
392
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

PAPER Special Section on Foundations of Computer Science —New Trends in Theory of Computation and Algorithm—

Efficient Sampling Method for Monte Carlo Tree Search Problem

Kazuki TERAOKA†, Nonmember, Kohei HATANO††a), and Eiji TAKIMOTO††, Members

SUMMARY We consider Monte Carlo tree search problem, a variant
of Min-Max tree search problem where the score of each leaf is the ex-
pectation of some Bernoulli variables and not explicitly given but can be
estimated through (random) playouts. The goal of this problem is, given
a game tree and an oracle that returns an outcome of a playout, to find a
child node of the root which attains an approximate min-max score. This
problem arises in two player games such as computer Go. We propose a
simple and efficient algorithm for Monte Carlo tree search problem.
key words: Monte Carlo tree search, random sampling, game, UCT

1. Introduction

Computer programs of Go are becoming stronger by us-
ing Monte Carlo tree search methods [1]–[3]. Among them,
MoGo [4], [5] won a human professional player on the small
9x9 board. After this breakthrough by Mogo, Monte Carlo
tree search methods are employed by most of competitive
computer Go programs, and some of the state of the art pro-
grams reached the rank of 4 or higher dans on the KGS Go
server with the full-size board.

In general, a two player games between the player and
the opponent, including Go, is modeled as a game tree,
where each node and each edge correspond to a position and
a move, respectively. Each leaf in a game tree is assigned a
score given by a pre-defined score function. Given a node
in the game tree (current position), the problem of choosing
the edge (the next move of the player) is often called the
best move search problem. A generic method to solve the
best move search problem is Min-Max search.

Min-Max search chooses the edge connected with the
min-max node, where the min-max node is the node achiev-
ing the min-max score. The performance of the game pro-
gram using Min-Max search depends on its score function.

Monte Carlo tree search is a variant of Min-Max search
in which a score of each leaf is determined by the winning
probability of the player. The winning probability (of the
player) at the game position is the probability that the player
wins from the game position under the condition that both
the player and the opponent repeatedly choose their moves
uniformly randomly from their available moves. The win-
ning probability can be estimated from (random) playouts,
where playout is a sequence of random moves of the player

Manuscript received April 9, 2013.
Manuscript revised July 26, 2013.
†The author is with Fujitsu Limited, Tokyo, 105–7123 Japan.
††The authors are with the Department of Informatics, Kyushu

University, Fukuoka-shi, 819–0395 Japan.
a) E-mail: hatano@inf.kyushu-u.ac.jp

DOI: 10.1587/transinf.E97.D.392

and the opponent from the game position to the end of the
game. Monte Carlo tree search is different from standard
Min-Max search methods in that scores of leaves are not ex-
plicitly given but, instead, can be approximately estimated
via playouts. We call this problem Monte Carlo tree search
problem.

A naive method to solve Monte Carlo tree search prob-
lem is to estimate scores of all leaves by sufficiently many
playouts and then performing min-max search based on the
estimates of scores. The number of playouts is Õ(L/ε2),
where L is the number of leaves in the game tree and ε is
the precision parameter for the min-max value (In Õ nota-
tions, we neglect polynomials of logarithmic factors). This
method, however, is not efficient enough. In general, win-
ning probabilities of nodes or leaves are diverse, so, estima-
tion of some winning probabilities can be rough and uni-
formly small precision ε is not necessary.

1.1 Related Researches

UCT algorithm [6], one of Monte Carlo tree search meth-
ods, adaptively estimate winning probability of leaves by
recursively using UCB algorithm [7] which is originally de-
signed for the multi-armed bandit problem. An advantage
of UCT is that it adaptively reduces playouts when win-
ning probabilities are far from uniform. In fact, many of re-
cent Monte Carlo search based GO programs employ UCT.
On the other hand, analysis of UCT is done only in the
asymptotic sense and there is no theoretical analysis using
finite sample or analysis of sample complexity of getting ε-
approximate min-max solutions.

In this paper, we propose an new algorithm for Monte
Carlo tree search problem and prove its sample complex-
ity. Our algorithm is designed through improvement of
a simple naive method, while UCT is based on online
prediction algorithms. As a result, analysis of our algo-
rithms is significantly simpler and more concise. Under
the assumption that the diversities among winning prob-
abilities are parametrized as Δ, our algorithm finds an ε-
approximate min-max solution using Õ(L min(1/ε2, 1/Δ2))
playouts, which can be significantly smaller than the naive
bound.

We note a technical difference between our setting and
typical settings of Monte Carlo tree search literature. Typ-
ical methods in the literature, given an initial game tree, it-
eratively grow the tree by replacing potentially important
leaves with stumps, i.e., trees with depth 1. Major meth-

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

TERAOKA et al.: EFFICIENT SAMPLING METHOD FOR MONTE CARLO TREE SEARCH PROBLEM
393

ods based on UCT [6] work in this setting (see the details in
[1]). On the other hand, we consider a much simpler setting
where we are given a relatively large game tree in advance
and we do not grow the tree. Instead, we try to prune the
tree as much as possible.

1.2 Organization of the Paper

This paper is organized as follows. In Sect. 2, we define
basic notations and formalize Monte Carlo tree search prob-
lem. In Sect. 3, we propose our algorithm and give the anal-
ysis of the algorithm in Sect. 4. In Sect. 5, we show prelimi-
nary experimental results. We conclude our result in Sect. 6.

2. Preliminaries

In this section, we describe basic definitions. Given a two-
player game, a game tree is the directed tree such that each
node corresponds to a position of the game and each di-
rected edge from a node corresponds to a feasible move of
the player (or the opponent) at the position and the node to
which the directed edge is going corresponds to the resulting
game position. Figure 1 shows an illustration of a game tree.
The root node of a game tree represents the starting position
of the game. In general, the size of a game tree could be too
large, e.g., when the game is Go or Shogi. So, a given game
tree is often a subtree of the whole game tree, where the root
node corresponds to a current game position and the depth
of the subtree is some fixed constant. We also assume that
we are given some score function which assigns a score to
each leaf in the game tree.

2.1 Min-Max Search

Min-Max search is a generic method for choosing the best
move in the game tree. Given a game tree in which scores
of leaves are specified, the score of each node is defined
recursively as follows: (i) score of node u is the maximum
score among those of child nodes of u, if u corresponds to a
position of the player (in other words, depth of u is even), (ii)
score of node u is the minimum score among those of child
nodes of u, if u corresponds to a position of the opponent
(in other words, depth of u is odd). The min-max score of
the game tree is the score of the root node. Min-max search

Fig. 1 Illustration of a game tree with depth 2.

finds an edge such lying between the root node and a node
having the min-max score.

2.2 Monte Carlo Tree Search

Monte Carlo tree search method is a variant of Min-Max
search method in which the score of each leaf is specified
by the winning probability at the leaf. Here, the winning
probability is defined as the probability that the player wins
the game from the position when both the player and the op-
ponent alternately choose their moves uniformly randomly
among available moves. Since exact values of the winning
probabilities are not given, Monte Carlo tree search method
estimates the winning probability of each leaf by a random
sampling procedure called playout. A playout is a sequence
of moves which are randomly chosen by both the player and
the opponent from the position (corresponding the leaf) to
an end of the game.

2.3 Some Inequalities

Proposision 1 (Hoeffding’s inequality [8]). Let X1, . . . , XT

be [0, 1]-valued independent random variable such that
E (Xt) = μ for t = 1, . . . ,T. Then, for any c > 0,

P

⎡⎢⎢⎢⎢⎢⎣ 1
T

T∑
t=1

Xt > μ + c

⎤⎥⎥⎥⎥⎥⎦ ≤ exp
(
−2c2T

)
and

P

⎡⎢⎢⎢⎢⎢⎣ 1
T

T∑
t=1

Xt < μ − c

⎤⎥⎥⎥⎥⎥⎦ ≤ exp
(
−2c2T

)
.

Proposision 2 (Union bound). For any events A and B,
P[A ∪ B] ≤ P[A] + P[B].

2.4 Computation Model for Monte Carlo Tree Search

In this paper, we model the procedure of playouts as oracle
calls. More precisely, we define O� for each leaf �. When
the oracle O� is called, O� returns 1 with probability μ� and
returns 0 with probability 1−μ�, respectively, where μ� is the
winning probability of the player at leaf �. Then, a playout
at leaf � corresponds to a call of oracle O� and estimating
the winning probability at leaf � using playouts corresponds
to estimating the expected output value of oracle O�. So,
from now on, we consider the game tree T as oracle tree T ,
in which each leaf � is equipped with oracle O�. Figure 2
shows an illustration of the oracle tree T .

We denote the set of leaves as leaves(T) and root as
the root of tree T . Let children(u) and parent(u) be the set
of child node of u and parent node of u, respectively. Let
L = |leaves(T)| be the number of leaves of T and Anc(�)
be the set of ancestor nodes including � itself. Finally, we
define the score μu of node u in the following way.

394
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

Fig. 2 Illustration of oracle tree T .

Fig. 3 Illustration of a tree in which each node is attached with score.

μu =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

μ�, node u is leaf �,

max
v∈children(u)

μv, depth of node u is even,

min
v∈children(u)

μv, depth of node u is odd.

In particular, let μ∗ = μroot, which is the min-max score.
Figure 3 illustrates a tree in which each node is attached
with a score. We define Monte Carlo tree search problem as
follows.

Definition 1 (Monte Carlo tree search problem). Monte
Carlo tree search problem is, given an oracle tree T , the
precision parameter ε > 0 and the confidence parame-
ter δ (0 < δ < 1) as input, to output a child node u ∈
children(root) such that

P[μu ≥ μ∗ − ε] ≥ 1 − δ.

3. Our Algorithm

We introduce the notion of a winner in the following way.

Definition 2 (Winner). A node u of the oracle tree T is win-
ner if μu = μparent(u).

Suppose that a node u is a winner. If the depth of its
parent node p = parent(u) is even (p is the player’s posi-
tion), μu = max

v∈children(p)
μv. Otherwise (the depth is odd), we

Fig. 4 An example of winners.

have μu = min
v∈children(p)

μv. Note that there might be several

winners among child nodes of p. In particular, a winner
among child nodes of the root attains the min-max score.

The basic idea of our method is to delete subtrees
whose root nodes turn out not to be winners, so as to re-
duce the size of the tree and oracle calls. Observe that, even
if we delete a subtree whose root node is not a winner, the
min-max score of the tree does not change. In Fig. 4, we
give an example of winners. Each dark colored node is a
winner. Also, edges between a winner and its parent edge
are represented with thick lines.

If we can find winners in an efficient way, we can re-
duce oracle calls. But, in order to check if each node is a
winner, it is necessary to estimate the score of each node
accurately enough, which requires sufficiently many oracle
calls. To avoid this dilemma, we design a strategy which es-
timate the score of each node in several stages starting from
rough precision to high precision. As a result, we can get
rid of nodes which turn out not to be winners in early stages
even with rough precision. We will show our algorithm in
the next section.

3.1 Our Algorithm

Our algorithm FindTopWinner consists of two procedures
EstimateValue and Prune, respectively and it works in
rounds.

At each round m = 1, . . . , �log 2/ε	, for each node
u, the procedure EstimateValue finds an estimate μ̂u of the
score μu so that the error of μ̂u is at most εm with high proba-
bility. More precisely, given a node u, EstimateValues(u, εm,
δm) estimates scores of nodes in the subtree rooted at u in a
recursive way and returns an estimate μ̂u of the score of u.

Then, for each node u, the procedure Prune checks if
u is a winner. If Prune judges that u is not a winner, Prune
deletes the subtree rooted at u. More specifically, given a
node u, Prune(u) judges that a child node v of u is not a
winner if

TERAOKA et al.: EFFICIENT SAMPLING METHOD FOR MONTE CARLO TREE SEARCH PROBLEM
395

Algorithm 1 FindTopWinner
1: Input: ε, δ, T
2: Initialization: ε0 = 1, δ0 = δ/L.
3: for m = 1 to �log2 2/ε	 do
4: εm = εm−1/2 and δm = δm−1/2.
5: if |children(root)| = 1 then
6: break
7: end if
8: μ̂root = EstimateValues(root, εm, δm)
9: Prune(root, εm)

10: end for
11: return I = arg max

v∈children(root)
μ̂v

Algorithm 2 EstimateValues(u, εm, δm)
1: if u ∈ leaves(T) then
2: call oracle Ou until the total calls of Ou reaches nm =

�(1/(2ε2m)) ln(2/δm)	. Let Nu be the sum of outputs of Ou.
3: return Nu/nm

4: end if
5: for all v ∈ children(u) do
6: μ̂v = EstimateValues(v, εm, δm)
7: end for
8: if depth of u is even then
9: return max

v∈children(u)
μ̂v

10: else
11: return min

v∈children(u)
μ̂v

12: end if

Algorithm 3 Prune(u, εm)
1: for all v ∈ childlen(u) do
2: if |μ̂u − μ̂v | > 2εm then
3: childlen(u) = childlen(u) \ {v}
4: else if v � leaves(T) then
5: Prune(v, εm)
6: end if
7: end for

|μ̂u − μ̂v| > 2εm. (1)

3.2 Analysis

Let nodesm(T) and leavesm(T) be the set of nodes and
leaves in T which are not deleted yet at the beginning of
round m, respectively. Similarly, let childrenm(u) be the set
of child nodes of u which are not deleted at the beginning of
round m. Then, we define the event such that all estimates
of scores of nodes and leaves are obtained approximately
correctly while FindTopWiiner is running.

Definition 3 (Event A). The event A is such that, at each
round m and for each leaf � ∈ leavesm(T), the estimate μ̂�
obtained by EstimateValues(�, εm, δm) satisfies |μ�−μ̂� | ≤ εm.

Lemma 1. The event A occurs with probability at least 1−δ.

Proof. By Hoeffding’s inequality (Proposition 1), at each
round m and for each leaf � ∈ leavesm(T), the estimate μ̂�,m
obtained by EstimateValues at round m satisfies

P[|μ� − μ̂�,m| > εm] ≤ 2exp
(
−2εm

2nm

)
≤ δ

2mL
,

where the second inequality holds since nm =

�(1/(2ε2
m)) ln(2/δm)	. Therefore, event

P[the event A does not occur]

= P[∃m ≥ 1,∃l ∈ leavesm(T), |μl − μ̂l,m| > εm]

≤ L
∞∑

m=1

δ

2mL
= δ,

where the second inequality holds by the union bound
(Proposition 2).

�

Then, for each round m, we define the following events
B(m) and C(m).

Definition 4 (Event B(m)). The event B(m) is the event in
which for any node u ∈ nodesm(T), there exists a winner in
childrenm(u).

Definition 5 (Event C(m)). The event C(m) is the event in
which for any node u ∈ nodesm(T), EstimateValues(u, εm,
δm) outputs the estimate μ̂u such that |μu − μ̂u| ≤ εm.

Intuitively, we think that if these events occur at each
round of FindTopWinner, the algorithm is successful.

Lemma 2. If event the A and the B(m) occurs, the event
C(m) also occurs.

Proof. Suppose that both the events A and B(m) happen.
Then, we prove that the event C(m) also happens by induc-
tion on the height of nodes, where the height of a node u is
the height of the subtree rooted at u. Note that height and
depth are different notions.

Now, observe that for each node u ∈ nodesm(T),
EstimateValues(u, εm, δm) at round m outputs the estimate
μ̂u such that

μ̂u =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Nu/nm, u is a leaf,

max
v∈childrenm(u)

μ̂v, depth of u is even,

min
v∈childrenm(u)

μ̂v, depth of u is odd.

(i) Assume that the depth of u is 0. Then u is a leaf and
|μu− μ̂u| ≤ εm by definition of the event A. (ii) Then, assume
that for any node v ∈ nodesm(T) with its height less than
h − 1, it holds that |μv − μ̂v| ≤ εm. Let u be any node in
nodesm(T) of height h. For simplicity, we assume that the
depth of u is odd (the proof is similar for the case when the
depth is even). Since the event B(m) occurs, there exists a
winner v1 ∈ childrenm(u) such that following property:

v1 = arg min
v∈childrenm(u)

μv, μu = μv1 .

Then, let

v2 = arg min
v∈childrenm(u)

μ̂v

396
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

That is, μ̂u = μ̂v2 . Since the height of v1 or v2 is at most h−1,
by the inductive assumption, it holds that μ̂v1 ≤ μv1 +εm, and
μv2 ≤ μ̂v2 + εm, respectively. So, we have

μ̂u ≤ μ̂v1 ≤ μv1 + εm = μu + εm,

μu ≤ μv2 ≤ μ̂v2 + εm = μ̂u + εm.

This implies that |μu − μ̂u| ≤ εm, i.e., the event C(m) occurs.
�

Lemma 3. If the event A and B(m) occur, then the event
B(m + 1) also occurs.

Proof. Suppose that both the event A and B(m) occur. By
Lemma 2, the event C(m) also holds. Let u be any node
in nodesm+1(T). Then, clearly, we have u ∈ nodesm(T).
Further, since B(m) occurs, there exists a winner v ∈
childrenm(u). Note that, since v is a winner, μu = μv. On
the other hand, since C(m) occurs, it holds that, after Esti-
mateValues is called,

|μu − μ̂u| ≤ εm, and, |μv − μ̂v| ≤ εm.

Therefore,

|μ̂u − μ̂v| = |(μ̂u − μu) + (μv − μ̂v)|
≤ |μ̂u − μu| + |μv − μ̂v|
≤ 2εm.

This implies that v is not deleted by Prune(v) at round m and
thus we have v ∈ childrenm+1(u). So, the event B(m + 1)
occurs. �

Lemma 4. Suppose that the event A occurs. Then, it follows
that

1. for any m ≥ 1, for any u ∈ nodesm(T),
EstimateValues(u, εm, δm) at round m outputs μ̂u such
that |μu − μ̂u| ≤ εm, and

2. Any node v∗ = arg max
v∈children(root)

μv will not be deleted.

Proof. By Lemma 2 and 3, for any round m, the events
B(m) and C(m) occur. This implies the first statement of
the lemma. Further, any node attaining the min-max score
is a winner, the second statement holds. �

Definition 6. For each leaf �, we define the parameter Δ� as
follows.

Δ� = max
u∈Anc(�)\{root}

|μu − μparent(u)|. (2)

Definition 7. Let m� be the shortest round m such that εm <
Δ�/4 for leaf � ∈ L(T).

m� =

⌊
log2

4
Δ�

⌋
+ 1. (3)

Lemma 5. If the event A occurs, for each leaf �, � is deleted
at round m ≤ m�.

Proof. Suppose that leaf � is not deleted by the end of round

m� − 1. Then by the definition of Δ�, there exits a node
u ∈ Anc(l) such that

|μu − μparent(u)| = Δ�.

If the event A occurs, by the first statement of Lemma 4,
EstimateValues(u, εm, δm) outputs the estimate μ̂u such that
|μu − μ̂u| ≤ εm� and |μparent(u) − μ̂parent(u)| ≤ εm� . Therefore,

|μ̂u − μ̂parent(u)|
= |(μ̂u − μu) + (μu − μparent(u))

+ (μparent(u) − μ̂parent(u))|
≥ −|μ̂u − μu| + |μu − μparent(u)|
− |μparent(u) − μ̂parent(u)|

≥ −εml + Δl − εml

> 4εml − 2εml = 2εml ,

where the last inequality holds since Δ� > 4εm� . The above
inequality ensures that node u is deleted by Prune(u) at
round m�, which implies that the leaf �, a descendant of u, is
also deleted. �

Theorem 1. The algorithm FindTopWinner satisfies the fol-
lowing two conditions with probability at least 1 − δ.

1. μI ≥ μ∗ − ε,
2. The number of oracle calls is at most

∑
�:Δ�>2ε

⎛⎜⎜⎜⎜⎝32

Δ2
�

ln
16L
Δ�δ
+ 1

⎞⎟⎟⎟⎟⎠ + ∑
�:Δ�≤2ε

(
8
ε2

ln
8L
εδ
+ 1

)
.

Proof. Suppose that the event A occurs. First, we prove the
first statement of the theorem. FindTopWinner terminates if
and only if one of the following two cases hold.

1. (The condition|children(root)| = 1 is satisfied before
the last round M starts.) In this case, by the second
statement of Lemma 4, the remaining child node attains
the min-max score. Therefore, we have μI = μ

∗ ≥
μ∗ − ε.

2. (The above condition is not satisfied until the end of
round M.) In this case, note that εM ≤ ε/2. Then, by
the first statement of Lemma 4,

μ∗ − ε
2
≤ μ∗ − εM

= μroot − εM

≤ μ̂root

= μ̂I

≤ μI + εM

≤ μI +
ε

2
.

Therefore, we have μI ≥ μ∗ − ε.

Then we prove the second statement of the theorem.
By Lemma 5, for each leaf �, the number of calls of O� is
at most nm� . Note that, for any leaf � such that m� > M, the
number of oracle calls is upper bounded trivially by nM . So,

TERAOKA et al.: EFFICIENT SAMPLING METHOD FOR MONTE CARLO TREE SEARCH PROBLEM
397

total number of oracle calls is at most∑
�:Δ�≥2ε

nm� +
∑
�:Δ�<2ε

nM , (4)

where we use the fact that m� > M ⇐⇒ Δ� < 2ε. Further,
the following inequalities hold.

nm < 22m−1 ln
2m+1L
δ
+ 1,

ml ≤ log2
4
Δ�
+ 1,

M < log2
2
ε
+ 1.

By using these inequalities, the term (4) is upper bounded
as follows.∑

�:Δ�>2ε

nml +
∑
�:Δ�≤2ε

nM

<
∑
�:Δ�>2ε

(
22m�−1 ln

2m�+1L
δ
+ 1

)

+
∑
�:Δ�≤2ε

(
22M−1 ln

2M+1L
δ
+ 1

)

<
∑
�:Δ�>2ε

⎛⎜⎜⎜⎜⎝32

Δ2
�

ln
16L
Δ�δ
+ 1

⎞⎟⎟⎟⎟⎠

+
∑
�:Δ�≤2ε

(
8
ε2

ln
8L
εδ
+ 1

)
.

�

Let

Δ = min{μ∗ − μu | u ∈ children(root), μu < μ
∗}.

Proposision 3. Δ = min
�∈leaves(T)

Δ�.

Proof. For any leaf �, there exists the child node of the root
and an ancestor of �. That is,

children(root) ∩ Anc(�) = {u}.

By the definition of Δ� and Δ, we have Δ� ≥ μ∗ − μu and
μ∗ − μu ≥ Δ. So, Δl ≥ Δ. Since � is any leaf, we have

min
�∈leaves(T)

Δ� ≥ Δ.

On the other hand, there exists a node u ∈
children(root) such that μ∗ − μu = Δ. Then, there also exists
a leaf �′ such that there is a path from u to �′ so that each
node in the path is a winner. Since the score of each node in
the path is μu, we have μu = μ�′ . By the definition of Δ�, we
have Δ�′ = μ∗ − μu = Δ. This implies Δ ≥ min

�∈leaves(T)
Δ�. �

In particular, if the event A occurs and there is only
one winner among child node of the root of T (i.e., |{u ∈
children(root) | μu = μ

∗}| = 1), then the number of ora-
cle calls can be much smaller, which we prove in the next
corollary.

Corollary 1. If there is only one winner among child node
of the root of T , the number of oracle calls of FindTopWin-
ner is, with probability at least 1 − δ,

Õ

(
L min

(
1
ε2
,

1
Δ2

))
.

Proof. We consider the following two cases.

1. (Δ > 8ε) In this case, FindTopWinner terminate at
round M′ such that

εM′−1 <
Δ

4
.

Then calls of the oracle is done at round at most M′ −1.
By rearranging the inequality above, we get

M′ =

⌊
log2

8
Δ

⌋
+ 1.

The total number of oracle calls is at most

128
Δ2

ln
16L
Δδ
+ 1 ≤ 2

ε2
ln

2L
εδ
+ 1.

2. (Δ ≤ 8ε) Otherwise, FindTopWinner terminates at
round at most M. The total number of oracle calls is
at most

8
ε2

ln
8L
εδ
+ 1 ≤ 512

Δ2
ln

64L
Δδ
+ 1.

So, in both cases, FindTopWinner call oracles at most

min

(
8
ε2

ln
8L
εδ
+ 1,

512
Δ2

ln
64L
Δδ
+ 1

)

times.

�

4. Experiments

In this section, we show some experimental result using ar-
tificial data. We compare FindTopWinner with UCT [6] and
the naive sampling method based on Hoeffding’s inequality.

In our artificial data, we construct an oracle tree with
depth 3 in which each node has 10 outgoing edges. So, the
number of leaves of the tree is 1000. The score of each leaf
is determined randomly from [0, 1]. We set the parameters
as ε = 0.01 and δ = 0.1.

For the oracle tree above, we run FindTopWinner and
UCT, respectively. We plot the error w.r.t. the min-max
score μ∗ − μI of FindTopWinner at the end of each round.
Note that FindTopWinner, given ε and δ and the oracle tree,
automatically determines the number of oracle calls during
its run. We also plot that of UCT. UCT is an online algo-
rithm which calls the oracle once at each round. We run
UCT for sufficiently many rounds so that its total number of
oracle calls is the same as that of FindTopWinner. We re-
peat this experiment for 10 times. All the results are shown

398
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

Fig. 5 Error w.r.t. the min-max score for the artificial oracle tree.

Table 1 Total oracle calls to obtain ε-approximate solution for the min-
max score of the artificial oracle tree.

Naive method FindTopWinner
198,070,000 1,970,085

in Fig. 5. As can be seen in Fig. 5, as the number of total
oracle calls increases, FindTopWinner performs better than
UCT.

Then, we compare FindTopWinner with the naive
method for the same artificial oracle tree with the same pa-
rameters, i.e., ε = 0.01 and δ = 0.1. Here, we refer the naive
method to as the method that calls the oracle of each leaf suf-
ficiently many times as suggested by Hoeffding’s inequality.
More precisely, for each leaf � in the tree, the naive method
calls the oracle O� for 2 ln(2L/δ)/ε2 times. Then, the naive
method performs the min-max search on the tree with the
estimated scores. We run both algorithms for 10 times. The
average number of total oracle calls of each algorithm to ob-
tain ε-approximate solutions of the min-max score is shown
in Table 1, respectively. Roughly speaking, total oracle calls
of FindTopWinner is about 100 times smaller than those of
the naive method. This results shows the effectiveness of
deleting leaves which are judged as non-winners.

5. Conclusion

In this paper, we consider the Monte Carlo tree search prob-
lem and propose a new algorithm.

One of our future work is to apply α-β pruning [9]
to our algorithm. α-β pruning is a search method for full
information games, which performs better than Min-Max
search method by removing redundant subtrees in a game
tree. α-β pruning, however, needs exact scores of each node,
which can be only approximately estimated in Monte Carlo
tree search problem. It might be possible to incorporate α-
β pruning with our algorithm using approximated scores,
which could reduce number of oracle calls further.

References

[1] C. Browne, E.J. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P.
Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
survey of Monte Carlo tree search methods,” IEEE Trans. Computa-
tional Intelligence and AI in Games, vol.4, no.1, pp.1–43, 2012.

[2] R. Coulom, “Efficient selectivity and backup operators in Monte-
Carlo tree search,” Proc. 5th international conference on Computers
and games, CG’06, pp.72–83, 2007.

[3] H. Yoshimoto, K. Yoshizoe, T. Kaneko, A. Kishimoto, and K. Taura,
“Monte Carlo go has a way to go,” Proc. National Conference on Ar-
tificial Intelligence, pp.1070–1075, 2006.

[4] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT
with patterns in Monte-Carlo Go,” Research Report RR-6062, INRIA,
2006.

[5] S. Gelly and D. Silver, “Combining online and offline knowledge in
UCT,” Proc. International Conference on Machine Learning 2007,
pp.273–280, 2007.

[6] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
Proc. European Conference on Machine Learning 2006, pp.282–293,
2006.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol.47, pp.235–256,
2002.

[8] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. American Statistical Association, pp.13–30, 1963.

[9] D.E. Knuth and R.W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol.6, no.4, pp.293–326, 1975.

Kazuki Teraoka received B.E and M.E. de-
grees from Kyushu University in 2010 and 2012,
respectively. He now works for Fujitsu Limited.

Kohei Hatano received Ph.D. from Tokyo
Institute of Technology in 2005. Currently, he
is an assistant professor at Department of Infor-
matics in Kyushu University. His research inter-
ests include boosting, online learning and their
applications.

Eiji Takimoto received Dr. Eng. degree
from Tohoku University in 1991. Currently, he
is a professor at Department of Informatics in
Kyushu University. His research interests in-
clude computational complexity, computational
learning theory, and online learning.

