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Noise Spectrum Estimation Based on SNR Discrepancy for Speech
Enhancement

Atanu SAHA†a), Nonmember and Tetsuya SHIMAMURA†b), Member

SUMMARY This letter proposes a noise spectrum estimation algorithm
for speech enhancement. The algorithm incorporates the speech presence
probability, which is calculated from SNR (signal-to-noise ratio) discrep-
ancy. The discrepancy is measured based on the estimation of the a priori
and a posteriori SNR. The proposed algorithm is found to be effective
in rapidly switched noise environments. This is confirmed by the experi-
mental results which indicate that the proposed algorithm when integrated
in a speech enhancement scheme performs better than conventional noise
estimation algorithms.
key words: speech enhancement, noise estimation, SNR discrepancy,
speech presence probability

1. Introduction

A crucial aspect of the speech enhancement algorithms is
estimation of the noise spectrum. The noise spectrum esti-
mation can have a major impact on the quality of the sig-
nal processed by the enhancement algorithms. More specif-
ically, underestimation of the noise spectrum causes annoy-
ing musical noise, whereas overestimation causes speech
distortion, which may in turn impair the intelligibility.

Several methods have been proposed for noise estima-
tion in the last few decades. The most widely used ap-
proach in noise estimation is the minimum statistics (MS)
algorithm [1] that tracks the minimum values of the noisy
speech through a finite window. Depending on the length
of this window, the MS algorithm becomes robust to speech
onsets, but the finite window length causes the estimation
delay that is the major drawback of this algorithm. An alter-
native approach, which tracks the spectral minima continu-
ously without requiring a finite window (referred to here as
CSMT), was also proposed in [2]. Although this approach
searches the minimum values of the noisy speech continu-
ously, it cannot distinguish between a rise in noise power
and a rise in speech power.

Recently, Cohen et. al. [3] proposed a method, known
as minima controlled recursive averaging (MCRA), that
combines the MS algorithm with the the control of the time
constant for the noise update. An improved version of
MCRA, known as IMCRA, was also proposed in [4]. The
IMCRA algorithm was also based on spectral minima, ob-
tained using the MS algorithm. However, the main prob-
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lem of these two algorithms is that they cannot avoid the
latency of the MS owing to the utilization of the finite win-
dow. On the other hand, for highly nonstationary noise, a
variant of the MCRA algorithm (referred to here as HNN)
was also proposed [5]. Although this method outperforms
the IMCRA, it may not be fast enough to track noise spec-
trum when there is a sudden change in the noise level.

The objective of this letter is to propose a noise esti-
mation algorithm for speech enhancement so as to take care
the aforementioned drawbacks. The algorithm incorporates
the speech presence probability (SPP), which employs a dis-
crepancy measure between the estimation of the a priori
SNR (signal-to-noise ratio) and a posteriori SNR.

The organization of the letter is as follows. Section 2
describes the proposed method with its principle and im-
plementation. Section 3 shows the experimental results,
whereas Sect. 4 concludes the letter.

2. Proposed Noise Estimation Method

In this section, the proposed noise estimation method is de-
scribed on the basis of the principle and implementation.

2.1 Principle of the Proposed Method

Let y(n) = s(n) + d(n) denote the noisy speech in the time
domain, where s(n) is the clean speech and d(n) is the addi-
tive noise. Assuming the additive noise is uncorrelated with
clean speech, the spectral component of the noisy speech in
the frequency domain is given by

Y(λ, k) = S (λ, k) + D(λ, k) (1)

where Y(λ, k), S (λ, k) and D(λ, k) denote the discrete Fourier
transform coefficients of the noisy speech, clean speech and
noise respectively, for the k-th frequency bin at frame λ.

The proposed noise estimation method is formulated
based on the principle of a detection theory framework.
Generally, the clean speech and the noise are assumed to
be present in the noisy speech. In reality, however, the clean
speech contains many pauses while the noise may be contin-
uously present. The noisy speech can thus be described as a
detection problem using two possible hypotheses; one that
indicates the speech absence is as Hk

0 : Y(λ, k) = D(λ, k),
and another that indicates the speech presence is as Hk

1 :
Y(λ, k) = S (λ, k) + D(λ, k).

Let σ2
d(λ, k) = E [|D(λ, k)|2] denote the variance of the
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noise, where E[.] is an expectation operator. The estimate
of the noise spectrum is then given by

σ̂2
d(λ, k) = E

[
σ2

d(λ, k)|Y(λ, k)
]

= E
[
σ2

d(λ, k)|Hk
0

]
P(Hk

0 |Y(λ, k))

+E
[
σ2

d(λ, k)|Hk
1

]
P(Hk

1 |Y(λ, k)) (2)

where P(Hk
1 |Y(λ, k)) and P(Hk

0 |Y(λ, k)) denote respectively
the conditional probability of speech presence and absence.
Applying a recursive smoothing operation during the peri-
ods of speech absence based on the method proposed in [6],
the estimate of the noise spectrum is obtained from (2) as

σ̂2
d(λ, k) =

[
ασ̂2

d(λ − 1, k) + (1 − α)|Y(λ, k)|2
]

(1 − p(λ, k))

+σ̂2
d(λ − 1, k)p(λ, k)

= αd(λ, k)σ̂2
d(λ − 1, k) + [1 − αd(λ, k)]|Y(λ, k)|2 (3)

where p(λ, k) � P(Hk
1 |Y(λ, k)) is the probability of speech

presence and αd(λ, k) is defined as

αd(λ, k) = α + (1 − α)p(λ, k) (4)

where α is a constant. The preceding equation of the noise
spectrum estimation stated in (3) is the generalized form of
the three algorithms, which are MCRA, IMCRA, and HNN.
The main difference of the three algorithms is to use differ-
ent methods to compute p(λ, k) needed in (4) to estimate the
smoothing factor αd(λ, k). In MCRA and HNN, p(λ, k) is
calculated using the following recursion:

p(λ, k) = αp p(λ − 1, k) + (1 − αp)I(λ, k) (5)

where αp is a smoothing constant, and I(λ, k) is an indicator
function.

Note that the MCRA algorithm utilizes the MS ap-
proach to calculate I(λ, k), whereas the HNN algorithm uti-
lizes the CSMT approach to calculate I(λ, k). In both the
methods, however, I(λ, k) is decided as binary (either 1 or 0)
based on the speech activity, and thereby p(λ, k) in (5) de-
pends on the previous frame p(λ − 1, k). Hence p(λ, k) will
not respond fast enough to abruptly changes of the noise.
Moreover, in MCRA, the values of p(λ, k) are for the most
part binary despite the recursion in (5). This is because
p(λ, k) is based on spectral minima (obtained using the MS
algorithm), which may remain constant within a finite win-
dow. As a result, αd(λ, k) may take binary values, either
αd(λ, k) = α or αd(λ, k) = 1, and the estimated noise spec-
trum will follow the spectral minima, similar to the MS al-
gorithm. The similar problem may also arise in IMCRA
algorithm, since the spectral minima obtained using the MS
approach are used to compute p(λ, k). These problems in-
spire us to propose a noise spectrum estimation technique
so as to incorporate the SPP p(λ, k) in (4). Note that the
incorporation of p(λ, k) in (4) eliminates the dependency of
p(λ, k) on the previous frame p(λ − 1, k), since it reduces
the computation of the step stated in (5). The SPP p(λ, k)
computed from the method proposed in [7] is based on the

principle that p(λ, k) achieves probabilities close to zero for
speech absence and close to one for speech presence, and
as a result the smoothing parameter αd(λ, k) will be updated
continuously to abruptly changes of the noise power.

2.2 Implementation of the Proposed Method

The SPP, which requires the computation of the a priori
speech absence probability (SAP), provides an estimate of
the probability of speech being present at particular fre-
quency bins. The generalized form of the SPP is given by

p(λ, k) =
1 − ρ(λ, k)

1 − ρ(λ, k) + ρ(λ, k)(1 + ξ(λ, k))e−ν(λ,k)
(6)

where ρ(λ, k) is the a priori SAP, ξ(λ, k) is the a priori SNR,
and ν(λ, k) = ξ(λ, k)γ(λ, k)/(1 + ξ(λ, k)) in which γ(λ, k) is
called the a posteriori SNR.

The SPP p(λ, k) in (6) is based on computing the a pri-
ori SAP ρ(λ, k). The motivation behind the computation
of ρ(λ, k) is to get a higher estimated value in the noise-
dominant regions, whereas the estimated value should be
lower in the speech-dominant regions. This is achieved by
the following binary decision rule:

ρ(λ, k) =

{
1 − β(λ, k)ζ(λ, k) under Hk

0
δ(λ, k) under Hk

1
(7)

where ζ(λ, k) is called the SNR discrepancy, β(λ, k) is the
subtraction factor, and δ(λ, k) is determined from the SNR
discrepancy measure ζ(λ, k). The classification of Hk

0 and
Hk

1 is done by the following comparison:

Ps(λ, k)
Hk

0

�
Hk

1

σ (8)

where σ is a threshold, and Ps(λ, k), which can be recog-
nized as a SNR, denotes the ratio of noisy speech power
spectrum to its local minimum, that is,

Ps(λ, k) =
|Y(λ, k)|2
Pmin(λ, k)

(9)

where Pmin(λ, k), which corresponds to the minimum of the
noisy speech periodogram, is calculated by the method in
[2] as

if Pmin(λ − 1, k) < |Y(λ, k)|2
Pmin(λ, k) = γPmin(λ − 1, k) + 1−γ

1−β (|Y(λ, k)|2
−β|Y(λ − 1, k)|2) (10)

else

Pmin(λ, k) = |Y(λ, k)|2 (11)

end

where γ and β are constants. Note that a different rule has
been used to calculate Ps(λ, k) in [7]. In this letter, however,
we use a nonlinear minimum tracking algorithm because the
parameter σ does not appear to be a sensitive parameter.
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In (7), the SNR discrepancy measure ζ(λ, k), which is
related to the estimation of the a posteriori and a priori SNR,
is defined as

ζ(λ, k) = min

(∣∣∣∣∣ |γ(λ, k)| − |ξ(λ, k)|
|γ(λ, k)|

∣∣∣∣∣ , 1
)

(12)

where ξ(λ, k) is the a priori SNR that is calculated
by the decision-directed approach [8], and γ(λ, k) =

|Y(λ, k)|2/σ̂2
d(λ − 1, k). The preceding discrepancy measure

ζ(λ, k) is assessed in a scheme that is related to the back-
ground noise. A large discrepancy value is obtained during
the situations where speech is absent, whereas a small value
is obtained in the situations where speech is present. The
discrepancy measure is therefore interpreted as being di-
rectly proportional to the estimated noise power level. This
provides the concept of the derivative (1 − ζ(λ, k)) in (7) for
deriving the a priori SAP.

The subtraction factor β(λ, k) in (7) is determined by
the following recursive equation:

β(λ, k) = αββ(λ − 1, k) + (1 − αβ)β̂(λ, k) (13)

where αβ ∈ [0, 1) is a smoothing factor and β̂(λ, k) is cal-
culated as the ratio of the a priori SNR to the a posteriori
SNR, that is, β̂(λ, k) = min(|ξ(λ, k|)/|γ(λ, k)|, 1). The preced-
ing subtraction factor β(λ, k) yields a small value during the
noise-only regions, and thus, a large value of ρ(λ, k) is ob-
tained. This confirms a low SPP during the situations where
speech is not present.

On the other hand, the term δ(λ, k) is calculated as

if δ(λ − 1, k) ≤ 1 − ζ(λ, k)

δ(λ, k) = αδδ(λ − 1, k) + (1 − αδ)(1 − ζ(λ, k)) (14)

else

δ(λ, k) = 1 − ζ(λ, k) (15)

end

where αδ ∈ [0, 1) is a smoothing constant. The weak speech
components are preserved in the preceding conditional form
(15) by allowing δ(λ, k) to adapt slowly according to the
smoothing constant αδ.

3. Experimental Results

The experimental results include two different noise types,
namely single noise and multiple noise. In the single noise
case, sentences are degraded at 5 dB SNR by either babble
noise or train noise. In the multiple noise case, two noisy
sets of stimuli are used. The first noisy set consisted of a
sentence degraded by babble noise at 15 dB SNR followed
by the same sentence degraded by train noise at 0 dB SNR,
whereas the second noisy set consisted of a sentence de-
graded by train noise at 0 dB SNR followed by the same sen-
tence degraded by babble noise at 15 dB SNR. All sentences
(30 sentences) used in the experiments are taken from the
NOIZEUS [9] speech corpus. Half of them are from male
speaker and half of them are from female speaker.

Fig. 1 Tracking performance (for f = 1050 Hz) of noise estimators for
suddenly increasing noise level.

Fig. 2 Tracking performance (for f = 850 Hz) of noise estimators for
suddenly decreasing noise level.

The sentences used in the experiments are sampled at
8 KHz. A 20-msec analysis Hamming window is used with
50% overlap between frames. The performnace of the pro-
posed method is compared with that of the methods in IM-
CRA and HNN. The typical parameter selection is the same
as that in those approaches. The following values are used
in our implementation: α = 0.85, σ = 5, γ = 0.998, β = 0.8,
αβ = 0.20, and αδ = 0.80. The above parameters are opti-
mized based on the NOIZEUS speech corpus. A large num-
ber of simulations using a large number of data are thus con-
ducted for optimizing the above parameters. Note that the
value of α, β and γ in our implementation is the same as in
[5]. The evaluation is conducted with regard to the follow-
ing aspects: tracking performance of the noise estimators,
and improvement in the speech quality by integrating the
noise estimators into a speech enhancement algorithm.

3.1 Tracking Performance

Firstly, we evaluate the tracking performance of all noise es-
timators for multiple noise case with Figs. 1 and 2. Figure 1
shows the sudden increase of noise power level in which
babble noise (t < 0.6 sec) at 15 dB SNR is added to a sen-
tence followed by the train noise (t > 0.6 sec) at 0 dB SNR.
Figure 2, on the other hand, shows the sudden decrease of
noise power level in which initially train noise (t < 1.4 sec)
at 0 dB SNR is added to a sentence followed by the babble
noise (t > 1.4 sec) at 15 dB SNR. For comparative purposes,
the true noise spectrum is also superimposed in both figures.

As mentioned earlier, the computation of the SPP
p(λ, k) in IMCRA depends on the spectral minima, which
is obtained by tracking the minimum of noisy speech over a
search window spanning L frames. Unfortunately, this has
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Fig. 3 Tracking performance (for whole frequency components) of noise
estimators for suddenly increasing noise level.

few drawbacks. First, the minimum is sensitive to outliers.
Second, the update of minimum can take at most 2L frames.
The update of noise estimation in IMCRA is therefore re-
stricted to the minimum tracking, which may lag by as many
as 2L frames. Hence, the IMCRA does not result in any sig-
nificant update of the noise estimation. This can be seen in
Figs. 1 and 2.

The update of the noise estimation in HNN is based
on a rough detection of speech region. Depending on this
detection, the indicator function I(λ, k) stated in (5) is con-
sidered as binary (either 1 or 0). The SPP p(λ, k) is thus up-
dated according to the previous analysis frame. This makes
the problem when there is a sudden change in the noise level.
As is evident from Figs. 1 and 2, where the noise power is
suddenly increasing and decreasing respectively, the update
of the noise estimation cannot follow the noise power. This
is caused by the previous analysis frame which is already
analyzed as a frame of speech being present, and therefore
the noise estimation is not updated.

On the other hand, the SPP p(λ, k) in the proposed
method is updated based on the computation of the SAP
ρ(λ, k) in each frequency bin. This makes the proposed
method to be much faster than that of the other algorithms.
As can be seen from Fig. 1, at t ≈ 0.6 sec, the noise power
level suddenly increases. It takes about 1.5 sec for the HNN
algorithm to track the rising noise level, whereas it only re-
quires roughly 0.1 sec for the proposed method to track the
noise. Note that Figs. 1 and 2 use a single frequency compo-
nent. We therefore further evaluate the results which use the
total power of noisy speech across whole frequency compo-
nents. The same phenomenon is observed that is shown in
Fig. 3.

3.2 Speech Quality Performance

Secondly, in order to evaluate the speech quality, the noise
estimators are integrated into a power spectral subtraction
method proposed in [10]. The spectral floor used for power
spectral subtraction is 0.02. Two objective measures are
used to evaluate the performance of the noise estimation al-
gorithms: segmental SNR (segSNR) and weighted spectral
slope (WSS) measure [11].

The segSNR and WSS results are shown in Table 1.
Relatively larger segSNR values are obtained by our pro-
posed method. Smaller WSS values are also obtained by

Table 1 Results of the noise estimation algorithms in terms of segSNR
and WSS values.

Method Single noise Multiple noise
SegSNR WSS SegSNR WSS

IMCRA −0.28 68.45 −2.05 81.93
HNN 0.11 66.69 −1.25 78.74

Proposed 0.43 57.85 −0.73 61.45

our proposed method in both noise cases. Although the re-
sults obtained by the proposed method are found better in
both noise cases, a paired t-test confirms that the proposed
method performs significantly (p < 0.05) better than the
other algorithms in the multiple noise case. The most sta-
tistical significant (p = 0.007) results are obtained by our
proposed method in comparison with the IMCRA approach.
These observations are also found to be consistent with the
informal subjective listening test, where the listeners over-
whelmingly have reported that the proposed method, par-
ticularly for the multiple noise, produces less musical noise
than that the conventional methods do.

4. Conclusion

In this letter, we have proposed a noise spectrum estimation
algorithm for speech enhancement. Unlike other algorithms,
the proposed algorithm is updated based on the SPP that pro-
vides an estimate of the probability of speech being present
at particular frequency bins. The update of the noise spec-
trum estimation in the proposed method is therefore much
faster, particularly for highly nonstationary noise environ-
ments, than that of the other algorithms. This is confirmed
by the experimental results which indicate that the proposed
noise estimation algorithm when integrated in a noise re-
duction scheme performs well over the conventional noise
estimation algorithms.
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