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An Iterative Reweighted Least Squares Algorithm with Finite
Series Approximation for a Sparse Signal Recovery

Kazunori URUMA†a), Nonmember, Katsumi KONISHI††, Member, Tomohiro TAKAHASHI†, Student Member,
and Toshihiro FURUKAWA†, Member

SUMMARY This letter deals with a sparse signal recovery problem and
proposes a new algorithm based on the iterative reweighted least squares
(IRLS) algorithm. We assume that the non-zero values of a sparse signal is
always greater than a given constant and modify the IRLS algorithm to sat-
isfy this assumption. Numerical results show that the proposed algorithm
recovers a sparse vector efficiently.
key words: compressed sensing, sparse optimization, iterative reweighted
least squares

1. Introduction

The theory of compressed sensing shows that a sparse sig-
nal can be recovered exactly from fewer measurements than
traditionally believed necessary by solving the following �0
minimization problem [1]–[3],

Minimize ‖x‖0 subject to Ax = y, (1)

where ‖ · ‖0 denotes the number of non-zero values in a vec-
tor, A ∈ Rm×n (m < n) is a measurement matrix, and y ∈ Rm

is an observation vector. In the case of ‖a‖0 = K, a is called
K-sparse. Unfortunately, the problem (1) is NP-hard in gen-
eral, and therefore a lot of studies consider the following �p

norm minimization to relax this problem,

Minimize ‖x‖pp subject to Ax = y, (2)

where 0 < p ≤ 1. If some conditions are satisfied, (2)
gives an optimal solution of (1) [4]. Hence various meth-
ods have been proposed such as orthogonal matching pursuit
(OMP) [5], forward-backward splitting (FOBOS) [7], con-
straint removal (CR) [6], reweighted �1 minimization [8] and
iterative reweighted least squares (IRLS) [9], [10]. The lat-
est study has reported that the IRLS algorithm has the best
performance in major applications [11].

In some applications, we consider signals which are
not exactly sparse to be sparse, that is, we neglect relatively
small value elements and obtain sparse vectors. For exam-
ple, the wavelet transformed image is considered to be a K-
sparse signal by selecting the top K absolute values and ne-
glecting other ones [12]. In [13] an image colorization algo-
rithm was proposed based on the sparse optimization, where

Manuscript received August 28, 2013.
Manuscript revised October 18, 2013.
†The authors are with the Department of Management Engi-

neering, Tokyo University of Science, Tokyo, 162–8601 Japan.
††The author is with the Department of Computer Science,

Kogakuin University, Tokyo, 163–8677 Japan.
a) E-mail: uru-kaz@ms.kagu.tus.ac.jp

DOI: 10.1587/transinf.E97.D.319

the signal is approximated as a sparse signal by letting the
elements with smaller value than a given constant be zero.
Therefore we assume in this letter that the optimal sparse
signal xopt of the problem (1) is included in Rn

ν , where Rn
ν is

defined by

Rn
ν = {x = [x1 x2 . . . xn]T ∈ Rn : |xi| > ν or xi = 0},

and ν > 0 is a given constant. The contribution of this letter
is to propose a new IRLS algorithm which utilizes this as-
sumption explicitly to provide more accurate sparse solution
than other algorithms. This letter also proposes a heuristic
method for unknown ν. Numerical results show that the pro-
posed algorithm recovers the sparse signal efficiency.

2. Main Results

2.1 Proposed Algorithm

This letter considers the following �1 norm minimization
problem to find the optimal solution xopt of the problem (1),

Minimize ‖x‖1 subject to Ax = y, x ∈ Rn
ν, (3)

where ν > 0 is a given constant. The IRLS algorithm [9],
[10] gives the �1 minimization solution by alternately updat-
ing the weighted least squares solution and the weight. The
update scheme of the tth iteration is follows,

x(t+1) = arg min
x∈Rn s.t. Ax=y

n∑
i=1

w(t)
i x2

i , (4)

and

w(t+1)
i =

1

|x(t+1)
i | . (5)

As mentioned in the previous section, we assume here that
the optimal solution xopt is included in Rn

ν . To obtain x(t) ∈
Rn
ν in each iteration, this letter proposes the following simple

soft-thresholding scheme before updating the weight w(t+1)
i ,

x(t+1)
i ← sign(x(t+1)

i ) · (|x(t+1)
i | − ν)+, (6)

where sign(·) denotes the signum function and (a)+ =
max(a, 0). Then we obtain a new weight as follows from
(5) and (6),
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w(t+1)
i =

⎧⎪⎪⎨⎪⎪⎩
1

|x(t+1)
i |−ν (|x(t+1)

i | > ν)
∞ (|x(t+1)

i | ≤ ν) . (7)

Next we focus on an implementation of (7). A sim-
ple way to implement this weight is to replace the infinity
with a large constant. Experimental results show that this
implementation works well only if ν is small enough or if
the initial value x(0) is nearly an optimal solution. In the
IRLS algorithm, we usually use the least square solution
xLS = AT (AAT )−1y as x(0), and the most elements of non-
sparse xLS are smaller than ν since the optimal solution is
sparse. This causes the most elements of x(t) for t ≥ 1 to
remain to be less than ν due to a large w(t)

i , and therefore
we obtain a wrong solution. In order to avoid sticking in
[0, ν] of x(t+1)

i , this letter approximates the weight (7) by the
strictly monotonically decreasing function for |xi| as follows,

w(t+1)
i =

1
ν

L∑
l=1

⎛⎜⎜⎜⎜⎜⎝ ν|x(t+1)
i |

⎞⎟⎟⎟⎟⎟⎠
l

=
1
ν

L∑
l=1

1( |x(t+1)
i |
ν

)l . (8)

Note that the weight (8) is exactly equal to (7) if L → ∞
because

1
ν

∞∑
l=1

⎛⎜⎜⎜⎜⎜⎝ ν|x(t+1)
i |

⎞⎟⎟⎟⎟⎟⎠
l

=

1 −
(
ν

|x(t+1)
i |

)∞

|x(t+1)
i | − ν

=

⎧⎪⎪⎨⎪⎪⎩
1

|x(t+1)
i |−ν (|x(t+1)

i | > ν)
∞ (|x(t+1)

i | ≤ ν) .

This weight enables x(t+1)
i to take a larger value than ν even

if x(t)
i ≤ ν, and therefore we can avoid the value 0 of un-

desirable elements in a solution. This letter proposes the
following computable expression of (8),

w(t+1)
i =

1
ν

L∑
l=1

1[ |x(t+1)
i |
ν
+ ε 1/l

]l , (9)

where L ≥ 1 and ε > 0 are given constants. Because the
value of ε affects the performance of IRLS, this letter applies
the update scheme of ε proposed in [10], where ε is updated
as ε ← ε/10 when the relative error ‖x(t+1) − x(t)‖2/‖x(t)‖2 is
less than

√
ε/100. Finally, this letter proposes a new IRLS

algorithm as shown in Algorithm 1.

2.2 Termination Property of the Algorithm

This subsection gives an important property of the algo-
rithm, which guarantees the termination of the algorithm.
Because it is enough to prove ‖x(t+1) − x(t)‖ → 0 as t → ∞
for any ε > 0, we deal ε as a given constant in this subsec-
tion.

For convenience, we define a vector w(t)
(l) = [w(t)

(l)1
, . . . ,

w(t)
(l)n

] ∈ Rn, where w(t)
(l) i

is by

w(t)
(l) i
=

1

ν
[ |x(t)

i |
ν
+ ε1/l

]l . (10)

Algorithm 1 Proposed algorithm
Input: A, y, ν > 0, L ≥ 1

set t = 0
set ε = 1
set w(0)

i = 1 for i = 1, 2, . . . , n
repeat

repeat
calculate x(t+1) = arg min

x∈Rn s.t. Ax=y

∑n
i=1 w

(t)
i x2

i

update w(t+1)
i = 1

ν

∑L
l=1

1⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝ |x

(t+1)
i |
ν

⎞⎟⎟⎟⎟⎟⎠+ε1/l
⎤⎥⎥⎥⎥⎥⎦
l

t ← t + 1
until ‖x(t+1) − x(t)‖2/‖x(t)‖2 < √ε/100
ε ← ε/10

until ε = 10−9

Output: x(t)

Then w(t+1)
i in (9) can be rewritten as w(t+1)

i =
∑L

l=1 w
(t+1)
(l)i

.

Let us define the function J for 0 < w(t)
(l) i
≤ 1
νε

as follows,

J(x(t),w(t)
(1),w

(t)
(2), . . . ,w

(t)
(L))

=

L∑
l=1

⎡⎢⎢⎢⎢⎢⎢⎣
n∑

i=1

w(t)
(l)i

(x(t)
i )2 + ν2

∫ 1
νε

w(t)
(l)i

((νu)−
1
l − ε 1

l )2du

⎤⎥⎥⎥⎥⎥⎥⎦ , (11)

where ε, ν, L are given constants, and t is the number of
iterations. The function J is a convex function of each
variable (in fact, ∂2J/∂w(t)

(l)

2

i
≥ 0), and w(t)

(l) i
in (10) satisfies

∂J/∂w(t)
(l) i
= 0. This implies that (10) minimizes J . Then

Algorithm 1 minimizes the objective function J in each it-
eration, and it holds that

x(t+1) = arg min
x∈Rn s.t. Ax=y

J(x,w(t)
(1),w

(t)
(2), . . . ,w

(t)
(L)), (12)

and that

[w(t+1)
(1) , . . . ,w

(t+1)
(l) , . . . ,w

(t+1)
(L) ]

= arg min
[w(1),...,w(l),...,w(L)]

J(x(t+1),w(1), . . . ,w(l), . . . ,w(L)). (13)

We also have the following monotonicity property which
holds for all t ≥ 0,

J(x(t),w(t)
(1),w

(t)
(2), . . . ,w

(t)
(L))

≥ J(x(t+1),w(t)
(1),w

(t)
(2), . . . ,w

(t)
(L))

≥ J(x(t+1),w(t+1)
(1) ,w

(t+1)
(2) , . . . ,w

(t+1)
(L) ). (14)

We define a constant α > 0 as follows

J(x(1),w(0)
(1),w

(0)
(2), . . . ,w

(0)
(L)) = α. (15)

Then we obtain the following inequalities,

α ≥ J(x(t),w(t)
(1),w

(t)
(2), . . . ,w

(t)
(L))

≥ w(t)
(1)i

x(t)
i

2

≥ w(t)
(1)i

(w(t)
(1)i

−1 − νε)2

≥ w(t)
(1)i

−1 − 2νε,
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and hence it holds that w(t)
(1)i
≥ (α + 2νε)−1. Thus we have

J(x(t),w(t)
(1),w

(t)
(2), . . . ,w

(t)
(L))

− J(x(t+1),w(t+1)
(1) ,w

(t+1)
(2) , . . . ,w

(t+1)
(L) )

≥ J(x(t),w(t)
(1),w

(t)
(2), . . . ,w

(t)
(L))

− J(x(t+1),w(t)
(1),w

(t)
(2), . . . ,w

(t)
(L))

=

L∑
l=1

n∑
i=1

w(t)
(l)i

[x(t)
i

2 − x(t+1)
i

2
]

=

L∑
l=1

n∑
i=1

w(t)
(l)i

[x(t)
i − x(t+1)

i ]2

− 2
L∑

l=1

n∑
i=1

w(t)
(l)i

x(t+1)
i [x(t+1)

i − x(t)
i ]

=

L∑
l=1

n∑
i=1

w(t)
(l)i

[x(t)
i − x(t+1)

i ]2

≥ (α + 2νε)−1
n∑

i=1

[x(t)
i − x(t+1)

i ]2

= (α + 2νε)−1||x(t) − x(t+1)||2, (16)

where the second equality uses the fact that

n∑
k=1

N∑
i=1

w(t)
(k)i

x(t+1)
i [(x(t+1)

i ) − (x(t)
i )] = 0

(observe that A(x(t+1) − x(t)) = 0 and that x(t+1) is the least
squares solution with w(t)). If we now sum these inequalities
over t ≥ 1, we have that

α ≥ α − J(x(∞),w(∞)
(1) ,w

(∞)
(2) , . . . ,w

(∞)
(L) )

≥ J(x(1),w(1)
(1),w

(1)
(2), . . . ,w

(1)
(L))

− J(x(∞),w(∞)
(1) ,w

(∞)
(2) , . . . ,w

(∞)
(L) )

≥ (α + 2νε)−1
∞∑

t=1

||x(t) − x(t+1)||2,

and therefore it holds that

α(α + 2νε) ≥
∞∑

t=1

||x(t) − x(t+1)||2.

In particular we have

lim
t→∞(x(t) − x(t+1)) = 0. (17)

This implies that Algorithm 1 always terminates. This
property guarantees only the termination condition of Al-
gorithm 1 and not the convergence to the optimal solution.
As well as the original IRLS algorithm, the proposed algo-
rithm is not guaranteed to provide exact solutions, however,
numerical results show that it works well to obtain sparse
solutions [10].

2.3 Case of Unknown ν

Although the performance of the algorithm depends on the
value of ν, it is not always known. Since the proposed
weight is approximated by series, the algorithm has robust
to the value of ν which is larger than a true value. It is triv-
ial that 0 < ν < max(|xopti|), where max(|xi|) denotes the
largest absolute element in x, and therefore this paper pro-
poses a heuristic where ν is given as ν = max(|x(0)

i |) at the
first iteration and then is reduced gradually as follows,

ν(0) = max(|x(0)
i |),

and

ν(t+1) = max
(
ε,min

(
ν(t), ηtmax(|x(t+1)

i |)
))
, (18)

where η < 1. The value of ν gradually decreases at each
iteration, and ν(t) → ε as t → ∞. Empirical results show
that η = 0.995 and ε = 10−8 achieve the best performance,
and this value is used in all experiments of the next section.

3. Experimental Result

This section presents numerical examples to show the ef-
ficiency of the proposed algorithm comparing with IRLS,
orthogonal matching pursuit (OMP) [5], and constraint re-
moval (CR) [6]. We select entries of a measurement ma-
trix A ∈ R100×256 from Gaussian distribution of mean 0 and
standard deviation 1

100 , then scale the columns to have unit
2-norm. A K-sparse vector xopt ∈ R256 is generated by tak-
ing the top K absolute values of a vector where the value of
each element is chosen from Gaussian distribution of mean
0 and standard deviation σ, and an observation signal vector
y ∈ R100 is constructed according to the equation Axopt = y.
In IRLS, we use p ∈ {0, 0.7, 0.8, 1} of the �p norm minimiza-
tion, where p = 0.7 and 0.8 are the best values for σ = 1
and 100, respectively, obtained by examining of p ∈ [0, 1]
with each 0.05. Since CR requires a priori information about
the sparsity, it is applied with the value of K. All parame-
ters of IRLS, OMP and CR are selected to achieve the best
perfomance. In all experiments, if the solution x satisfies
‖x− xopt‖2/‖xopt‖2 < 10−3, we regard it as successful recov-
ery. Each result shows the number of successful recoveries
(NS) of 500 trials.

First we examine Algorithm 1 to investigate the effects
of L in (9), where the value of ν is given. Figure 1 shows
the NS with L ∈ {1, 2, 4, 8, 16, 32}. As can be seen, the al-
gorithm achieves the best performance with L = 16, and
therefore we use L = 16 in the rest examples.

Next we compare the proposed algorithm with
OMP [5], CR [6] and IRLS [10] by applying them to the
problems of K-sparse vector generated with σ = 1 and 100.
We set ν as the value of Kth element of 0.95xopt. The pro-
posed algorithm is applied in both cases that the value of ν
is known and not known. Figures 2–4 show the results. As
can be seen, the proposed algorithm with known ν has the



322
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

Fig. 1 The number of successful recoveries vs. the sparsity K of the
proposed algorithm with L = 1, 2, 3, 8, 16 and 32.

Fig. 2 The number of successful recoveries vs. the sparsity K of xopt for
σ = 1.

Fig. 3 The number of successful recoveries vs. the sparsity K of xopt for
σ = 100.

Fig. 4 The number of successful recoveries vs. the standard deviation σ
for K = 35.

best performance, and the update scheme (18) of ν provide
the almost same performance as the case of known ν. We
can also see that the performance of the proposed algorithm
is robust for the value of σ although that of IRLS with the
best p is worse when σ is greater, that is, the ratio of ‖xopt‖2
to ‖A‖F is greater for p = 0, 0.7, 0.8.

4. Conclusion

This letter deals with the sparse signal recovery problem un-
der the assumption that the non-zero values of sparse signal
are greater than a known constant ν. This letter proposes
a new algorithm by modifying the IRLS algorithm using
this assumption explicitly and gives the proof of termina-
tion. Numerical results show that the proposed algorithm re-
covers sparse signals better than other algorithms and works
well even when ν is unknown.
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