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PAPER

A Novel Method for the Bi-directional Transformation between
Human Living Activities and Appliance Power Consumption
Patterns

Xinpeng ZHANG†a), Yusuke YAMADA†∗, Nonmembers, Takekazu KATO†,
and Takashi MATSUYAMA†, Members

SUMMARY This paper describes a novel method for the bi-directional
transformation between the power consumption patterns of appliances and
human living activities. We have been proposing a demand-side energy
management system that aims to cut down the peak power consumption
and save the electric energy in a household while keeping user’s quality of
life based on the plan of electricity use and the dynamic priorities of the
appliances. The plan of electricity use could be established in advance by
predicting appliance power consumption. Regarding the priority of each
appliance, it changes according to user’s daily living activities, such as
cooking, bathing, or entertainment. To evaluate real-time appliance pri-
orities, real-time living activity estimation is needed. In this paper, we
address the problem of the bi-directional transformation between personal
living activities and power consumption patterns of appliances. We assume
that personal living activities and appliance power consumption patterns
are related via the following two elements: personal appliance usage pat-
terns, and the location of people. We first propose a Living Activity - Power
Consumption Model as a generative model to represent the relationship be-
tween living activities and appliance power consumption patterns, via the
two elements. We then propose a method for the bidirectional transforma-
tion between living activities and appliance power consumption patterns on
the model, including the estimation of personal living activities from mea-
sured appliance power consumption patterns, and the generation of appli-
ance power consumption patterns from given living activities. Experiments
conducted on real daily life demonstrate that our method can estimate liv-
ing activities that are almost consistent with the real ones. We also confirm
through case study that our method is applicable for simulating appliance
power consumption patterns. Our contributions in this paper would be ef-
fective in saving electric energy, and may be applied to remotely monitor
the daily living of older people.
key words: pattern transformation, i-Energy, human living activity

1. Introduction

In recent years, demand-side smart energy management sys-
tems have attracted attention for their ability to manage
the peak power consumption and total electric energy in a
household to reduce the electricity cost and emissions of the
greenhouse gas. For this purpose, we have been proposing a
novel demand-side energy management system named “En-
ergy on Demand (EoD)” [1] that manages power consump-
tion in demand-sides, such as houses, offices, or buildings.
The EoD mediates demand power requests from appliances
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taking into account both available energy sources and ap-
pliance priorities to keep user’s quality of life (QoL). For
example, the EoD might decline to supply limited electrical
power to appliances of low priorities.

For the demand-side energy management systems, in-
cluding our EoD, it is important to predict the appliance
power consumption patterns for a user’s life to establish a
plan of electricity use [2], and to estimate the priorities for
each power request from the appliances to keep QoL. It
is assumed that the priority of an appliance should be de-
cided dynamically according to its usage in user’s personal
living activities. For example, TV is important while a per-
son is “watching a TV program,” IH cooker is important
while a person is “cooking.” Consequently, to estimate real-
time appliance priority, we need to estimate real-time living
activities. In this paper, as the first step towards construct-
ing the EoD, we address the problem of the bi-directional
transformation between personal living activities and power
consumption patterns of appliances.

As the basis for solving the problem, we establish a
Living Activity - Power Consumption Model (LAPC model)
as a hierarchical probabilistic generative model to repre-
sent the relationship between personal living activities and
appliance power consumption patterns. We then propose
methods on the LAPC model for the bi-directional trans-
formation between personal living activities and appliance
power consumption patterns, including (1) the generation
of appliance power consumption patterns from given liv-
ing activities, and (2) the estimation of living activities from
measured appliance power consumption patterns. Since the
LAPC model simulates the probability distribution of appli-
ance power consumption patterns for given a living activ-
ity, the generation can be implemented simply by random
sampling of the appliance power consumption according to
the distribution. The estimation which is the inverse of the
generation, is achieved by using Bayesian inference on the
LAPC model to estimate posterior probabilities of living ac-
tivities from measured appliance power consumption pat-
terns.

We construct the LAPC model with several sub models
hierarchically to relate living activities to appliance power
consumption patterns via appliance usage patterns and the
location of people. The main difficulties that we are facing
in constructing the model are caused by the following two
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ambiguities. (1) The ambiguity of living activities. People
might perform two or more living activities simultaneously.
For example, someone likes to listen to a TV program while
cooking; someone cleans a house while washing clothes us-
ing a washing machine. We cope with this ambiguity by ex-
plicitly defining main and sub living activities in the LAPC
model. (2) The ambiguity of the usages of appliances. The
operations on appliances performed by a person can be esti-
mated from power consumption patterns of the appliances.
Also, the operations can be related to the living activities
of the person. However, the relationships between the appli-
ance operations and personal living activities vary according
to personal appliance usage patterns. For instance, someone
cooks a meal using an induction cooker; someone heats in-
stant food as a meal using a microwave. We deal with this
ambiguity by construct sub probability models in the LAPC
model to represent the relationships between human living
activities and appliance usages.

The rest of the paper is organized as follows. Section 2
explains the LAPC model. Section 3 presents the method
for generating appliance power consumption patterns from
given living activities, and the method for estimating liv-
ing activities from appliance power consumption patterns
Sect. 4 reports the experimental results. Section 5 reveals
related work. Section 6 concludes the paper.

2. Living Activity - Power Consumption Model

In this section, we describe a Living Activity - Power Con-
sumption Model (LAPC model) as a Generative Model [3] to
represent the relationship from living activities to appliance
power consumption patterns. Figure 1 depicts the struc-
ture of the LAPC model. To perform a living activity l, a
person moves to a location r, and then operates and uses
a set A of appliances. Let Q denote the set of the opera-
tion states of each appliance in A. The set W of appliance
power consumption patterns of each appliance in A are then
generated by Q. We represent the relationship from l to W
through learning probabilities P(Q|l), P(W|Q), and P(r|l),
in the LAPC model, as we will discuss in detail later in this
section. The model is effective for generating W from l
readily. We implement a method for generating W from l
according to P(Q|l) and P(W|Q) available in the model, in
Sect. 3.1. The model is also effective for estimating l from
W by using Bayesian inference. We propose a method for
estimating l from W, through estimating posterior probabil-
ities P(Q|W) and P(l|Q) based on the model using Bayesian
inference, in Sect. 3.2 Consequently, the LAPC model is ef-
fective for the bi-directional transformation between l and
W.

We establish the generation model by constructing the
following sub models. Section 2.1 describes a Personal Liv-
ing Activity Model to formally define living activities in-
cluding activities happening simultaneously. Section 2.2
presents a Personal Appliance Usage Model to represent the
relationship between living activities and appliance usages.
Section 2.3 describes an Appliance Operation State Model

Fig. 1 The structure of our LAPC Model.

Fig. 2 A example of two representations of a living activity sequence.

to represent the relationship from appliance operation states
to appliance power consumption patterns. Section 2.4 intro-
duces a Human Location Model [4] proposed by the authors
for estimating the location r of a person based on the per-
son’s operations on appliances.

We discuss the details of each sub model in the follow-
ing subsections.

2.1 Personal Living Activity Model

A living activity could be represented by a label represent-
ing the type of the activity, such as cooking, washing, or
watching TV, with a time duration indicating when the ac-
tivity happens. Let < li, bi, ei > denote a living activity Ii,
where li is the label of Ii, bi and ei are the start time and end
time of Ii, respectively.

Living activities happen consecutively in our day life,
such as a people has a dinner, watches TV, takes a shower,
and then goes to bed. Furthermore, multiple activities might
happen simultaneously, such as a people might watches
TV while he/she is having a dinner. Consequently, liv-
ing activities might switch while overlapping. We repre-
sent a sequence of living activities using a flat description:
IL = {IL

1 , I
L
2 , . . . , I

L
Q}. Figure 2 depicts an example of the

flat description. Since overlap and time-gaps of multiple ac-
tivities exist in the flat description, it is difficult for us to
estimate such a sequence of living activities.

To solve the problem, we introduce another main-
sub description to represent a sequence of living activi-
ties by restricting overlap and time-gaps, which is more
easy to estimate. We represent a sequence of living ac-
tivities, using a combination of a main activity sequence
IM = {IM

1 , I
M
2 , . . . , I

M
K }, and one or more sub activity se-
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quence IS j = {IS j

1 , I
S j

2 , . . . , I
S j

N }. Figure 2 depicts an example
of the main-sub description. A main activity means the ac-
tivity mainly performed by a people at a certain time, and it
depends on the location of the people. We give a constraint
that no time-gap exists between any two nearby main activi-
ties. A sub activity might happen parallel with a main activ-
ity in the background, and it does not depend on the location
of the people. For example, A people starts the main activity
“washing” at the place where the washing machine is. Later,
the people moves to the kitchen, performs the main activity
“cooking” while “washing” is ongoing. However, “wash-
ing” becomes a sub activity at the kitchen now. There might
be time-gaps in IS j because no sub activity happens in some
time duration. As depicted in Fig. 2, the sequence IL and
the combination of IM and IS j can be transformed to each
other. In this paper, we deal with the case of a main activity
sequence with a simultaneous sub activity for the estimation
of living activities. However, our method could be extended
to deal with multiple sub activity sequences easily.

People always perform some activities one after an-
other consecutively in a certain order at home. For ex-
ample, people usually eat food after cooking, and dry our
hair after taking a shower. People also usually do some
activities simultaneously, such as watching TV while eat-
ing foods. On the other hand, some activities rarely hap-
pen together, such as taking a shower and cooking. We
use the following two probabilities to represent the transi-
tion and co-occurrence relationships between activities. Let
Ii−1 =< li−1, bi−1, ei−1 > and Ii =< li, bi, ei > denote two con-
secutive activities, P(li = l f |li−1 = lg) is then the transition
probability from activity of lg to that of l f . Let [bi, ei] be the
time duration when Ii =< li, bi, ei > happens, P(li = lg, l j =

l f |[bi, ei]∩ [b j, e j] � ∅) is then the co-occurrence probability
between activities of lg and l f . The duration time of a type
of activity is also an important property. We define duration
time distribution P(τi|li = lg), τi = ei − bi of activities of lg,
to represent the property.

2.2 Personal Appliance Usage Model

Generally, an appliance ac has various of operation states
qc

1, q
c
2, . . . , q

c
M . Here, we define an Personal Appliance Us-

age Model to represent the relationship from a living activity
lg to an appliance ac that is used (at work) in lg using a prob-
ability P(ac|lg) = P(qc

on|lg), where qc
on denote the operation

states of at work. Since the appliances that are used in each
activity vary from each people, P(ac|lg) should be obtained
for each person particularly through learning. We discuss
how to learn P(ac|lg) at the end of this section. P(ac|lg) is
used in the method for estimating living activities which will
be presented in Sect. 3.2.

An appliance is working with the transitions from one
state to another. The transitions are triggered by manual op-
erations of people or automatic controls of the appliance.
We represent the relationship from a living activity to the
operation states of an appliance using the following proba-
bilities. The probabilities are used in the method for gener-

ating appliance power consumption which will be described
in Sect. 3.1.

• P(qc
i = qc

j |l j = lk, qc
i−1 = qc

h): The transition probabil-
ity from state qc

h to state qc
j of appliance ac in the time

duration where activities of lk happen. The probability
is computed by dividing the number of times where ac-
tivity of qc

j happens behind activity of qc
h, by the count

of activities of qc
h.

• P(τc
i |l j = lk, qc

i = qc
h): The duration time distribution

of qc
h of ac under activity lk. To obtain the distribu-

tion, we construct a histogram showing the proportion
of the time duration of a state that fall into each length
of the duration time. We then convert the histogram
into a distribution function, such as a normal distribu-
tion function.
• P(qc

k,m=1 = qc
i |l j = lk): The distribution of the begin-

ning state qc
k,m=1 of ac in activity lk. This distribution

is computed by dividing the number of activities of lk
whose beginning state is qc

i , by the total number of ac-
tivities of lk.

When sufficient learning data can be given in advance
for a particular person, it is better to obtain P(ac|lg) by learn-
ing for the person. However, it is difficult to perform the
learning for each person in some situations. For the situ-
ations, instead of learning for each person, we can decide
P(ac|lg) for every person based on the functions of appli-
ances. Let Pf (lg|ac) denote the probability that ac can be
used in activity lg according to its function. Pf (lg|ac) can
be decided manually. We then compute P(ac|lg) using the
following equation.

P(ac|lg) = Pf (lg|ac)P(ac)

P(lg)
(1)

By assuming P(ac) and P(lg) as uniform distributions, we
obtain P(ac|lg) = C · Pf (lg|ac) where C is a normalization
constant making

∫
P(ac|lg)dac = 1.

When learning data of a person is available, we learn
P(ac|lg) for the person according to the rate f (c, g) of the
number of the activities of label lg using ac to the total num-
ber of the activities of lg in the learning data, using Eq. (2).

P(ac|lg) = (1 − λ(c)) · P(lg|ac) + λ(c) · f (c, g) (2)

λ(c) = log
|IL|

|{IL
i : ac is used in IL

i }|
/log|IL|

Here, IL = {IL
i , i ∈ Z>0} is the set of the living activities

existing in the learning data. Basically, if appliance ac is
frequently used in living activities of lg, then we assume
P(ac|lg) is high. That is, a high f (c, g) leads to a high
P(ac|lg). However, some appliances, such as “air condi-
tioner,” “air fan,” etc., work in almost all types of living
activities. These appliances do not contribute as much to
the meaning of each type of living activities as an appli-
ance used in a certain type of living activity, such as “IH
cooker” used in “cooking.” Therefore, we give f (c, g) a
weight 0 < λ(c) ≤ 1, which is low if ac is used in many
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living activities. On the other hand, these appliances might
be useful for some types of living activities, which is rep-
resented by P(lg|ac). Finally, we decide P(ac|lg) according
to both f (c, g) and P(lg|ac) as shown in Eq. (2). We com-
pare the learned P(ac|lg) with the appliance function based
P(ac|lg) in the experiments discussed in Sect. 4.

2.3 Appliance Operation State Model

We define the representation of the relationship from appli-
ance operation states to appliance power consumption pat-
terns using hybrid dynamic systems.

Each operation state qc
i of appliance ac, including the

state of “Power OFF,” generates a distinguishable power
consumption pattern wc

i . The power consumption patterns
for each operation state qc

i of an appliance ac is represented
using a dynamic system Dc

i = P(wc
i |qc

i ). In this paper, we as-
sume that each dynamic system complies with a normalized
distribution model, as below.

P(wc
i |qc

i ) ∼ N(μc
i , σ

c
i ) =

1√
2πσc

i

e
− (wc

i −μci )2

2σc
i

2
(3)

It is possible to model each dynamic system more exactly
using a approximate method, such as a Kalman filter [5].
However, we observe that most of the appliances can be
represented by normalized distributions. We obtain every
dynamic system of an appliance by learning, previously.

2.4 Human Location Model

The relationship between a living activity l and appliance
power consumption patterns W is affected by location r of
people, as depicted in Fig. 1. We assign P(r|l) manually ac-
cording to room layout, as explained at the first of Sect. 2.
In this section, we introduce a Human Location Model of a
state space model proposed by the authors [4], for estimat-
ing the location r of a person through observing operations
on appliances performed by the person.

The basic idea of the model is as follow. A person
moves to a location near an appliance, and then operates and
uses the appliance. The artificial operation changes the op-
eration state of the appliance. Consequently, the power con-
sumption pattern of the appliance also changes. Later, the
person moves again to the location near another appliance,
and then operates the appliance, repeatedly. We can observe
the artificial operation on appliance ac from the power con-
sumption patterns of ac, as explained in Sect. 2.3. We then
can estimate the location of a person according to the loca-
tions where ac can be operated.

Let rt represents the location of a person at time tick t.
We obtain the probability distribution P(rt) using a particle
filter algorithm [6] based on the model. We then decide the
location rt which generates the largest P(rt) as the location
of the person at time tick t.

3. Bi-directional Transformation on LAPC Model

In this section, we describe the methods for the bi-
directional transformation between personal living activities
and power consumption patterns based on our LAPC Model.

3.1 Generating Power Consumption Patterns from Per-
sonal Living Activities

Given an activity sequence IL = {IL
1 , I

L
2 , . . . , I

L
Q}, IL

k =<

lL
k , b

L
k , e

L
k > represented by the flat description, we propose a

method to generate the power consumption patterns at each
second for each appliance, using the LAPC model.

We present the method as follow. For each appliance a
(The label c of appliance ac is removed for clarity here):

For each IL
k =< lL

k , b
L
k , e

L
k >, 1 ≤ k ≤ Q:

(1) Let m ∈ Z>0 denote the index of the operation states
of a in lL

k . Decide the beginning state qk,m=1 according
to P(qk,m=1 = qi|lL

k ) > 0 randomly, set the start time
sk,m=1 = bL

k for qk,m=1.

(2) Decide the duration time τk,m of state qk,m according to
P(τk,m|lL

k , qk,m) randomly, set the end time ek,m = sk,m +

τk,m for qk,m.

• If τk,m = 0, go to (4);
• else if ek,m > eL

k , set ek,m = eL
k , go to (4).

(3) Let m = m + 1, decide the next state qk,m according to
P(qk,m|lL

k , qk,m−1) > 0 randomly, set sk,m = ek,m−1 + 1
sec, go to (2).

(4) If P(qk,1|lL
k ) �
∏

2≤ j≤m P(qk, j|lL
k , qk, j−1) > β, output the

generated sequence Ik consisting of the operation states
qk, j, 1 ≤ j ≤ m, for lL

k .

Output: I = {I1, I2, . . . , IQ}.
The method selects operation states and the time du-

ration of the states randomly to constitute each sequence
Ik, 1 ≤ k ≤ Q. At step (4), the product of the beginning
state probability and the state transition probabilities of ev-
ery consecutive operation states pair in sequence Ik is com-
puted. If the product is larger than a threshold value β, the
method outputs the sequence; otherwise, it regards the se-
quence as inappropriate and generates the sequence again.

Multiple activities might happen simultaneously in IL.
For different activities, different operation states of an appli-
ance might be generated. Consequently, multiple different
operation states of an appliance might overlap in time in I
outputted at above. However, for an appliance, only one op-
eration state can exist at a time. The method only remains
the operation state whose average power consumption is the
largest at each time tick for each appliance in I. The average
of the power consumption of each operation state of each
appliance are available in the dynamic systems described in
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Sect. 2.3. Finally, the method outputs a operation state se-
quence without overlap for each appliance.

After the operation state sequence of an appliance is
obtained, the method generates the power consumption pat-
terns for the appliance, using the dynamic systems proposed
in Sect. 2.3. More precisely, for each operation state qc

i of
appliance ac in the obtained sequence, the method obtains
the power consumption patterns wc

i at each time tick through
a random sampling on distribution P(wc

i |qc
i ) ∼ N(μc

i , σ
c
i ). At

last, by summing up the power consumption amount of ev-
ery appliance, the power consumption pattern of the whole
family is available.

3.2 Estimating Personal Living Activities from Power
Consumption Patterns

We present the method for estimating living activities from
appliance power consumption patterns based on the LAPC
model.

3.2.1 Estimating Appliance Operation States

To estimate the living activities during a period < 0,T >, the
method first estimates the operation states from the power
consumption patterns during the period for each appliance.
Let Wc

T = {wc
1, w

c
2, . . . , w

c
T } be the sequence of the power

consumption patterns wc
t of appliance ac at each time tick

0 ≤ t ≤ T . The method estimates the operation state qc
t

for wc
t at t, by finding the operation state having the max-

imal likelihood that correspond to the power consumption
pattern from time tick t − J to t + J. We set J = 5 sec in the
experiments described in Sect. 4.

qc
t = qc

i = arg max
i

P(qc
i |wc

t−J) . . . P(qc
i |wc

t+J) (4)

The dynamic systems P(wc
t |qc

i ) are available in the LAPC
model, as discussed in Sect. 2.3. P(qc

i |wc
t ) is computed based

on the dynamic systems using Bayesian inference as below.

P(qc
i |wc

t ) =

⎧⎪⎪⎨⎪⎪⎩
P(wc

t |qc
i )P(qc

i )
P(wc

t ) = D · P(wc
t |qc

i ) (1 ≤ t ≤ T )
1 (otherwise)

(5)

Here, P(qc
i ) and P(wc

t ) are assumed as uniform distributions,
and D is a normalization constant making

∫
P(qc

i |wc
t )dqc

i =

1. After the operation state at each t is obtained, consecutive
identical operation states are integrated together to obtain
the time duration of each operation state. Finally, we can
obtain a sequence of consecutive time duration of operation
states.

3.2.2 Estimating Living Activities

We describe the estimation of living activities from the se-
quences of operation states of every appliance. We starts
with cutting the period < 0,T > into several time dura-
tion {I1, I2, . . . , IK}, at the end time of each operation state of

Fig. 3 Cutting a period by the ending of each appliance state.

each appliance, as illustrated in Fig. 3. In each time duration
Ik, 1 ≤ k ≤ K, only one operation state exists for each appli-
ance. We assume that one main activity happens at each Ik,
and at most one sub activity might happen simultaneously
with the main activity. Let Qk = {q1

k , q
2
k , . . . , q

O
k } be the set of

the operation states of each appliance in {a1, a2, . . . , aO} that
appear in Ik. Let rk be the room where the people stays at
for the longest time during Ik. It is unnecessary to know the
precise location of people at each time tick in the method,
as we will discuss later in this section. We first formally de-
fine the problem of estimating personal living activities, at
below.

Problem 1: Given the following inputs, (1) set L of the
preliminarily defined candidate living activities, e.g. “cook-
ing,” “Cleaning,” “Bathing,” etc. (2) the sequence of time
duration {I1, I2, . . . , IK}, (3) the set Qk = q1

k , q
2
k , . . . , q

O
k of

the operation states of each appliance and the location rk of
the people during each time duration Ik, 1 ≤ k ≤ K, we esti-
mate a combination of a main activity lm and a sub activity ls

most likely happens in each time duration Ik, as the equation
at below.

(lm, ls)k = arg max
(lm∈L,ls∈L∪Lnull)

P(lm, ls|Qk, rk), (6)

where Lnull denotes no living activity happens.
To estimate Eq. (6), we do the following convention

based on the LAPC model using Bayesian inference.

P(lm, ls|Qk, rk) =
P(Qk, rk |lm, ls)P(lm, ls)

P(Qk, rk)

=
P(Qk |lm, ls)P(rk |lm)P(ls|lm)P(lm)

P(Qk, rk)
(7)

Note that, we assume that sub activities are independent to
the location of people, as explained in Sect. 2.1. P(rk |lm) is
given previously according to lm and room layout. For ex-
ample, “cooking” is performed at “kitchen,” therefore we
assign P(kitchen|cooking) = 1. P(ls|lm) is the probabil-
ity that a sub activity might happen simultaneously with a
given main activity, which can be given manually accord-
ing to the contents of each activity. As an example, we as-
sign P(Cleaning|Bathing) = 0 because cleaning might not
happen during bathing. P(Qk, rk) is the probability that Qk
and rk could be observed, which is unrelated to lm and ls.
We replace P(Qk, rk) by a normalization constant γ making
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∫
P(lm, ls|Qk, rk)dlmdls = 1. P(lm) is the prior distribution

of the main activities, which is assumed to be a uniform
distribution here. Consequently, we only have to estimate
P((Q)k |lm, ls).

By assuming that the usage probabilities of each ap-
pliance are independent with each other, we compute
P((Q)k |lm, ls) using the following equation.

P((Q)k |lm, ls)

= P(q1
k |q2

k , . . . , q
O
k , l

m, ls)P(q2
k |q3

k , . . . , q
O
k , l

m, ls)

. . . P(qO
k |lm, ls)

=
∏

1≤c≤O

P(qc
k |lm, ls) (8)

We discuss how to compute P(qc
k |lm, ls) for each appliance

ac. If an appliance is powered off, it is meaningless to any
living activity. Let qc

k = OFF denote that ac is in the state
of powered off during time duration Ik, then we set

P(qc
k = OFF|lm, ls) = 0.5 (9)

For other operation states of ac, we calculate P(qc
k |lm, ls) by

subtracting the probability that ac is used in neither lm nor l f

from 1, as the following equations.

P(qc
k |lm = lg, l

s = lh) = 1 − (1 − P(ac|lg))(1 − P(ac|lh))

(10)

P(ac|lg) can be decided by learning for each people partic-
ularly, or be decided based on appliance function for any
people, as discussed in Sect. 2.2.

In Eq. (7), we do not consider the relationships between
the living activities in two consecutive time duration. How-
ever, we should also consider the transition probability be-
tween living activities. Figure 4 illustrates the dependent
relationships existing between two consecutive time dura-
tion. We estimate living activities in lk, 2 ≤ k ≤ K using the
following equation extended from Eq. (7).

P(lmk , l
s
k |Qk, rk, l

m
k−1, l

s
k−1) =

P((Q)k |lmk , ls
k)P(rk |lm)P(ls

k |lmk , lmk−1, l
s
k−1)P(lmk |lmk−1, l

s
k−1)

P(Qk, rk)
(11)

Equation (11) can be computed similarly to Eq. (7), except
that we need to estimate P(lmk |lmk−1, l

s
k−1). For the best, the

probability should be assigned according to the transition
probabilities between living activities, the lengths of Ik−1

and Ik, and the duration distributions of each living activity.
In this paper, we decide the two probabilities only according
to the transition probabilities between living activities for
clarity. We estimate that the activity after “cooking” tends
to be “meal.”

3.2.3 Summary of the Estimation Method

We summarize our method for estimating personal living
activities from appliance power consumption patterns in the

Fig. 4 Dependent relationships among living activities.

following:

• Decide a set L of candidate living activities.
• Decide P(rk |lm) according to the layout of the house.
• Decide P(ls|lm) according to the contents of each activ-

ity.
• Decide P(ac|lg) for each activity ac and each living ac-

tivity lg based on learning or appliance function, using
the model proposed in Sect. 2.2.
• For time duration Ik

1 Obtain the set Qk = q1
k , q

2
k , . . . , q

O
k of the operation

states of each appliance in {a1, a2, . . . , aO} from
the power consumption patterns of the appliances,
using the dynamic systems proposed in Sect. 2.3.

2 Obtain the location rk of the person using the hu-
man location model introduced in Sect. 2.4.

3 Estimate a main activity lm ∈ L with a sub activity
ls ∈ L using Eq. (11).

We describe our method at above as a offline method
to estimate living activities during a period. Actually, our
method can work both online and offline. Our method can
obtain Qk = q1

k , q
2
k , . . . , q

O
k and rk immediately from the real-

time power consumption patterns of each appliance, at Step
1 and Step 2 described at above, respectively. Therefore, our
method can do real-time estimation of living activity.

In our method, the list of appliances, the list of can-
didate living activities, and the probabilities P(ac|lg) based
on appliance functions, can be shared by houses of different
layout. However, our method also requires the room layout
and the locations of each appliance to obtain the location of
people. The location of people is necessary for estimating
main activities. It is difficult to apply our method for prac-
tical use under such a strict requirement. As a future work,
we plan to improve our method by removing the require-
ment. A possible solution is that estimate the combination
of simultaneous living activities which having the maximum
likelihood for generating the combination of the operation
states of each appliance.

4. Experiments

We first evaluate the method for estimating personal liv-
ing activities from appliance power consumption patterns in
Sect. 4.2. We can use the human location model proposed
by the authors [4] to obtain the location of a people in the
method, as explained in Sect. 2.4. The model has been con-
firmed through experiments that it can estimate the location
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Table 1 The probabilities P(ac |lg) of each appliance in each activity for evaluating day 1 of A.

P(ac |lg)* Outing Sleeping Dining Bathing Personal hygiene Cooking Cleaning Laundry Chore Job Entertainment Watching TV Having a rest Converstation λ(c)
TV 0 / 0 0 / 0 0 / 0.10 0 / 0.03 0 / 0.01 0 / 0.02 0 / 0.04 0 / 0.02 0 / 0 0 / 0.01 0.25 / 0.20 0.75 / 0.25 0 / 0 0 / 0 0.10
Air Conditioner 0 / 0 0 / 0 0.50 / 0.18 0 / 0.01 0.04 / 0.06 0 / 0.01 0.07 / 0.06 0 / 0.01 0.11 / 0.11 0.13 / 0.11 0.13 / 0.09 0.13 / 0.11 0.33 / 0.25 0.50 / 0.50 0.02
Living room light 0 / 0 0 / 0 0 / 0.05 0 / 0.06 0.04 / 0.07 0 / 0.01 0.07 / 0.09 0 / 0.05 0.11 / 0.11 0.13 / 0.16 0.13 / 0.13 0.13 / 0.14 0.33 / 0.25 0.50 / 0.50 0.11
Bedroom light 0 / 0 0 / 0 0 / 0 0 / 0 0.04 / 0.06 0 / 0 0.07 / 0.06 0 / 0 0.11 / 0.11 0 / 0 0 / 0 0 / 0 0.33 / 0.25 0 / 0 0
Refrigerator 0 / 0 0 / 0 0 / 0.09 0 / 0.03 0 / 0.02 0.04 / 0.05 0 / 0 0 / 0.04 0 / 0 0 / 0.02 0 / 0.05 0 / 0.06 0 / 0 0 / 0 0.09
Corridor light 0 / 0 0 / 0 0 / 0 0 / 0 0.04 / 0.06 0 / 0 0.07 / 0.06 0 / 0 0.11 / 0.11 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0
Kitchen light 1 0 / 0 0 / 0 0 / 0.07 0 / 0.04 0 / 0.02 0.22 / 0.23 0.07 / 0.09 0 / 0.03 0.11 / 0.11 0 / 0.05 0 / 0.03 0 / 0.05 0 / 0 0 / 0 0.10
Kitchen light 2 0 / 0 0 / 0 0 / 0.12 0 / 0 0 / 0.01 0.22 / 0.24 0.07 / 0.04 0 / 0 0.11 / 0.11 0 / 0 0 / 0 0 / 0.10 0 / 0 0 / 0 0.25
Pot 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0.07 / 0.08 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0
Microwave oven 0 / 0 0 / 0 0.50 / 0.25 0 / 0 0 / 0.02 0.22 / 0.15 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0.04 0 / 0 0 / 0 0.52
IH Cooker 0 / 0 0 / 0 0 / 0.14 0 / 0 0 / 0 0.22 / 0.18 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0.09 0 / 0 0 / 0 0.43
Restroom light 0 / 0 0 / 0 0 / 0 0 / 0 0.26 / 0.11 0 / 0.02 0.07 / 0.02 0 / 0 0.11 / 0.11 0 / 0 0 / 0.02 0 / 0.08 0 / 0.25 0 / 0 0.73
Lavatory light 0 / 0 0 / 0 0 / 0 0.25 / 0.17 0.26 / 0.33 0 / 0 0.07 / 0.06 0.14 / 0.08 0.11 / 0.11 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0
Bathroom light 0 / 0 0 / 0 0 / 0 0.75 / 0.50 0.04 / 0.07 0 / 0 0.07 / 0.03 0 / 0.15 0.11 / 0.11 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0.41
Dryer 0 / 0 0 / 0 0 / 0 0 / 0 0.26 / 0.11 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0.83
Cleaner 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0.40 / 0.35 0 / 0.08 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0.83
Washing Machine 0 / 0 0 / 0 0 / 0 0 / 0.16 0 / 0.03 0 / 0 0 / 0.11 0.86 / 0.47 0 / 0 0 / 0.04 0 / 0.08 0 / 0.02 0 / 0 0 / 0 0.32
Notebook PC 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0.01 0 / 0.01 0 / 0 0 / 0.07 0 / 0 0.75 / 0.61 0.50 / 0.40 0 / 0.07 0 / 0 0 / 0 0.35

*Appliance function based probability / Learned probability

Fig. 5 The room layout and the appliances.

of a people with a high precision in [4]. In the experiments
presented in this section, to evaluate our method for estimat-
ing personal living activities without the interference of the
model, we manually give the room where a people is.

In Sect. 4.3, we evaluate the method for generating
power consumption patterns from given living activities by
case studies.

4.1 Dataset and Setting

We perform experiments at a smart house where every ap-
pliance is connected to the electricity through a smart tap.
Figure 5 depicts the layout of the house, and the appliances
placed in the house. We indicate the locations in the room
in the unit of centimeter. The size of the room is 538 × 605
cm2. The first row and the first column of Table 1 list all the
14 labels of living activities and some of the 34 appliances,
respectively.

In this paper, we consider the case of a people living
alone. We ask three people denoted by A, B, and C, to live
in the house for 4 days, 2 days and 5 days, respectively. We
ask them to record their living activities per 15 minutes.

4.2 Evaluation of Estimating Living Activities

As explained in Sect. 3.2, the probability P(ac|lg) that ap-
pliance ac is used in living activity lg can be decided
by two ways. Firstly, P(ac|lg) = C · Pf (lg|ac) is as-

signed according to the functions of appliances. We
select a score from {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} for each
Pf (lg|ac). A high score represents the function of ac is
more useful for performing lg. For example, “TV” is
definitely usable for “watching TV,” therefore we assign
Pf (watching TV |TV) = 3.0; “TV” is usable for “entertain-
ment,” therefore we assign Pf (entertainment|TV) = 1.0;
each light might be useful for “personal hygiene,” there-
fore we assign Pf (personal hygiene|living room light) =
Pf (personal hygiene|bedroom light) = . . . = 0.5. The ap-
pliance function based probability can be applied for esti-
mating living activity of any people. Secondly, P(ac|lg) is
learned for each participant using Eq. (2). For each par-
ticipant, to evaluate the data of one day of the participant,
we use the data of other days of the participant as learning
data. Table 1 presents the appliance function based prob-
abilities, and the learned probabilities for evaluating day
1 of A. The two kinds of probabilities are normalized so
that
∑

ac∈A P(ac|lg) = 1, respectively. The rightmost col-
umn presents the λ(c) values of each appliance, as defined
in Eq. (2). The λ(c) value of “air conditioner” is the low-
est because participant A always turned on air conditioner
for a long time. The λ(c) values of “TV,” “living room
light,” “refrigerator” are also low. Inversely, the λ(c) val-
ues of “cleaner,” “dryer” are the highest. The λ(c) values
are consistent with the discussions stated in Sect. 2.2. The
values in front of and behind of “/” in each cell are the ap-
pliance function based probability and the learned probabil-
ity, respectively. The learned probabilities are quite different
from the appliance function based probabilities. For exam-
ple, A turned on TV while dining. Consequently, the learned
P(TV |dining) = 0.10, although the appliance function based
P(TV |dining) = 0. As another example, A turned on TV,
air conditioner, washing machine, living room light, kitchen
light while bathing in some cases. Similarly, P(ac|lg) is also
learned for other participants. We observe that the learned
probabilities P(ac|lg) of each participant are different. For
example, C does not turn on TV while bathing, although A
and B do so. We omit the learned P(ac|lg) of other partici-
pants here due to space limitations.

We then estimate the living activities of each of the 4
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Fig. 6 The sequences of the living activities of A in day1.

Table 2 Recall, precision and F-measure on the estimated living activities.

A-1 A-2 A-3 A-4 B-1 B-2 C-1 C-2 C-3 C-4 C-5 Average

wo/learning
Recall 20/26=0.77 15/18=0.83 20/22=0.91 15/18=0.83 9/14=0.64 7/9=0.78 6/12=0.5 10/12=0.83 13/19=0.68 10/19=0.53 16/21=0.76 0.746
Precision 23/24=0.96 22/25=0.88 26/28=0.93 22/26=0.85 9/16=0.56 7/12=0.58 9/12=0.75 14/14=1.0 18/21=0.86 11/17=0.65 25/33=0.76 0.784
F-measure 0.85 0.85 0.92 0.84 0.60 0.67 0.60 0.91 0.76 0.58 0.76 0.758

w/learning
Recall 22/26=0.85 15/18=0.83 19/22=0.86 15/18=0.83 9/14=0.64 8/9=0.89 6/12=0.5 10/12=0.83 14/19=0.74 10/19=0.53 16/21=0.76 0.771
Precision 28/31=0.9 20/20=1 24/27=0.88 21/30=0.7 10/21=0.48 8/11=0.73 9/13=0.69 14/14=1.0 22/25=0.88 13/16=0.81 24/28=0.86 0.786
F-measure 0.87 0.91 0.87 0.76 0.55 0.80 0.58 0.91 0.80 0.64 0.81 0.773

days of A using the method proposed in Sect. 3.2, with the
appliance function based P(ac|lg) and the learned P(ac|lg),
respectively. Similarly, we also estimate the living activities
for each day of B, and for each day of C. As an example,
Fig. 6 depicts the real living activity sequences and the esti-
mated living activity sequences, in day 1 from 00 : 00 : 00
to 23 : 59 : 59 of A. Each color represents a type of the liv-
ing activities exemplified on the right side. At a glance, the
sequence estimated with the learned P(ac|lg) is quite consis-
tent with the real one. Our method also successfully esti-
mated simultaneous living activities, such as A watches TV
while cooking, and A washes clothes while bathing. Com-
pared to the sequence estimated with the learned P(ac|lg),
the sequence estimated with the appliance function based
P(ac|lg) fails to estimate “bathing” happened around 00 : 30
and that happened around 23 : 00. The appliance function
based probabilities of air conditioner, living room light, in
“bathing” are 0, as presented in Table 1. The appliance
function based probabilities of these appliances in “personal
hygiene” are not 0. Participant A turned on these appli-
ances while bathing. Therefore, our method with the appli-
ance function based probabilities regards “bathing” as “per-
sonal care” by mistake. However, through learning the us-
age probabilities of these appliances in each living activity
for A, our method can correctly estimate “bathing.”

We quantitatively evaluate our method using a recall
and a precision. Given an real living activity la, we check
the set Le of the estimated living activities appearing in the
same time duration as la. The set Le contains both main
activities and sub activities. We do not separate main activ-
ities from sub activities, here. If there is a living activity of
the same type as la in Le, we regard that la is successfully
estimated. We then compute recall as the rate of the activ-
ities that are correctly estimated in the real living activity

sequence. Inversely, given a estimated living activity le, we
check the set La of the real living activities appearing in the
same time duration as le. If there is a living activity of the
same type as le in La, we regard that the estimated activity
le is correct. We then compute precision as the rate of the
correct activities in the estimated living activity sequence.
Table 2 presents recall, precision, and F-measure for each
day of A, B, and C, respectively. The values in front of and
behind of “/” in each cell of “Recall” are the number of the
correctly estimated activities and the total number of the real
activities, respectively. The values in front of and behind of
“/” in each cell of “Precision” are the number of the cor-
rectly estimated activities and the total number of the esti-
mated activities, respectively. At first, our method generates
higher F-measure values with learning personal appliance
usage probabilities P(ac|lg) in 7 of the 11 days. The average
values of recall, precision, and F-measure with learning are
0.771, 0.786, and 0.773. We can say that the experimental
results are quite good. On the other hand, the recall and the
precision without learning (using appliance function based
probabilities P(ac|lg)) are also satisfactory. Next, we look at
the results of each day of each participants. The F-measure
values of each day of A are similar. The results of day 1 of
B are slightly inferior with learning. We learn day 2 of B for
evaluating day 1 of B. Some activities happening in day 1
of B do not happen in day 2 of B. We cannot correctly learn
P(ac|lg) for B because the learning data is not enough. It is
considerable that we could obtain better results for B if we
have more learning data. Among the results of the 5 days of
C, the results of day 1 are inferior. In day 1, C performed
“conversation” and “having a rest.” In the two types of ac-
tivities, no appliance is used specially. Consequently, our
method fails to detect the two types of activities. However,
the final goal of our work is to estimate the priorities of each
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Fig. 7 The real and generated power consumption patterns of day 1 of
A.

appliance in each activity. If no appliance is used specially
in an activity, we can disregard the activity for our final goal.

We have demonstrated that our method is effective for
estimating living activities through the learning of personal
appliance usage probability P(ac|lg). However, it is hard to
collect labeled data from each user for the learning. On the
other hand, our method also can estimate living activities to
a satisfactory extent for any user with the appliance function
based probability P(ac|lg). As a future work, we first con-
struct our LAPC model with the appliance function based
probability P(ac|lg) as a general model that can be applied
for all users; we then do online learning of the personal ap-
pliance usage probability P(ac|lg) for each user while esti-
mating living activities on the general model. Increasingly,
the general model is updated to a personal model for each
user.

4.3 Evaluation of Generating Power Consumption Pat-
terns

We evaluate the method proposed in Sect. 3.1 for generating
power consumption patterns from living activities by case
studies. Figure 7 depicts the real power consumption pat-
tern of day 1 of A. Firstly, we learn probability distributions
P(qc

i = qc
j |l j = lk, qc

i−1 = qc
h), P(τc

i |l j = lk, qc
i = qc

h), and
P(qc

k,m=1 = qc
i |l j = lk) described in Sect. 2.2, from the other

3 days of A. We then generate power consumption patterns
using the method from the real living activities of the day
with the learned probability distributions. Figure 7 depicts
two generated patterns obtained under the same experimen-
tal conditions, which are different because of randomness of

our method. Both the two generated patterns are quite simi-
lar to the real one. Most of the peaks in the real power con-
sumption patterns are appropriately simulated in the gen-
erated patterns. We can say that the method constructed
using the LAPC model is useful for simulating appliance
power consumption patterns from living activities. On the
other hand, the method cannot capture the values of some
power consumption peaks. The considerable problems are
(1) we do not consider the co-occurrence or exclusive of
appliances in the method, and (2) the power consumption
of some appliances, such as an air conditioner, change dra-
matically. Especially, the method cannot simulate the peaks
denoted by “Refrigerator” in Fig. 7. These peaks are gener-
ated by the activation of the compressor of refrigerator. The
dynamic system P(Dc

i ) ∼ N(μc
i , σ

c
i ) modeled using a nor-

malized distribution cannot capture such kind of peaks that
happen in a very short time during a operation state. We
plan to solve the problems in the future.

5. Related Work

Recently, the problem of simulating residential electrical
power consumption has attracted much attention. Several
models [2], [7] have been proposed for simulating the power
consumption of weather-related electrical appliances, such
as air-conditioning, ventilation, and lighting, according to
temperature, humidity, hux, and so on. Hobby et al. [2]
also proposed to simulate the power consumption for other
appliances based on the probabilities of starting each ap-
pliance at any particular time of an average day which are
extracted from American time use survey (ATUS) [8]. The
method proposed by Muratori et al. [7] is somewhat similar
to our method for simulating appliance power consumption
patterns. The method first uses a Markov chain to generate
living activity patterns based on the transition probabilities
between living activities derived from the ATUS data, and
then converts the power consumption during each living ac-
tivity simply according to the statistical data of the power
consumption of each activity. These works do not model the
relationship between living activities and appliance power
consumption. By modeling the relationship, our method can
simulate the power consumption patterns of each appliance
in each living activity for each particular person.

On the other hand, few works challenge the problem of
estimating living activities from appliance power consump-
tion patterns as we do. As one of the few works, Yoshino
et al [9] proposed a method to estimate the activity status of
the students in a lab from the power consumption of com-
puters used by the students. They define only 6 activity sta-
tus beforehand, including “going home,” “outing,” “work-
ing on PC,” “having a rest,” “meeting,” and “attending sem-
inar.” They then learn the corresponding relationships be-
tween each activity status and the power consumption pat-
tern of the computer used by each student, using a hidden
markov model. Finally, they estimate activity status for each
student based on the learned corresponding relationships.
Compared with this work, we estimate personal living activ-
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ities from the power consumption patterns of multiple appli-
ances. Obviously, we solve a more realistic and complicated
problem.

6. Conclusion and Future Work

In this paper, we addressed the problem of the bi-directional
transformation between personal living activities and appli-
ance power consumption patterns. We summarize our con-
tributions in this paper as follows:

• A LAPC model of a generative model for representing
the relationship between personal living activities and
appliance power consumption patterns.
• A method for generating appliance power consumption

patterns from given personal living activities using the
LAPC model. Case studies show that the method can
accurately simulate appliance power consumption pat-
terns to a satisfactory extent.
• A method for estimating personal living activities from

measured appliance power consumption patterns based
on the LAPC model. Experiments demonstrate that our
method can estimate living activities quite similar to
the real ones.

As the future work, we plan to extend our method to
estimate living activities of a family of multiple persons. We
also plan to evaluate the priorities of appliances according to
living activities.
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