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PAPER

A Web Page Segmentation Approach Using Visual Semantics

Jun ZENG†∗a), Brendan FLANAGAN†, Sachio HIROKAWA††, Nonmembers, and Eisuke ITO††, Member

SUMMARY Web page segmentation has a variety of benefits and po-
tential web applications. Early techniques of web page segmentation are
mainly based on machine learning algorithms and rule-based heuristics,
which cannot be used for large-scale page segmentation. In this paper, we
propose a formulated page segmentation method using visual semantics.
Instead of analyzing the visual cues of web pages, this method utilizes three
measures to formulate the visual semantics: layout tree is used to recognize
the visual similar blocks; seam degree is used to describe how neatly the
blocks are arranged; content similarity is used to describe the content co-
herent degree between blocks. A comparison experiment was done using
the VIPS algorithm as a baseline. Experiment results show that the pro-
posed method can divide a Web page into appropriate semantic segments.
key words: web page segmentation, visual semantics, seam degree, content
similarity

1. Introduction

On the internet, web pages are often considered the small-
est indivisible units of information. For example, the major
commercial search engines build an index from web pages.
However web pages are not atomic units on the web. A
typical web page consists of multiple segments with dif-
ferent functionalities, such as main content, navigation bar,
menu list, advertisements. The process to divide a web page
into visually and semantically cohesive segments is so called
web page segmentation.

Web page segmentation has a variety of benefits and
potential web applications, such as browsing web pages on
mobile devices [1]–[3], detecting duplicate web pages [4],
information extraction [5]–[7].

The early techniques of web page segmentation are
mainly based on machine learning algorithms [1], [4],
[8], [9] and rule-based heuristics [2], [3], [5]–[7], [10]–[12],
[15]. Because of the small scale training data set, machine-
learning-based methods can only be applied in some certain
fields of web pages. The heuristics-based approaches in-
volve simple rule-based heuristics either by interpreting the
meaning of tag structures or visual analysis. While a heuris-
tic approach might work well on small sets of pages, it isn’t
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suitable for large-scale sets of pages.
In this paper, we assume that a web page is made up

of finite blocks and the web pages can be segmented using
the visual features of blocks. The visual features can be
considered as the following three parts: (1) similar visual
blocks have similar semantics, e.g. in a shopping site, the
product records are arranged in a similar layout; (2) relevant
blocks are always neatly arranged and put visually close to-
gether; (3) blocks with different functionalities contain dif-
ferent types of contents, e.g. in a news site, long text may
be the main content; a link list may be the related news list;
a big picture may be an advertisement, etc. Due to the dif-
ferent visual features, humans can easily identify each of
the segments without any descriptions. We call these vi-
sual features visual semantics. However, these semantics
are intuitive and human friendly. In other words, they are
not machine friendly and therefore difficult to be understood
by computers. This issue gives rise to the question: How
can these visual semantics be formulated? We use three for-
mulated measures to represent these visual semantics: lay-
out tree [18] is used to recognize the similar visual blocks;
seam degree is used to describe how neatly the blocks are
arranged; content similarity is used to describe the content
coherent degree between the blocks. Based on these three
measures, we proposed a web page segmentation method.
The experiment results show that the proposed method can
divide a web page into appropriate semantic segments.

The rest of the paper is organized as follows: Re-
lated works are reviewed in Sect. 2. Visual block and pre-
processing of web pages are introduced in Sect. 3. A web
page segmentation method using visual semantics is pro-
posed in Sect. 4. Experiment analysis and results are re-
ported in Sect. 5. Finally, conclusion and future work are
given in Sect. 6.

2. Related Work

In the past few years, there has been plenty of work on au-
tomatic web page segmentation.

Some of the early approaches are based on machine
learning algorithms [1], [4], [8], [9]. These approaches seg-
ment pages by training the clues from DOM or simple vi-
sion cues. Machine-learning-based approaches can only be
applied in some certain fields of web pages, because of the
limitation of the training data set. Because these algorithms
need to be trained, they can be regarded as semi-automatic
approaches.
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In order to automatically segment web pages,
heuristics-based approaches were proposed. Some of the
heuristics-based approaches use HTML structure tags or
DOM tree to segment a web page [3], [11], [12], [15]. These
methods also have some limitations, for example: these
methods may falsely separate closely related contents and
combine unrelated contents together. Some other heuristics-
based approaches rely on visual cues from browser render-
ings [2], [5]–[7], [10]. Most of them focus on the location,
size or font cues of web pages. Hereinto, VIPS [10] is con-
sidered to be the most representative visual-cue-based algo-
rithm. It has three steps: first, a web page is recursively
divided into blocks by using a number of heuristics; second,
horizontal and vertical separators are determined; third, the
structure of the page is constructed. These approaches can
make good use of the visual features of web pages. How-
ever, heuristics are often based on simple models that can-
not be generalized. In other words, even through a heuristic
approach might work well on small sets of pages it isnt́ suit-
able for large sets of pages.

Because of the limitation of heuristics-based ap-
proaches, many non-heuristics-based approaches [13], [14],
[16], [17] were proposed. X. Liu et al. [13] proposed a
Gomory-Hu Tree based Web page segmentation algorithm.
The algorithm firstly extracts vision and structure informa-
tion from a web page to construct a weighted undirected
graph, whose vertices are the leaf nodes of the DOM tree
and the edges represent the visible position relationship be-
tween vertices. Then it partitions the graph with a Gomory-
Hu tree based clustering algorithm. G. Hattori et al. J. Kong
et al. [14] proposed Spatial Graph Grammar (SGG) to per-
form the semantic grouping and interpretation of segmented
screen objects. Instead of analyzing HTML source codes,
they applied an image processing technology to recognize
atomic interface objects from the screenshot of an inter-
face and produce a spatial graph, which records significant
spatial relations among recognized objects. However, there
are not enough quantified experiment results to indicate that
SGG is effective to segment any kinds of web pages. J. Kang
et al. [16] proposed repetition-based web page segmentation
method. They consider the repetitive tag patterns to be key
patterns in the DOM tree structure of a page. By detecting
key patterns in a page and generating virtual nodes to cor-
rectly segment nested blocks, the method can segment pages
into logical blocks. However, this method is only suitable
for the pages that contain repetitive patterns. C. Kohlscht-
ter et al. [17] utilized the notion of text-density as a measure
to identify the individual text segments of a web page. Al-
though, his method can reduce the problem to solving a 1D-
partitioning task, it can be used for small-scale pages that
have certain patterns.

Our work can be classified as a vision-based approach.
Different from the visual-cue-based method, e.g. VIPS, our
work formulates the visual feature as quantified and formu-
lated measures. Based on these measures, the proposed ap-
proach can divide web pages into semantic segments.

3. Preliminaries

3.1 Visual Blocks

A web page is made up of finite blocks. We also call these
blocks visual block or block for short. We consider a visual
block as a visible rectangular region on a web page. The
definition of a visual block is as follows:

Definition 3-1: Visual block B = (Ob j,Rect), where
Ob j is a DOM object, and Rect represents the visible rect-
angular region where B is displayed in the web page.

According to W3C standard, a web page can be trans-
formed into a DOM tree, and each DOM object has a corre-
sponding element in the web page. If an element is visible, it
will be displayed within a rectangular region in a web page.
Therefore, a DOM object and its rectangular region (if it is
visible) represent a block in a web page. Moreover, we de-
fine the child block and leaf block as follows:

Definition 3-2: For two given visual blocks B1 =

(Ob j1,Rect1) and B2 = (Ob j2,Rect2), if Ob j1 is a child node
of Ob j2, then B1 is the child block of B2.

Definition 3-3: If a visual block B = (Ob j,Rect) does
not have any child blocks, then B is a leaf block.

3.2 Pre-Processing Web Pages

According to Definition 3-1, each visual block has a corre-
sponding DOM object. Thus, we first obtain the DOM tree
of the web page.

In a DOM tree, each node is a DOM object. The DOM
objects can be divided into five types of objects: element,
attribute, text, comment and document. We further clas-
sify the element objects into two categories: visible ele-
ment objects and invisible element objects. The visible ele-
ment objects whose width and height properties are not zero
and the display property is not none can be seen through
the browser. The invisible element objects contains objects
whose tags are <head>, <script>, <meta>, etc, which do
not have visual attributes. Moreover, we classify the visi-
ble element objects into two categories: inline objects and
line-break objects. Inline objects affect the appearance of
text and can be applied to a string of characters without a
line break, including objects whose tags are <b>, <big>,
<font>, etc. The other visible element objects are line-break
nodes. Obviously, only the visible element objects and text
objects can be displayed in Web pages. Thus we need to
prune the DOM tree. The pruning rules are as follows:

Rule 1: The attribute nodes, comment nodes, and doc-
ument nodes should be cut.

Rule 2: The invisible nodes whose tags are <head>,
<script>, <meta>, etc should be cut.

Rule 3: The visible nodes whose width and height
properties are zero and display property is none should be
cut.

Rule 4: If a node contains only one node whose node
name is <#text>, then the <#text> node should be cut.
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Rule 5: If a node only contains <#text> nodes and in-
line nodes, and each inline node has only one <#text> node,
then all the <#text> nodes and inline nodes should be cut.

As mentioned before, Rule 1, Rule 2, and Rule 3 aim to
prune the nodes that cannot be displayed in web pages. As
for Rule 4, the text that appears in a web page is within a tag
in HTML, such as text within a <p> tag. However, in the
DOM tree, the <p> node contains a child node whose node
name is <#text>. The <#text> node does not have width
and height properties, and its parent node <p> also con-
tains the text information of the <#text> node. Even if the
<#text> nodes are cut, its text information will not be lost.
Rule 4 is used to cut such <#text> nodes. Similarly, Rule 5
aims to prune the inline nodes with nested <#text> nodes.

After the DOM tree has been pruned, only a part of vis-
ible nodes and text nodes remains in the DOM tree. It should
be noted that both element nodes and text nodes have corre-
sponding objects of the DOM. According to Definition 3-1,
each visual block has a corresponding DOM Element object
and a rectangular region. Thus, it is necessary to get the cor-
responding rectangular region of each Element object. The
Element object does not contain the absolute coordinate of
the corresponding HTML element, and it only contains a rel-
ative coordinate to the parent HTML element. Fortunately,
some browsers provide APIs to get absolute coordinate eas-
ily. As for the text nodes, the width and height can be indi-
rectly calculated by analyzing the width and height of parent
node and sibling nodes. After rectangular regions are deter-
mined, the corresponding visual blocks are also determined.

4. Web Page Segmentation Using Visual Semantics

4.1 Recognizing Similar Visual Blocks Using Layout Tree

Some pages contain similar visual blocks. For example,
Fig. 1 shows a page of a shopping site, and the red rectangles
indicate the similar visual blocks. Each block is a product
record, thus we consider that these blocks have independent
semantic and they should not be divided into smaller seg-
ments. Therefore, we should recognize the similar visual
blocks in advance.

In our early work, we proposed a layout tree based
method to identify the similar visual blocks [18]. For a given
block, if the block is not a leaf block, we can transform the
block into a layout tree as shown in Fig. 2.

In the Fig. 2, there are two separators S1 and S2. Each
separator can divide the block into two smaller parts. The
separators can be considered as a root of a tree, and the two
smaller parts can be considered as the left subtree and the
right subtree. Generally, if the separator is horizontal, the
upper part is the left subtree and lower part is the right sub-
tree. If the separator is vertical, the left part is the left subtree
and right part is the right subtree. Therefore, the given block
can be transformed as a tree. We call the tree a “layout tree”.

For two given blocks, first they are transformed into
two layout trees respectively. Then the Tree Edit Distance
(TED) algorithm [19] is used to calculate the similarity of

Fig. 1 An example of similar visual blocks.

Fig. 2 Generation of layout tree.

two layout trees. If the similarity is less than the threshold,
then the two blocks are visual similar. According to our
early experiments, the optimal threshold is 0.4. Using this
method all the similar visual blocks can be recognized. Due
to paucity of space we only introduce the method roughly.
See paper [18] for the detailed algorithm.

4.2 Calculating Seam Degree of Blocks

Because the blocks are visible rectangles in a web page, they
are always arranged by certain rules. The relevant blocks are
always neatly arranged and put visually close together. For
any two given blocks, their arrangements can be classified
into three types as shown in Fig. 3. In Fig. 3 (a), a1 and a2 are
not adjacent, thus we consider them to be visually irrelevant.
In Fig. 3 (b) (c), b1 and b2, c1 and c2 are adjacent blocks.
Intuitively, we consider c1 and c2 are closer than b1 and b2.
Suppose there is a minimum rectangle that can just cover the
two blocks in Fig. 3 (b) and Fig. 3 (c). c1 and c2 can fully fill
up the minimum rectangle, but b1 and b2 cannot fill up it. It
is known that each segment has a corresponding rectangle
appearing in the page. In other words, c1 and c2 are more
likely to be a segment, but b1 and b2 cannot be considered
as a segment. We utilize seam degree to describe how close
the two blocks are arranged. For two given adjacent blocks
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Fig. 3 Three arrangement types of two blocks.

B1 and B2, if they are upper-lower adjacent, the seam degree
S D(B1, B2) can be calculated as in formula (1):

S D(B1, B2) =
S eamLength(B1, B2)2

Width(B1) ×Width(B2)
(1)

where S eamLength(B1, B2) represents the seam length of B1

and B2, and Width(Bi) represents the width of Bi. Simi-
larly, if B1 and B2 are left-right adjacent, the seam degree
S D(B1, B2) can be calculated as in formula (2):

S D(B1, B2) =
S eamLength(B1, B2)2

Height(B1) × Height(B2)
(2)

where Height(Bi) represents the height of Bi.
S D(B1, B2) is between 0 and 1. Since the seam degree

is based on the visual information of blocks, it can indicate
the visual coherent degree of adjacent blocks.

If a block has child blocks, the average seam degree of
adjacent child blocks can indicate the visual coherent degree
of the child blocks in the block. For a given visual block B,
the set of child blocks in B is Child(B) = {b1, b2, · · · , bn}. If
two child blocks bi and b j are adjacent, we count 1 pair. Let
us assume that there are m pairs of adjacent child blocks.
The averaging seam degree AvgS D(B) can be calculated as
in formula (3):

AvgS D(B) =

∑
S D(bi, b j)

m
(3)

where bi and b j (i � j) are two adjacent child blocks.
AvgS D(B) degree is also between 0 and 1. If it is closer
to 0, the visual coherent degree of child blocks is lower. If
it is closer to 1, the visual coherent degree of child blocks is
higher.

4.3 Calculating Content Similarity of Blocks

Blocks with different semantics always have different types
of contents. For example, a navigation bar has a list of short
link text; an advertisement has a big picture; a user registra-
tion form has some text boxes, pull-down menus, buttons,
etc. These different contents have different visual features.
If the contents of two blocks are similar, the two blocks
have a high content coherent degree. We introduce the Con-
tent Similarity to describe the content coherent degree. We
roughly classify the contents into four categories:

1. Text Contents (TC): all the text falls into this category,
except the text that contains a hyper link.

2. Link Text Contents (LTC): the text that contains a
hyper link can be classified into this category.

3. Image Contents (IMC): this category contains pic-
tures, photos, icons, etc.

4. Input Contents (INC): this category includes ele-
ments that can accept user input, such as: text box,
radio button, pull-down menus, etc.

For a given block B, the content set of B is C =

{c1, c2, · · · , cn}. First, the contents are classified into the four
categories mentioned above. Then four types of content sets
can be obtained, denoted TC, LTC, IMC, and INC. Ob-
viously, TC, LTC, IMC and INC are the subsets of C. If
one of the content subsets is φ, it means that B does not con-
tain the corresponding type of the contents. The contents are
also the elements of web page, thus each of them has a cor-
responding block. We use Area(ci) to represent the area of
the corresponding block of content ci. If ci is a text content
or link text content, we approximately calculate the area as
in formula (4):

Area(ci)=Length(ci)×FontS ize(ci)
2 (ci ∈TC∪LTC)

(4)

where Length(ci) represents the character byte size of text
or link text, FontS ize(ci) represents the font size of text or
link text.

For a given content subset (TC, LTC, IMC or INC),
according to the area of contents, the content of the given
subset can be sorted from large to small area. By utilizing
the sorted content subsets, four content area vectors can be
obtained, denoted Vtc, Vltc, Vimc and Vinc. The values of el-
ements in the four vectors are the areas of corresponding
contents. After the content vectors are determined, the con-
tent similarity of two blocks can be calculated.

If the content area vectors of two given blocks are de-
termined, the similarity of each content area vector (Vtc,
Vltc, Vimc and Vinc) can be calculated. There are many al-
gorithms to calculate the similarity of two vectors, of which
the cosine similarity is a simple and efficient algorithm [20].
Here we take the vector of the text content as an exam-
ple to explain the calculation of cosine similarity. For two
given blocks B1 and B2, their text content area vectors are
Vtc 1 = (u1, u2, · · · , um) and Vtc 2 = (v1, v2, · · · , vn). Let
us assume that Vtc 1 � φ, Vtc 1 � φ, and n > m. Be-
cause the cosine similarity requires that the two vectors
must have the same number of elements, we need to add
(n − m) elements whose value are 0 into Vtc 1, denoted
V ′tc 1 = (u1, u2, · · · , um, um+1, · · · , un). The cosine similarity
of V ′tc 1 and Vtc 2 can be calculated as in formula (5):

Cos(V ′tc 1,Vtc 2) =

∑n
i=1 ui × vi√∑n

i=1(ui)2 × √∑n
i=1(vi)2

(5)

If both V ′tc 1 and Vtc 2 are φ, Cos(V ′tc 1,Vtc 2) is ill-
formed. In this case, we define the Cos(V ′tc 1,Vtc 2) to be
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zero. Similarly, the cosine similarity of other content area
vectors (including Vltc, Vimc and Vinc) can also be deter-
mined.

Additionally, the four types of contents may have dif-
ferent weight in B1 and B2. Also, we take the text con-
tent as an example to explain the calculation of weight. For
two given blocks B1 and B2, their text content area vectors
are Vtc 1 = (u1, u2, · · · , um) and Vtc2 = (v1, v2, · · · , vn). The
weight of text content can be calculated as in formula (6):

Weight(Tc) =

∑m
i=1 ui +

∑n
j=1 v j

Area(B1) + Area(B2)
(6)

where the Area(Bi) represents the total area of all contents
in Bi. It means that the greater the area of the corresponding
type of contents is, the higher its weight will be.

After the cosine similarity and weight of each con-
tent area vector are determined, the content similarity
CS (B1, B2) of B1 and B2 can be calculated as in formula
(7):

CS (B1, B2) =
∑

Weighti ×Cosi (7)

where Weighti represents the weight of four types of con-
tents (TC, LTC, IMC and INC), and Cosi represents the
cosine similarity of the corresponding content area vector.
CS (B1, B2) is between 0 and 1. Since the content similarity
is based on the content information of blocks, it can indicate
the content coherent degree of blocks.

If a block has child blocks, the average content simi-
larity of adjacent child blocks can indicate the content co-
herent degree of the child blocks in the block. It should
be noted that only the content similarity of adjacent child
blocks is considered. For a given visual block B, the set of
child blocks in B is Child(B) = {b1, b2, · · · , bn}. If two child
blocks bi and b j are adjacent, we count 1 pair. Let us assume
that there are m pairs of adjacent child blocks. The average
content similarity AvgCS (B) can be calculated as in formula
(8):

AvgCS (B) =

∑
CS (bi, b j)

m
(8)

where bi and b j (i � j) are adjacent child blocks. AvgCS (B)
is also between 0 and 1. If it is closer to 0, the content
coherent degree of child blocks is lower. If it is closer to 1,
the content coherent degree of child blocks is higher.

4.4 Segment Web Pages Using Visual Semantics

After the pruned DOM tree is obtained, the similar visual
blocks can be recognized and the seam degree and content
similarity of each block can be determined in advance. Here,
we introduce the threshold α of AvgS D(B) and the threshold
β of AvgCS (B). Empirically, we set α to be 0.9 and β to be
0.8. Our web page segmentation algorithm is a top-down
method. It begins from the root node of the DOM tree and
which is set to be the current node. The corresponding block
of the current node will be judged according to the steps

Table 1 Steps for judging a block.

Step 1 If the current block is a leaf block, then do not divide it.
Otherwise go to Step 2.

Step 2 If the current block contains recurrent blocks, then divide
it. Otherwise go to Step 3

Step 3 If the current block is one of recurrent blocks, then do not
divide it. Otherwise go to Step 4

Step 4 If the current block contains only one child block, then
divide it. Otherwise go to Step 5

Step 5 If the AvgS D(B) of the current block is less than α, then
divide it. Otherwise go to Step 6

Step 6 If the AvgCS (B) of the current block is less than β, then
divide it. Otherwise go to Step 7.

Step 7 If the area of the current block is greater than the half of
client area, then divide it. Otherwise go to Step 8.

Step 8 If the current block does not satisfy all of the above con-
ditions, then do not divide it.

Fig. 4 Algorithm for web page segmentation.

shown in Table 1. If the current node should be divided,
then its child blocks will be judged as well. If the current
node should not be divided, then it will be pushed into an
array of segments and its child blocks will not be judged
anymore. The detailed algorithm is shown in Fig. 4.

5. Experiments

5.1 Data Set

We randomly selected 50 query keywords from the
chiebukuro category† of Yahoo Japan. We submitted the
50 queries to Yahoo Japan. For each of the 50 queries, we
randomly collected 10 pages from the top-100 search re-
sults. As a result we collected 500 web pages. Since 81
pages are invalid or cannot be correctly displayed, we chose
the remaining 419 pages as experiment data, in which 348
(83.0%) pages are written in HTML 5 and 71 (17.0%) pages
are written in HTML 4. Moreover, 207 (49.4%) pages use
javascript to generate HTML elements automatically. The

†http://chiebukuro.yahoo.co.jp/
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Fig. 5 (a) is an original page, (b) is visual segment result using our eval-
uation program.

419 pages are from 117 different web sites, thus the diver-
sity of the data set can be guaranteed. The diversity can be
used to test the robustness of the proposed method. In the
419 web pages there are 261 pages that contain similar vi-
sual blocks.

5.2 Evaluation Method

Different from other automatic evaluation experiments, the
evaluation of web page segmentation is a human-involved
task. A lot of previous work manually labeled the segments
of web pages in advance and compared the labeled seg-
ments with the segment results using their method. How-
ever, labeling the segments is a time-consuming process.
Therefore, we developed an evaluation program by using the
APIs of Chrome Extension†, which is a small piece of soft-
ware program that can modify and enhance the functional-
ity of the Chrome browser. The Chrome Extension can help
the proposed method to obtain the visual information (e.g
width, height, and coordinate) of blocks after the browser
transforms an HTML file into a web page. Therefore, even
if some HTML elements are generated by javascript, the
information of these elements can also be obtained. This
evaluation program can visualize the segmentation results
as shown in Fig. 5.

The colored overlay rectangles represent the segment
results. When a rectangle is clicked, the area and number
of the clicked rectangle will be recorded by our program
automatically.

Direct comparison of the proposed method with all of
the related work describe in Sect. 2 is difficult, since the data
set and evaluation program used are not open to the pub-
lic. Therefore we implemented the VIPS [10] algorithm as
the comparison baseline. VIPS is a popular page segment
method that is often taken as a comparison baseline by other
work. Our evaluation experiment contains two steps.

In the first step, we utilized our evaluation program to
segment the 419 pages using VIPS and the proposed method
respectively. The badly divided segments (bad segments)
were then manually checked. For each page, the program
recorded the area and number of both the checked segments
and all segments. Given a page P, S = {s1, s2, · · · , sm} is
the set of segment results of P, and S ′ = {s′1, s′2, · · · , s′n} is
the set of bad segments of P. We used the area rate of bad
segments (Bad Area Rate, BAR) and number rate of bad
segments (Bad Number Rate, BNR) to evaluate the segment

†http://www.chromeextensions.org/

Table 2 Five categories of segment results.

Categories Descriptions
Perfect There are no bad segments.
Good There are few bad segments, and these bad seg-

ments have little effect on segment results.
Fair There are some bad segments, and these bad seg-

ments have an effect on segment results.
Bad There are a lot bad segments, and the segment re-

sults are not acceptable.
Too Bad Almost all the segments are bad segments.

Table 3 Average BAR and BNR of 419 pages and 261 pages.

419 pages 261 pages
BAR BNR BAR BNR

VIPS 34.2% 21.9% 32.2% 20.4%
Proposed method 1.65% 3.55% 0.990% 2.23%

results of a page P. BAR(P) and BNR(P) can be calculated
as in formula (9):

BAR(P) =

∑
Area(s′i)∑
Area(s j)

BNR(P) =
n
m

(9)

where Area(si) represents the area of segment si. The
BAR(P) and BNR(P) are the less the better.

In the second step, we manually classified the segment
results into 5 categories according to the results of the first
step. The 5 categories and their descriptions are shown in
Table 2. When we were classifying the segment results we
considered not only the number of bad segments, but also
the effect of bad segments. The effects are associated with
the area of segments and the place where the segments are
displayed. Image that, there are two bad segments, if one
is at an inconspicuous place and the other one is at an im-
portant place, then their effects on the segment results are
different.

5.3 Experiment Results

Our experiments are done on CORE i5 2.6 GHz, 4 GB, 12.1
inch, 1280*800 PCs. Table 3 presents the average BAR and
BNR. In Table 3, the “419 pages” represents the experiment
results of the total 419 pages, and the “261 pages” repre-
sents the experiment results of the 261 pages that contain
similar visual blocks. From Table 3, the 21.9% segments of
VIPS are bad segments, and the area of the bad segments ac-
counts for 34.2% of the total area of all segments. Contrar-
ily, only 3.55% segments of our method are bad segments,
and their area accounts for only 1.65%. Moreover, in the
results of VIPS, the BAR is greater BNR. It infers that the
bad segments of VIPS have a large area. Contrarily, the bad
segments of the proposed method have a small area. As
mentioned above, we consider the smaller area that the bad
segments have, the less effect they will have. Therefore, it
is obvious that our method performances better than VIPS.

Because there are 261 pages containing recurrent
blocks, we analyzed the segment results of these 261 pages
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in much more detail. Similar to the results of 419 pages,
our method has less bad segments and a smaller area of bad
segments. It also should be noted that the average BAR and
BNR changed little when the 261 pages were segmented by
VIPS. Contrarily, the average BAR and BNR of our method
decreased considerably. This is because VIPS doesn’t con-
sider the cases of similar visual blocks. It shows that our
method can better segment the web pages that contain simi-
lar visual blocks.

Besides the analysis of bad segments, we also analyzed
the distribution of all 419 web pages in 5 categories. As
mentioned in the previous section, the 5 categories are per-
fect, good, fair, bad, and too bad. Their descriptions are
shown in Table 2. Within the 5 categories, we consider that
perfect is the most significant category. Let us see an exam-
ple. Suppose there are two page segment approaches (A1
and A2), and they use the same data set (10 web pages). A1
can divide each page into ten segments, but every page has
one bad segment. So, the average rate of bad segments is
10%. A2 can also divide each page into ten segments. Nine
pages of them have no bad segments and the tenth page has
ten bad segments. Obviously, the average rate of bad seg-
ments is also 10%. Based on the average rate of bad seg-
ments, A1 and A2 have the same performance. But in real
applications, A2 may be the better choice. To make the rate
of bad segments 0%, A1 has to be manually tuned for all
the ten pages, while A2 just needs to be manually tuned for
only one page. In other words, though A1 and A2 have the
same rate of bad segments, A1 cannot perfectly segment any
pages while A2 can perfectly segment nine pages. In this
case, we consider A2 is better than A1. Table 4 presents the
results of five categories. The perfectly segmented pages of
VIPS account for only 29.8% while the perfectly segmented
pages of our method account for 76.6%. It indicates that
our method needs less manual intervention in order to make
100% perfectly segmented pages. If we consider both the
perfect and good results are acceptable results, then VIPS
has only 63.5% acceptable results while our method has
93.1% acceptable results.

We analyzed the 93.1% web pages and noticed that
these are typical web pages which have different HTML tags
(the tags of HTML 4 and HTML 5 are not totally the same),
patterns, colors, fonts, and even different languages. There-
fore the heuristic-based methods (e.g. VIPS) cannot divide
all the web pages into appropriate segments. There are two
reasons why the proposed method is suitable for these pages.
The proposed method does not use the tags to divide a web
page, therefore, even if a web page is written in HTML 5

Table 4 Results of five categories.

VIPS Proposed method
Number Rate Number Rate

Perfect 125 29.8% 321 76.6%
Good 141 33.7% 69 16.5%
Fair 88 21.0% 27 6.42%
Bad 45 10.7% 2 0.48%
Too bad 20 4.77% 0 0%

or HTML 4, the segment result will not change. And, these
pages still have some common visual features. First, a seg-
ment arranges its blocks in the same way and different seg-
ments have different arrangement. Second, a segment has
the same type of contents and different segments have differ-
ent types of contents. By formulating these visual features,
the proposed method can be suitable for various web pages.

We also analyzed the “Bad” results and found they
were due to “Text Only” web pages. In these pages, there
are only text contents. In this case, the content similarity
would be ineffective and the whole web page is just one
segment. In many web applications these segment results
are “Bad” segmentation. However, in some specific appli-
cations, these results can also be regarded to be acceptable.
For example, the web segmentation is used for informative
content extraction. This is because there is no uninformative
content in the page. In this case, the whole web page can be
considered as an informative content and this segment result
will not reduce the accuracy of informative content extrac-
tion.

6. Conclusion and Future Work

Web page segmentation has a variety of benefits and po-
tential web applications. However, early techniques of web
page segmentation are mainly based on machine learning al-
gorithms and rule-based heuristics, which cannot be used for
large-scale page segmentation. In order to overcome these
limitations, in this paper, we proposed a formulated page
segmentation method using visual semantics. Instead of an-
alyzing the visual cues of web pages, this method utilized
the following three measures to formulate the visual seman-
tics: layout tree was used to recognize the visual similar
blocks; seam degree was used to describe how neatly the
blocks are arranged; content similarity was used to describe
the distance between the blocks. Web pages are first trans-
formed into a DOM tree. After pruning the invisible nodes
and meaningless text nodes, the proposed method judges
the DOM tree nodes top-down based on the three measures.
Compared with VIPS, the experiment results show that the
proposed method can divide a web page into appropriate se-
mantic segments with few bad segments. The perfectly seg-
mented pages of the proposed method are also more than
that of VIPS. Finally, we can conclude that the proposed
method can effectively divide various web pages into appro-
priate segments.

In the future work, we will investigate how to improve
the current measures of visual semantics and discover other
meaningful visual semantics to segment web pages effec-
tively and accurately.
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