying [26]. Each state observation den-
sity was represented by an 8-component Gaussian mixture
model (GMM). Each Gaussian component had a diagonal
covariance. Two “initial” speaker independent (SI) models
were trained: an MLE-trained system and an MPE-trained
system. For the purpose of adaptation, the SI acoustic mod-
els provide both bases for transformation and the parameters
of the prior distributions. A trigram language model was
employed in experiments.

The lattice-based framework was employed in MPE
training and MPE-based mean transform estimation. To
generate lattices, a ML-trained HMM set was used for
MPE training, the adapted HMM set from MLLR adaptation
was used for MPELR. And a unigram language model was
used to improve model generalization. The “exact-match”
approach [27] was used to perform the forward-backward
alignment to accumulate the statistics.

In the following experiments, supervised and unsuper-
vised batch adaptation was performed. During parameter es-
timation, the smoothing values for MPELR adaptation and
MPE training was chosen as E = 2.

4.2 Experimental Results

Firstly, the performance of the proposed smoothing tech-
nique for MPELR was evaluated. Table 1 shows the
word error rate (WER) of adapting an ML-trained or MPE-
trained initial HMMs set with MPELR. MPELR→ML and
MPELR→MAP refer to the use of ML and MAP estimates
of state means to define the mode of prior distribution re-
spectively. Figure 1 gives the WER of MPELR→ML and
MPELR→MAP adaptation from each test speaker with 4
utterances. We did preliminary experiments to determine
the value of τI and τMAP. Firstly, in the MPELR→ML adap-
tation experiment, we tested performance to determine the
value of τI . Then, τI was fixed, we did MPELR→MAP
adaptation experiments to find the value of τMAP that
gives the best performance. If τMAP = 0, MPELR→MAP

Table 1 Word error rate (%) for batch supervised and unsupervised ex-
periments for MPELR adaptation of ML and MPE trained model with var-
ious amount of data.

Fig. 1 Word error rate (%) for batch supervised and unsupervised exper-
iments for MPELR→ML (black) and MPELR→MAP (white) of ML and
MPE trained models with 4 adaptation utterances.

adaptation is the same as MPELR→ML adaptation. Our
setup in this set of experiments is: for MPELR→ML, {τI =

50, τMAP = 0}; for MPELR→MAP, {τI = 50, τMAP =

0.002}. Note that, during adaptation, only those Gaussians
with a large value of γml

m are used to smooth the MPE statis-
tics. Gaussians with γml

m below a certain threshold are not
used for smoothing.

The results show that the values of smoothing statistics
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Table 2 Effect of τI and τMAP on MPELR→MAP.

Fig. 2 Asymptotic property of MPELR.

are essential to the performance of MPELR adaptation given
limited adaptation data. For example, in supervised exper-
iment with only 4 (about 6.8s) adaptation sentences, 8.4%
relative improvement can be obtained with MAP statistics
over ML statistics by using an MPE-trained HMM set. For
ML-trained HMM set, less improvement is obtained. It may
be because more accurate statistics can be achieved by using
MPE-trained HMM set. Secondly, with increasing amounts
of adaptation sentences, the improvement from using MAP
statistics for MPELR is partly lost. Third, in unsupervised
adaptation experiments, MPELR→MAP still outperforms
MPELR→ML. But there is a loss in accuracy compared to
the supervised adaptation.

We investigate the effect of τI and τMAP on
MPELR→MAP. Supervised adaptation experiments were
performed. The results are showed in Table 2. It can be
seen that τMAP is more influential on smoothing.

In the second experiment, the asymptotic property of
the proposed smoothing method was evaluated. Figure 2
illustrates the effect of supervised MPELR adaptation with
different smoothing statistics. From Fig. 2, we can see that
the use of MAP statistics has the same asymptotic property
as the use of ML statistics.

Hereafter, MAP statistics are used for smoothing in
MPELR adaptation experiments.

Finally, MPELR adaptation was compared with the SI
model and the flowing common adaptation methods:

Table 3 Word error rate (%) for batch supervised and unsupervised ex-
periments for MLLR, MAPLR, DMAPLR and MPELR adaptation of ML
and MPE trained model with various amount of data.

Fig. 3 Supervised MLLR, MAPLR, DMAPLR and MPELR adaptation
of ML-trained model.

MLLR: the SA model from MLLR adaptation.
MAPLR: the SA model from MAPLR adaptation.
DMAPLR: the SA model from DMAPLR adaptation.
Table 3 and Figures 3–6 show the WER of adapting an

ML-trained or MPE-trained initial HMM set with MLLR,
MAPLR, DMAPLR and MPELR. For MAPLR, the scaling
factor β was set to 5 (the prior weight was 0.2) and we chose
the m-th mean vector and covariance matrix from SI HMM
set as the hyper parameters ηm and Vm. For DMAPLR, we
set εn = 1/N, N = 8 and {α1 = 0.4, α2 = 0.6, β = 2}. We
can observe that:

(1) MPELR→MAP gives higher word error rates than
DMAPLR with very limited adaptation data for supervised
adaptation. But with increasing amounts adaptation data it
outperforms DMAPLR.

(2) When limited adaptation data is available,
DMAPLR outperforms MPELR→MAP for unsupervised
adaptation. For both ML-trained and MPE-trained models,
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Fig. 4 Supervised MLLR, MAPLR, DMAPLR and MPELR adaptation
of MPE-trained model.

Fig. 5 Unsupervised MLLR, MAPLR, DMAPLR and MPELR adapta-
tion of ML-trained model.

Fig. 6 Unsupervised MLLR, MAPLR, DMAPLR and MPELR adapta-
tion of MPE-trained model.

as more adaptation data is available, MPELR→MAP
shows improvement over DMAPLR. With large amounts of
data, MPELR→MAP still shows better performance than
DMAPLR in ML-trained system. While, for MPE-trained
model, MPELR→MAP demonstrates no improvement.

(3) When the amount of speech data is limited MAPLR
outperforms MLLR and DMAPLR outperforms MAPLR
for both supervised and unsupervised adaptation. With in-
creasing amounts of adaptation data DMAPLR and MAPLR
converge asymptotically to MLLR. It may be because that
by using the combination of LR-based objective function
and ML criterion for transformation estimation, the im-
provement is not clear. With more adaptation data is avail-
able, MAP estimation converges to ML estimation. There-
fore, the LR score has less effect on transformation estima-
tion.

5. Conclusions

This paper has proposed a smoothing method for MPELR
adaptation. A log prior mean distribution is combined with
the objective function for MPE. The use of ML estimates of
state means as ‘prior’ will lead to the conventional smooth-
ing method for MPELR. Due to limited adaptation data,
we proposed the use of MAP estimates to get more robust
‘prior’ and in turn to improve the performance of adapta-
tion. Supervised and unsupervised speaker adaptation ex-
periments were conducted on a large vocabulary continu-
ous speech recognition task. Results show that, with lim-
ited amount of adaptation data, the use of MAP statistics
for smoothing can considerately improve the performance of
MPELR adaptation. Moreover, for MPELR, the use of MAP
estimates of state means as ‘prior’ has the same asymptotic
property as that of ML estimates. Moreover the proposed
method outperforms MLLR and shows better recognition
performance that MAPLR and DMAPLR with increasing
amounts of adaptation data for both supervised and unsu-
pervised adaptation. For ML-trained model, the proposed
method still shows improvement with large amounts of data.
But, for MPE-trained model, the improvement is not clear
for unsupervised adaptation when large amounts of data is
available.
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