
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.8 AUGUST 2014
2131

PAPER

Superpixel Based Depth Map Generation for Stereoscopic Video
Conversion

Jie FENG†a), Member, Xiangyu LIN†b), Hanjie MA†, and Jie HU†, Nonmembers

SUMMARY In this paper, we propose a superpixel based depth map
generation scheme for the application to monoscopic to stereoscopic video
conversion. The proposed algorithm employs four main processes to gen-
erate depth maps for all frames in the video sequences. First, the depth
maps of the key frames in the input sequence are generated by superpixel
merging and some user interactions. Second, the frames in the input se-
quences are over-segmented by Simple Linear Iterative Clustering (SLIC)
or depth aided SLIC method depending on whether or not they have the
depth maps. Third, each superpixel in current frame is used to match the
corresponding superpixel in its previous frame. Finally, depth map is prop-
agated with a joint bilateral filter based on the estimated matching vector
of each superpixel. We show an improved performance of the proposed
algorithm through experimental results.
key words: depth map, superpixel, depth generation, 2D to 3D conversion

1. Introduction

Interest in three-dimensional (3D) visualization and free
viewpoint television is becoming stronger and stronger in
recent years. However, 3D technology has not been very
successful in commercial applications due to several prob-
lems. Lack of 3D video content is one of the biggest bot-
tlenecks for the entire 3D industry. Stereoscopic conversion
from 2D video is a means to satisfy the need for 3D video
content. Most recent solutions start by extracting the depth
maps from the original 2D video sequences. Then the 3D
video contents can be generated by the depth image based
rendering (DIBR) [1] technology.

Obviously, the quality of depth map is critical in suc-
cessfully rendering 3D views. Most existing algorithms can
generate an acceptable depth map in an automatic way [2],
[3]. They explore various depth cues, such as motion par-
allax, texture gradients, linear perspective, relate height and
geometric information, etc. However, the quality of the gen-
erated depth map is still not good enough since the existing
computer vision algorithms at present are not able to infer
accurate depth due to the complicated structures in com-
mon videos. As a result, automatic depth map generation
schemes can only deliver a limited 3D perception for 3D
video applications.

Semi-automatic 2D-to-3D conversion, which can im-
prove the quality of generated depth maps, is attracting the
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attention of more and more researchers. It creates pro-
vide accurate depth maps for key frames by utilizing the
high-level knowledge of humans and generates good-quality
depth maps for non-key frames by computer vision algo-
rithms. As a result, it can balance the conversion quality
against the efficiency. Recently, some approaches have been
proposed for semi-automatic depth map generation for 2D-
to-3D conversion. Phan et al. [4] proposed a scheme which
generates depth maps via Random Walks and Graph Cuts
and combines the two maps into a single composite map.
The study in [5] first over-segments and manually annotates
the original image, then detects the edge and T-junction,
and finally obtains the depth map by depth propagation and
post-processing. Varekamp et al. [6] proposed a depth prop-
agation method based on bilateral filtering through a block-
based motion compensation algorithm. Wu et al. [7] use bi-
direction optical flow and Mean Shift algorithm to extract
foreground object and track depth information for non-key
frames. Rzeszutek et al. [8] use user-defined strokes to label
a number of key frames and then perform Random Walks
segmentation framework for the depth map generation. Lie
et al. [9] proposed a non-key frame depth propagation pro-
cess which uses depth motion compensation and post tri-
lateral filtering for a better depth contour of the dynamic
foreground objects. Cao et al. [10] use a few user operations
to segment multiple objects and assign proper depth to each
object for key frames. Then, for non-key frames, the depth
maps are generated automatically by a disparity propagation
algorithm. The approaches in [5], [6] mainly aim at image
semi-automatic depth generation. While approaches in [7]–
[10] mainly focus on the video semi-automatic depth prop-
agation based on the depth maps which have already been
generated for the key frames with computational complex-
ity. Considering that most existing methods only address
segmentation quality or depth generation efficiency, our pro-
posed scheme tries to strike a balance between them.

In this paper, we proposed a novel semi-automatic
depth map generation scheme. The rest of this paper is or-
ganized as follows. Section 2 details the proposed scheme.
The experiments and results are presented in Sect. 3. Finally,
the paper is concluded in Sect. 4.

2. The Proposed Scheme

Our proposal is based on segmenting each video frame
into superpixels of arbitrary shape and then generating the
depth map of each frame via superpixel merging and match-
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ing techniques. The depth map generation approach con-
sists of the following steps: (1) Key frame’s depth map
is generated by superpixel merging and some user interac-
tion. (2) Key frame or the frame with generated depth map
is over-segmented by depth aided superpixel segmentation
method and other frame is segmented by the SLIC method
with the same parameters. (3) A motion vector for each
segmented superpixel is estimated by a color based region
matching algorithm so as to find the corresponding depth
aided superpixel in the processed frame. (4) Depth map is
propagated with a joint bilateral filter based on the matching
vector of each superpixel.

2.1 Key Frame Depth Map Generation

For the most general 2D video sequences or movies which
have no corresponding depth map images, at the authors’
best knowledge, the best way of generating a good depth
map is to adopt the semi-automated technique. Some frames
in the sequences are selected as the key frames whose depth
maps are generated via human interaction so as to achieve
the best quality. Other frames are treated as non-key frames
whose depth maps are propagated by the generated depth
maps of key or non-key frames.

Therefore, as the first step, we apply a key-frame ex-
traction method as described in [14], which includes block-
based histogram difference shot segmentation and cumula-
tive occlusion based key frame selection. It can guarantee
relatively fewer depth propagation errors in all frames and
is more robust than the traditional temporal interval-based
method.

As shown in Figs. 1 and 2, the extracted key frames’
depth maps are generated by superpixel merging and some
user interactions. First the key frames are over-segmented
by the Simple Linear Iterative Clustering (SLIC) [11]
method, which is a good implementation of the superpixel
algorithm [12]. It can output a desired number of regular,
compact regions, which are called superpixels, with a low
computational overhead. The pixels in one superpixel are
usually most likely uniform in color and texture as can be
seen in Fig. 2 (b). The average pixel number in a superpixel
is a very important parameter in the SLIC segmentation pro-
cedure and is defined as superpixel’s size δ in this paper.

After the over-segmented stage, most of the small su-
perpixels are merged according to their similarity. We use
the color feature of each superpixel as the similarity mea-
sure characteristics, and calculate the average R, G, B color

Fig. 1 Key frame’s depth map generation process.

value of all the pixels in each superpixel region as Ra, Ga

and Ba, the color difference Diffcolor(i, j) between the ith su-
perpixel and jth superpixel in a frame can be calculated as
follows:

Diffcolor(i, j) = |Ra(i) − Ra( j)| + |Ga(i) −Ga( j)|
+ |Ba(i) − Ba( j)| (1)

If two neighboring superpixel’s color difference value
Diffcolor is less than a predefined threshold Tcolor, then these
two superpixels are merged together into one larger region.
The bigger the Tcolor is, the more regions are merged, the
less user interactions are required; otherwise, the smaller
the Tcolor is, the less regions are merged, the more user inter-
actions are required, while the more accurate segmentation
results are achieved. After the merging process, the number
of regions in a frame will be much smaller then that of the
initial superpixel regions, as shown in Fig. 2 (c). Next, a few
user interactions are imposed on the regions. The user can
scribble on the regions including merged regions and sin-
gle superpixel with a mouse to label them as different layers
with the aid of his own experience. Each layer usually con-
tains one object. With the help of the previous merging pro-
cess, the number of the user’s scribbles is greatly decreased
down to about 5 to 30 for one key frame. Sometimes scrib-
bles are required to distinguish pixels from different objects
with similar color. Figure 2 (d) shows the result of this step
where different layers are indicated by different alpha chan-
nel masks.

In the following step, we also need some user inter-
actions to assign the depth value of one frame in a layer
by layer way. Only three parameters, including the maxi-
mum depth value of the layer, the minimum depth value of

Fig. 2 Key frame’s depth map generation process. (a) the original frame.
(b) result of over-segmenting into superpixels. (c) segmentation result af-
ter superpixels merging. (d) segmentation result after user interactions.
(e) depth assignment result. (f) depth result after Gaussian filtering.
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Fig. 3 Key frame’s depth assignment templates.

Fig. 4 Depth map propagation process.

the layer and the depth models index, are needed to set for
each layer. There are 20 depth templates used for this key
frame’s layer depth assignment process. They can be set up
in advance and are shown in Fig. 3. In these templates, the
whiter the color, the larger the depth value. For example, in
Fig. 3 (e), the color in this depth model is whiter and whiter
from top to bottom, that means the depth values in the layer
applying this model are larger and larger from top to bottom.
The depth values of the pixels from the top line in this layer
are set as the minimum depth value while the depth values
of the pixels from the bottom line are set as the maximum
depth value. The depth values in the other lines are set ac-
cording to a linear function. Moreover, to reduce the disoc-
clusion artifacts in the rendering process [13], the generated
depth map of the key frame is smoothed by a Gaussian filter
to obtain the final one as shown in Fig. 2 (f).

2.2 Depth Aided Superpixel Segmentation

The non-key frames’ depth maps are propagated frame by
frame in an automatic way, as denoted in Fig. 4.

In traditional SLIC superpixel image segmentation al-
gorithm, only the color and the position’s correlation infor-
mation are considered to classify different regions. In some
cases, however, the pixels with similar color are not belong-
ing to the same object, such as the part marked by the blue
circle in Fig. 5. In this case, other information is needed to
distinguish between these pixels with similar color. Depth
information is a good choice to distinguish one object from
another under the assumption that different objects often
have different depth values. Based on this observation, we
add depth information in the SLIC algorithm to get a better
segmentation result.

The Euclidean distance Ds in the 5D space is used as
the distance measure in SLIC algorithm. Ds is defined as

Fig. 5 Traditional SLIC superpixel segmentation to different objects
with similar color.

follows [11]:

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2

dxy =

√
(xk − xi)2 + (yk − yi)2

Ds = dlab +
m
S

dxy

(2)

where l, a, b are the Lab color space value, x and y are the
x-coordinate and y-coordinate value. The subscript k and i
represent the different pixels. Ds is the sum of the lab dis-
tance dlab and the normalized position coordinate distance
dxy. S is the grid interval. The variable m is used to control
the compactness of a superpixel. The greater the value of
m, the more spatial proximity is emphasized and the more
compact the cluster.

We take the depth information as the sixth dimension
and modified the Euclidean distance Ds:

dd = |dk − di|
Ds = dlab +

m
S

dxy + dd

(3)

Then the simple linear iterative clustering algorithm is per-
formed as described in [11]. The only difference is the vec-
tor used for computing the image gradients. In our algo-
rithm, the depth information is taken into account and added
to the lab vector.

In our scheme, the depth aided superpixel segmentation
(D-SLIC) described above is only applied to the key frames
and the non-key frames with depth map. Conversely, the
traditional SLIC algorithm is applied to the other non-key
frames which don’t have depth maps yet.

2.3 Superpixel Region Matching

For depth propagation, we consider a situation of two adja-
cent frames in which the prior has a generated depth map
while the latter hasn’t. We segmented these frames by the
D-SLIC as described in Sect. 2.2 and the SLIC [11] using
the same parameters, respectively.

Then for each superpixel region in the latter frame, we
calculate the difference value between the current superpixel
and the reference superpixel in the window size of M × M
of the prior frame. The difference value can be calculated as
follows:
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Diff (i, j) =
∣∣∣R(i) − Rref ( j)

∣∣∣ + ∣∣∣G(i) −Gref ( j)
∣∣∣

+
∣∣∣B(i) − Bref ( j)

∣∣∣
+ λ ×

(∣∣∣X(i) − Xref ( j)
∣∣∣ + ∣∣∣Y(i) − Yref ( j)

∣∣∣)

(4)

where Diff (i, j) represents the difference value between the
ith superpixel in the latter frame and the jth superpixel in
the prior frame. R(i), G(i), B(i) are the average R, G, B
color value of the pixels in the ith superpixel and X(i), Y(i)
are the center coordinates value of the ith superpixel in the
latter frame. Accordingly, Rref ( j), Gref ( j), Bref ( j) are the av-
erage R, G, B color value of the pixels in the jth superpixel
and Xref ( j), Yref ( j) are the center coordinates value of the jth
superpixel in the prior frame. λ is the weighting factor for
spatial proximity matching. The spatial influence increases
with increasing λ. The color values of each pixels in a su-
perpixel tend to be similar. In our evaluations, it has been
found that the color factor is more important than the posi-
tion factor, thus, λ is set to 0.5 are selected to represent a
typical result in our experiment.

Next, in the window size of M×M, we select the jminth
superpixel which has the minimum value of Diff (i, j) as the
matching superpixel to the ith superpixel of the latter frame.

jmin = arg min
j

Diff (i, j) (5)

Then the matching vector MV x(i) and MVy(i) is calculated
as follows:

MV x(i) = X(i) − X( jmin)

MVy(i) = Y(i) − Y( jmin)
(6)

2.4 Depth Map Propagation Using Bilateral Filter

Bilateral filter which combines domain filtering and range
filtering is very effective for depth map propagation [6]. In
[6], the geometric distance and the color difference are used
to determine the Gaussian weights in bilateral filter. This
can’t distinguish different objects with similar color values.
In order to eliminate this unfavorable effect, we use the
matching vector of each superpixel as a parameter to cal-
culate the depth value in the latter frame:

Di(x, y)

=

N∑
m=−N

N∑
n=−N

wi(m, n)Dref (x +MV x(i) + m, y +MVy(i) + n)

N∑
m=−N

N∑
n=−N

wi(m, n)

wi(m, n) =

⎧⎪⎪⎨⎪⎪⎩
2ΔIi(m,n)/0.125, −N ≤ m, n ≤ N

0, otherwise

ΔIi(m, n) =
∑

c=r,g,b

|Ic(x, y)

− Ic
ref (x +MV x(i) + m, y +MVy(i) + n)

∣∣∣
(7)

where Di(x, y) is the estimated depth value at pixel (x, y) in
the ith superpixel and Dref (x, y) is the depth value at pixel
(x, y) from the prior reference frame. The weights wi(m, n)
depend on the color difference between pixel (x, y) in the
latter frame and the neighbor pixels (x+MV x(i), y+MVy(i))
in the prior frame. N is the filter window size. The bigger
the N value is, the more pixels are filtered, and the more
complexity of the algorithm is. To balance the conversion
quality against the efficiency, we set N to 9, the same value
as that in reference [6].

We go through all the pixels in the latter frame using
the filter and finally obtain the depth map. The depth map
are used as the reference for propagating the next frame’s
depth map as described above. Finally, all depth maps in the
sequence are generated.

3. Experiment

The proposed depth map generation algorithm is imple-
mented using VS2010 and is tested on an Intel R© CoreTM

i5 CPU@2.4 GHz personal computer with 4 GB memory.
To verify our proposed algorithm, various test sequences in-
cluding well-known video plus depth sequences are used for
objective and subjective evaluations.

First, we investigate the objective quality of the
generated depth map by the Peak Signal-to-Noise Ra-
tio (PSNR) results using Ballet and Breakdancers se-
quences [15], which are provided by Microsoft Research
(MSR) group with both color and associated depth maps
at 1024 × 768 pixels resolution. Each sequence consists of
100 frames at 15 frames per second with 8 different cam-
era views. Every 20 frames in each sequence are treated as
the key frames while the depth map of other non-key frames
are chosen for reference purposes. The PSNR of the depth
map can be calculated via the mean squared error (MSE)
between the reference depth map and propagated depth map
of the other 95 non-key frames, respectively, for each se-
quence. Figure 6 shows the PSNR comparison results. It
can be confirmed from Fig. 6 that the proposed algorithm
(with superpixel size of 64) are always superior to the algo-
rithm in [9] with a gain of up to 4.2 dB and can achieve the
average PSNR gains of 1.91 dB and 1.12 dB for Ballet and
Breakdancers respectively.

Next, we exhibit the generated depth map of the
previous sequence Ballet and sequences Philips-the-3D-
experience. Sequence Philips-the-3D-experience, which

Fig. 6 Propagated depth maps’ PSNR gain.
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has the feature of large displacement and textureless re-
gions, is from the Philips WoWvx web site [16]. It has 61
frames from frame number 380 to 440. The depth maps
with the number of 380, 400, 420 and 440 are already pro-
vided. Based on these provided or generated depth maps of
the key frames in these sequences, we propagated the rest
depth maps of the non-key frames. Some results of these
snap-shots are shown from Figs. 7 and 8. The first line of
Figs 7 and 8 are the original images, while the second and
the last line are the associated depth maps generated by the
algorithm in [9] and the proposed algorithm respectively.
As it is shown in these images, the proposed depth gener-
ation algorithm preserves more carefully the depth disconti-
nuities and the contours of the objects. In Fig. 8, for exam-
ple, the outline of the girl’s body is very blurred in the depth
map of the second line which is generated by the algorithm
in [9]. On the other hand, our proposed method preserves
the body boundaries very well. Our method might slightly
blurred contours due to errors in the segmentation (the trees
in the background) but, in overall, it presents better subjec-
tive quality than [9].

Fig. 7 The original images and associated depth maps generated by the
algorithm in [9] and the proposed algorithm of the sequence Ballet.

Fig. 8 The original images and associated depth maps generated by the
algorithm in [9] and the proposed algorithm of the sequence Philips-the-
3D-experience.

Moreover, the parameter δ of the superpixel’s size in
segmentation procedure influences the quality of generated
depth map and the consuming time of propagation process.
We select six typical values at 16, 32, 64, 128, 256 and 512
for δ and show the subjective quality in Fig. 9 and the ratio
of the propagation consuming time in Fig. 10. Table 1 lists
the PSNR gains against the algorithm in [9] with different
δ value. Table 1 indicates that the PSNR gains are similar
with δ less to 64, when δ is larger than 64, the PSNR gains
are decreasing. By subjective observation, it can also be
confirmed from Fig. 9 that the smaller the superpixel’s size
is, the more detailed depth maps can be produced.

The algorithm in reference [9] consumes about 100 s
per frame. While the base consuming time of the proposed
algorithm with δ equal to 64 is 98.9 s per frame includ-
ing 60.8 s for over-segmentation and 39.1 s for superpixel
matching and depth map propagation in the same comput-
ing environment.

Fig. 9 Depth propagation result with different number of pixels in a
superpixel. (a) 16 (b) 32 (c) 64 (d) 128 (e) 256 (f) 512.

Fig. 10 The ratio of the propagation consuming time with different
superpixel’s size.
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Table 1 Average PSNR gain (dB) with different δ.

4. Conclusion

In this work, we have proposed a depth map generation al-
gorithm for converting monoscopic video to stereoscopic
3D video. To improve the quality of the generated depth
maps, the frames are over-segmented and the segmented re-
gions are matched by superpixel matching algorithm. Depth
maps are propagated using bilateral filter according to the
matching vectors. Experimental results illustrate the robust-
ness and effectiveness of this approach. We will consider a
bi-directional region matching algorithm for accurate depth
propagation in the future work.
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