
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014
357

LETTER

Local Reconstruction Error Alignment: A Fast Unsupervised
Feature Selection Algorithm for Radar Target Clustering

Jianqiao WANG†a), Nonmember, Yuehua LI†b), Member, and Jianfei CHEN†, Nonmember

SUMMARY Observed samples in wideband radar are always repre-
sented as nonlinear points in high dimensional space. In this paper, we
consider the feature selection problem in the scenario of wideband radar
target clustering. Inspired by manifold learning, we propose a novel feature
selection algorithm, called Local Reconstruction Error Alignment (LREA),
to select the features that can best preserve the underlying manifold struc-
ture. We first select the features that minimize the reconstruction error in
every neighborhood. Then, we apply the alignment technique to extend the
local optimal feature sequence to a global unique feature sequence. Exper-
iments demonstrate the effectiveness of our proposed method.
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1. Introduction

In wideband radar applications, one is often confronted with
very high-dimensional data. The redundancy present in
the object’s data only slightly improves classifier perfor-
mance [1]. Besides, time and space requirements will in-
crease significantly when the data contains a large number of
redundancy features. Feature selection techniques endeavor
to select a meaningful feature subset that contains fewer rel-
evant features, while as much class information is retained
as possible [2].

Traditional feature selection algorithms treat the data
as globally linear. However, in reality, most of the observed
data are represented as nonlinear points in high dimensional
Euclidean space. Recently, several manifold based [3] fea-
ture selection algorithms have been presented, such as
Laplacian Score [4], Laplacian regularized A-optimal fea-
ture selection (LapAOFS) and Laplacian regularized D-
optimal feature selection (LapDOFS) [5]. These algorithms
utilize the graph Laplacian matrix as a component of the
criterion to preserve the local structure of the high dimen-
sional data. Thus, the features in the low dimensional data
can reflect the similar underlying manifold structure of the
observed data.

In this paper, we present a novel manifold based fea-
ture selection algorithm, called Local Reconstruction Error
Alignment (LREA). Inspired by manifold learning, we se-
lect the features that can best preserve the underlying mani-
fold structure. We first calculate the weight matrix that char-
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acterizes the manifold structure in the observed data space.
Then, for each neighborhood, we select these features which
minimize the reconstruction error. As the selected feature
sequence may not be the same for every data, we apply the
alignment technique to extend the local optimal feature se-
quence to a globally unique feature sequence.

2. Local Reconstruction Error Alignment

2.1 The Object Function

Given the original sample matrix X, each column indicates
an observed sample and each row denotes a feature. Sup-
pose that there are n samples in X and each sample has
m features. Thus, we can define the original feature set
as F = { f1, f2, · · · , fm}. Then, we select a feature subset
FS = { f S

1 , f S
2 , · · · , f S

q } ⊂ F which contains q features. The
sample matrix after the feature has been selected can be pre-
sented as XS .

LLE [6] assumes that each sample can be reconstructed
by the linear combination of its neighbors. The combination
coefficient, in other words, the weight, contains the local
structure information. The basic idea of our algorithm is that
the samples in XS share the same local geometric structure
of the samples in X. For each xi, let Xnb

i = [xi1, xi2, · · · , xik]
be a matrix consisting of its k-nearest neighbors, say in
terms of the Euclidean distance. We define the reconstruc-
tion weight as wi j, which indicates the contribution of x j to
xi. The optimal weight can be obtained by the following
objective function minimizing the reconstruction error

arg min
wi j

n∑

i=1

‖εi‖2 (1)

where εi is the reconstruction error of sample xi and

εi = xi −
k∑

j=1

wi jxi j (2)

Let XS nb
i = [xS

i1, x
S
i2, · · · , xS

ik] be the corresponding
neighborhood matrix in XS . In order to keep the same lo-
cal geometric structure, the local reconstruction of xS

i can
be written as

xS
i = wi1xS

i1 + wi2xS
i2 + · · · + wik xS

ik + ε
S
i (3)

where εS
i indicates the reconstruction error of sample xS

i and
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εS
i = xS

i −
k∑

j=1

wi jx
S
i j (4)

In order to get the optimal XS , we should minimize the
reconstruction error in Eq. (4). Then, the objective function
of LREA can be presented as the following

arg min
XS

n∑

i=1

∥∥∥εS
i

∥∥∥2

s.t. FS ⊂ F

(5)

2.2 Optimization Scheme

Obviously, it is a NP-hard problem if we solve the objective
function directly. At the same time, it is noteworthy that the
locally optimal solution may not be optimal in global. In or-
der to overcome these shortcomings, we apply the alignment
technique [7] to optimize the objective function.

Let Λi be an m × m diagonal matrix whose diagonal
entry Λii is 1 if the ith feature is selected and 0 otherwise. It
is easy to demonstrate that Λi has the following property.

ΛT
i Λi = Λi (6)

The sample in X and the corresponding sample in XS

have the following relationship.

xS
i = Λi xi (7)

Then, the objective function (5) can be expressed as a
function of Λi. In general, each locally optimal solution, in
other words, Λi, may not be the same. However, the goal of
our algorithm is to select features from the whole samples,
which means the sequence of the selected features in each
sample must be the same. Thus, we have

Λ1 = Λ2 = · · · = Λn = Λ (8)

The reconstruction error of xS
i can be rewritten as

εS
i = xS

i −
k∑

j=1

wi jx
S
i j

= Λxi −
k∑

j=1

wi jΛxi j

= Λ(xi −
k∑

j=1

wi jxi j)

= Λεi

(9)

Then, the optimization problem Eq. (5) can be ex-
pressed as

n∑

i=1

∥∥∥εS
i

∥∥∥2 =
n∑

i=1

‖Λεi‖2

=

n∑

i=1

εT
i Λ

TΛεi (10)

=

n∑

i=1

εT
i Λεi

Then, the objective function can be represented as

arg min
Λ

n∑

i=1

εT
i Λεi

s.t. Λ is diagonal
Λii ∈ {0, 1}, i = 1, 2, · · · ,m

m∑

i=1

Λii = q

(11)

According to the definition of Λ, we have

εT
i Λεi =

m∑

j=1

Λ j jε
2
i j (12)

where ε2
i j indicates the jth component in εi. The optimiza-

tion problem Eq. (11) can be expressed as

n∑

i=1

εT
i Λεi =

n∑

i=1

m∑

j=1

Λ j jε
2
i j

=

m∑

j=1

(Λ j j

n∑

i=1

ε2
i j)

(13)

The optimization problem can be solved by using
Eq. (13) directly. It is obvious that the selected feature se-
quence is the q smallest value in

∑n
i=1 ε

2
i j. LREA algorithm

is summarized in Table 1.

2.3 Computational Complexity Analysis

Suppose we have n samples and each sample has m features.
We need to select q features. The number of nearest neigh-
bors is k. From the derivation of LREA, we can see that the
most time-consuming parts are step 1 and step 2. Comput-
ing nearest neighbors scales in the worst case as O(mn2), or
linearly in the input dimensionality, n, and quadratically in
the number of data points, n. However, for many distribu-
tions of data, constructions such as K-D trees or ball trees
can be used to compute the neighbors in O(n log n) [6]. The
cost of computing the reconstruction weights is O(mnk3).
Compared with the first two steps, the cost of the last two
steps is much smaller. Both step 3 and step 4 have a com-
plexity of O(mn). Thus, the total cost of LEAR is O(mnk3).

Table 1 LREA algorithm.
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By contrast, The total cost of the sequential scheme of La-
pAOFS is O(qmn2) [5]. It is noteworthy that, in practice, in
order to preserve the local structure, the number of nearest
neighbors k is usually set much smaller than the number of
samples n. In order to compare the time complexities be-
tween LREA and LapAOFS, simulation experiments with
MATALB were performed in the next section.

3. Experimental Results

High range resolution profile (HRRP) is a kind of general
signal in wideband radar system. It contains the informa-
tion which indicates the radial location of the scatterers in
the observation target. In a resolution cell, the target can
be seen as an assembly of many scatterers, which usually
locate on the position where the curvature is small, such as
corner and vertex. In this section, we carry out clustering
experiments on millimeter wave radar HRRP. In order to
demonstrate the effectiveness of our proposed algorithm, we
compare our LREA with LapAOFS, Laplacian Score and
Data Variance. We select a feature subset from the original
data with these four feature selection algorithms. Then, we
carry out clustering algorithm on the selected features. The
clustering algorithm we used here is k-means.

The experimental environment is as follows. We use
corner reflectors with different position to simulate three dif-
ferent targets. The distance from radar to target is less than
10 meters. The background is cement floor. The bandwidth
of transmit signal is 400MHz, thus the range resolution is
0.375m. For each simulate target, we obtain a 256 point
HRRP every 1◦ form azimuth 0◦ to 89◦. Thus each tar-
get has 90 HRRPs, and each HRRP has 256 features. For
each HRRP, we select 10, 20, . . . , 250, features, respectively.
Then, we apply k-means algorithm to cluster these selected
features. The average recognition rate of 20 tests is utilized
to measure the performance of each algorithm. The recogni-
tion rate curves are shown in Fig. 1. Table 2 shows the aver-
age recognition rate, as well as the stand deviations. Due to
the achievement of LREA is relatively simplicity, the mean
time consumption of each algorithm is presented in Table 3
as reference.

As can be observed from Fig. 1, the proposed LREA
achieve the highest recognition rate when the number of se-
lected features is 70. The performances of LREA and La-
pAOFS are similar. From Table 2, we can get that the av-
erage recognition rate of LREA is a litter better than that
of LapAOFS. However, the time consumption shown in
Table 3 indicates that LapAOFS needs more time to select
features than the three other algorithms. As LREA, Lapla-
cian Socre and Data Variance sort the features according to
importance, the feature sequence can be obtained one time.
Thus, the time consumption is similar when various features
are selected. The features selected by LapAOFS are ob-
tained through iterative approach. The number of selected
features indicates the number of iterations. So, the time
consumption rise significantly with the number of selected
features increases.

Fig. 1 Performance comparison of recognition rate.

Table 2 Average recognition rate and stand deviations.

Table 3 Time consumption (s).

4. Conclusion

In this paper, we proposed a fast manifold based feature se-
lection algorithm, called LREA, to select the features that
can best preserve the underlying manifold structure. The
manifold structure is characterized by the reconstruction
weight matrix. For each neighborhood, we minimize the
reconstruction error to obtain the optimal features. Finally,
we apply the alignment technique to extend the local opti-
mal feature sequence to a global unique feature sequence.
Our algorithm yields better performance more rapidly than
existing manifold-based feature selection algorithms.
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