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Worst Case Analysis of Approximation Algorithm of Abrams et al.
for the Set k-Cover Problem∗
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SUMMARY In this paper, we consider the problem of partitioning a
given collection of node sets into k collections such that the average size
of collections is the largest, where the size of a collection is defined as the
cardinarity of the union of the subsets contained in the collection. More
concretely, we give an upper bound on the performance ratio of an approx-
imation algorithm proposed by Abrams et al., which is known to have a
performance ratio of at least 1 − 1

e � 0.6321 where e is Napier’s constant.

The proposed upper bound is 1 − (2 − d+1√
2)d+1/2 for any d ≥ 1 provided

that k = o(n) which approaches to 0.75 as d increases.
key words: Set k-cover, approximation algorithm, upper bound on the
performance ratio

1. Introduction

Let S be a finite set of nodes andT be a collection of subsets
of S . In this paper, we consider the problem of partitioning
T into k collections such that the average size of k collec-
tions is the largest. This problem, which is known as the
set k-cover problem in the literature, is formally described
as follows. A subset c of T is said to cover nodes in set⋃

S ′∈c S ′. For any partition Π of T , the weight of Π is de-
fined as

N(Π)
def
=

∑
c∈Π

N(c),

where N(c) denotes the number of nodes covered by c. The
set k-cover problem is the problen of given T and a natural
number k, calculating a k-partition Π of T with a maximum
weight.

Example 1: Let S = {1, 2, 3, 4} and T be a collection of
the following four subsets of S : S 1 = {1, 2}, S 2 = {2, 3},
S 3 = {3, 4} and S 4 = {4, 1}. The weight of 2-partition
Π1 = {{S 1, S 3}, {S 2, S 4}} is 2 × 4 = 8 and since there is no
2-partition with weight nine or more, Π1 is an (opitimum)
solution to this instance for k = 2.

The set k-cover problem was proposed by Slijepce-
vic and Potkonjak in 2001 [9] with a proof of the NP-
completeness (in fact, the problem becomes max k-cut [5]
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by restricting the number of occurrences of each node to the
subsets to exactly two). A motivation of the problem is to
realize a power-saving control of Wireless Sensor Networks
(WSNs). In WSNs, a large number of (sensor) nodes are
scattered over a given area so that the whole area is contin-
uously monitored by the nodes. In general, those nodes are
placed redundantly so that each point in the area is covered
by the sensing region of several nodes because it is quite
likely that a part of nodes suddenly crashes due to physical
forces such as storms and a fire. On the other hand, such
a redundancy brings us the possibility of enhancing the sus-
tainability of WSNs. More concretely, by dividing the given
node set into several subsets so that each subset covers the
whole area and by periodically inactivating nodes so that
the activated subset is periodically shifted to the next sub-
set (e.g., every 10 minutes), we could reduce the average
power consumption of each node to increase the lifetime of
the overall WSN.

A key issue to realize such a switching of active sub-
sets without degrading the monitoring performance of the
WSN is how to partition the given node set to satisfy the
requirement on the coverage of the given area. In the liter-
ature, such a requirement is often modeled as the domatic
partition of a particular network [3], [4], [7], [8], by associ-
ating each subset S i in T to the region sensed by node i in S .
However, such a rigid model is too strong to be used in prac-
tical situations (e.g., there is no feasible solution for k ≥ 3 if
the given network has a leaf). The notion of set k-cover was
introduced to overcome such issues in previous approaches.
In fact, since N(c) indicates the region covered by nodes
in c, a large weight of Π indicates that a large portion of
the area is covered by each subset in Π, on average. Thus,
given k-partition Π of T with a maximum weight, a period-
ical switching of active nodes according to Π can reduce the
power consumption of the overall WSN to 1/k without (sig-
nificantly) decreasing the average portion of sensed regions.

In this paper, we analyze the performance of an ap-
proximation algorithm of Abrams et al. [1] for solving the
set k-partition problem. Although it is known that a lower
bound on the performance ratio of the algorithm is 1 − 1

e ,
the derivation of a non-trivial upper bound remained open.
In this paper, we show that there is an instance such that
the performance ratio of the algorithm is no better than
1 − (2 − d+1√

2)d+1/2 for any d ≥ 1 provided that k = o(n),
which approaches to 0.75 as d increases.

The remainder of this paper is organized as follows.
Section 2 overviews related work. Section 3 reviews the

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



400
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

deterministic algorithm of Abrams et al. Section 4 gives
a proof of an upper bound on the performance ratio of the
algorithm. Finally, Sect. 5 concludes the paper with future
work.

2. Related Work

Recall that N(c) ≤ n for any c ⊆ T . A dual of the set k-cover
problem is to regard the weight of the resultant partition as
a constraint. More specifically, we can define the problem
of finding the maximum k such that the weight of the resul-
tant k-partition is exactly k × n. Such a variant is apparently
NP-complete since it includes the domatic partition prob-
lem ([GT3] in [5]) as a special case (as a good news, there
is a O(log |S |)-approximation scheme for the maximization
problem, since it is a variant of the set cover problem [2]).
Unfortunately however, such a constraint on the weight is
too strong if we wish to apply it to the power management in
WSNs. In fact, if the given instance contains a node which
is covered by exactly one element in T , k = 1 is the trivial
solution.

The set k-cover problem becomes easy if k is suffi-
ciently large. When k ≥ |S |, we could easily have an
optimum solution such that N(Π) =

∑
S ′∈T |S ′| by letting

ci := {S i} for each 1 ≤ i ≤ |S |. The reader should note that
the actual value of N(Π) decreases from the trivial uppder
bound

∑
S ′∈T |S ′| due to the intersection of subsets contained

in the same subset ci. Thus, even for k < |S |, if we could
partition T such that node sets contained in ci are mutually
disjoint for each i (or if k is large enough to allow such a par-
tition), we can attain the trivial upper bound. This indicates
we could hope that the following approach works well: 1)
pack node sets to ci’s so that sets packed into the same ci are
mutually disjoint, and 2) if there is no such ci, it selects c j

such that the amount of intersection with the nodes sets con-
tained in ci is the smallest. Abrams et al. proved that such a
greedy approach based on the amount of intersection could
attain a performance ratio of 0.5, which is (unfortunately)
lower than the best known bound of 1 − 1

e . In addition, any
polynomial time algorithm could not beat a certain bound
on the performance ratio, since the performance ratio can
not be better than 15

16 unless P = NP [1].
Another possibility to give a better bound for the set k-

cover problem is to restrict the class of instances such as in-
terval graphs and unit disk graphs. For example, it is known
that the Minimum Dominating Set (MDS) problem admits
a PTAS if the given instances are disk graphs, e.g., in a re-
cent paper of Gibson and Pirwani [6], the technique of local
search is effectively adopted to derive a PTAS for MDS. Al-
though it is not clear whether we could apply the same tech-
nique to the set k-cover problem, if the value of k is fixed so
that it is sufficiently smaller than the domatic number of the
given graph, we could obtain an approximated solution by
repeating the local search.

3. Approximation Algorithm of Abrams et al.

3.1 Randomized Scheme

Consider the following randomized algorithm for solving
the k-set cover problem: 1) for each 1 ≤ j ≤ k, initialize c j to
∅; 2) for each S i ∈ T , randomly select j out of 1, . . . , k and
add S i to c j; 3) output the resultant {c1, c2, . . . , ck} as the so-
lution. We will call this algorithm RAND. In this subsection,
we review the performance analysis of RAND conducted by
Abrams et al. [1]. They proved the following claim.

Theorem 1: [1] The weight of the solution obtained by
RAND is at least 1 − 1

e times of an optimum weight.

The proof is as follows. In the following explanation, to
make the exposition clear, we call each element in partition
Π of T a “color.” Let Nj denote the number of elements in
T containing node j. Note that it holds

∑
j∈S Nj =

∑
i∈S |S i|.

Given node j ∈ S and color c ∈ Π, the probability that
j is not covered by a subset assigned to c under RAND is(
1 − 1

k

)N j
(i.e., it should repeat “not to assign c to a subset

covering j” Nj times). Thus, the probability that node j is
covered by color c is

1 −
(
1 − 1

k

)N j

.

Since the same argument holds for all colors, by the linearity
of expectation, the expected number of colors covering j is

k−k
(
1 − 1

k

)N j
. Thus, the expected weight attained by RAND

is given as

A =
∑
j∈S

⎧⎪⎪⎨⎪⎪⎩k − k

(
1 − 1

k

)N j
⎫⎪⎪⎬⎪⎪⎭ .

On the other hand, since the weight attained by an optimum
algorithm is at most

∑
j∈S min{k,Nj}, we could complete the

proof by showing that A/
∑

j∈S min{k,Nj} ≥ 1 − 1
e . In fact,

we can prove the claim by showing the following slightly
stronger claim:

k − k
(
1 − 1

k

)N j

min{k,Nj}
≥ 1 − 1

e
(1)

for any j. Let us consider the following two cases.
1) When k ≤ Nj, since min{k,Nj} = k, the left

hand side of Eq. (1) can be bounded as 1 −
(
1 − 1

k

)N j
>

1 −
(
1 − 1

k

)k
≥ 1 − 1

e , where the first inequality is due to
k ≤ Nj and the second inequality comes from a well known

mathematical formula
(
1 − 1

k

)k
≤ 1

e .
2) When k ≥ Nj, the left hand side of Eq. (1) becomes

k
Nj

⎧⎪⎪⎨⎪⎪⎩1 −
(
1 − 1

k

)N j
⎫⎪⎪⎬⎪⎪⎭ .

This value monotonically decreases as Nj increases from 0
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to k, since the derivative is negative. Thus the value becomes
minimum when k = Nj and by the same argument to Case
1, we can conclude that it is at least 1 − 1

e . Q.E.D.

3.2 Derandomization

Abrams et al. proposed another algorithm which solves the
k-set cover problem in a deterministic manner. This algo-
rithm, which will be called DET hereafter, is a derandom-
ization of RAND which repeats an assignment of node sets
to the colors in a greedy manner. The order of node sets to
be examined is determined by a permutation π over set S ,
i.e., node set S π(1) is assigned a color first, node set S π(2) is
assigned a color next, and so on (permutation π plays the
role of an adversary in the proof of the upper bound given
in the next section). A color to be assigned to a given node
set is selected so that it maximizes the cost of newly covered
nodes, where a tie is broken by the subscript of colors (i.e., it
prefers c j to c j+1 if they cause the same cost) and the cost of
nodes is re-calculated after each assignment (a formal defi-
nition of the cost function will be given later at the end of the
proof). More concretely, they proved the following claim.

Theorem 2: [1] There is a deterministic algorithm which
generates a solution whose weight is at least 1 − 1

e of opti-
mum.

In the following, we review the proof given by Abrams
et al. The goal of the proof is to show that DET is as good as
RAND provided that it appropriately defines the cost func-
tion. Since the following argument holds for any permu-
tation π, to make the exposition simple, we assume that π
is the identity permutation and the assignment is conducted
in the order of the subscript of the node sets, i.e., S 1 is as-
signed first, S 2 is assigned next, and so on. The logic used
in the proof is to compare the expected weights derived by
the following two scenarios: in the first one, S 1, S 2, . . . , S j

are deterministically assigned and then S j+1, . . . , S n are ran-
domly assigned. In the second scenario, S 1, . . . , S j−1 are
deterministically assigned and then S j, . . . , S n are randomly
assigned. If we can show that the expectation for the former
case is no worse than that for the latter case, by iteratively
moving position j from 1 to n, we can conclude that the
weight attained by the deterministic scheme, i.e., DET, is no
worse than the expected weight of the randomized scheme,
i.e., RAND.

Now we compare the expectations of two scenarios.
A key observation is that the change of the color assigned
to subset S j merely affects the number of colors concerned
with nodes contained in S j, since the order of assignments
is fixed and we are assuming that the assignment for subsets
S 1, S 2, . . . , S j−1 has been determined (in the following, we
will say that “color c covers v” if v is covered by a subset
assigned color c). Suppose that node v in S j is covered by
x different colors after completing the assignment for S j−1.
Consider the set of subsets covering v and let yv be the num-
ber of subsets which covers v but has not yet been assigned

a color (thus the subscript of those subsets must be at least
j). Note that at the beginning of the algorithm, yv = Nv for
all v ∈ S .

By the same argument to the last subsection, the proba-
bility that v is covered by a new color c after completing the
second scenario is represented as 1 −

(
1 − 1

k

)yv
. Since there

are k − x such colors and v is covered by x colors before
starting the assignment for S j, the expected weight of node
v in the second scenario is estimated as

W2 = x + (k − x)

{
1 −

(
1 − 1

k

)yv
}

= k − (k − x)

(
1 − 1

k

)yv

.

The reader should note that the value of yv is decremented
by one by conducting an assignment for a subset covering v.

Now let us evaluate how much the expected weight
increases by selecting the color so that the number of col-
ors covering v increases by the assignment for S j (Case 1),
instead of selecting the color so that the number does not
change by the assignment (Case 2). In Case 2, the expected
number of colors covering v (after completing all assign-
ments) is

k − (k − x)

(
1 − 1

k

)yv−1

,

while in Case 1, the expected number is

k − (k − x − 1)

(
1 − 1

k

)yv−1

= k − (k − x)

(
1 − 1

k

)yv−1

+

(
1 − 1

k

)yv−1

.

This indicates that by conducting an assignment of a color
for S j such that v is covered by a new color, the expected

number of colors covering v increases by
(
1 − 1

k

)yv−1
, which

could be regarded as a gain acquired by node v. This implies
that by selecting color c for subset S j such that the value of

∑
v∈S j

(
1 − 1

k

)yv−1

(2)

is the largest, we could maximize the gain acquired by sub-
set S j (recall that the assignment for S j does not affect
the weight of any other node not in S j). Since the maxi-
mum gain is no smaller than the average gain attained by
a randomized selection, we can conclude that the expected
weight attained by the first scenario is no worse than the ex-
pected weight attained by the second scenario, provided that
the cost function is defined as in Eq. (2). Hence the theorem
follows. Q.E.D.

4. Upper Bound on the Performance Ratio

In this section, we derive an upper bound on the perfor-
mance ratio of DET. The reader should note that in the paper
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(a) Circular arrangement of nodes in S and an interval.

(b) Arrangement of intervals of the same color in an optimum solution.

Fig. 1 Instance for d = 1.

written by Abrams et al. [1], they merely give a lower bound
on the performance ratio of DET and the analysis of the up-
per bound remained open.

Our main contribution is described in the following the-
orem.

Theorem 3: The performance ratio of DET is at most 1 −
(2 − d+1√

2)d+1/2 for any d ≥ 1.

In the following, we give a proof of the theorem. The
proof is by construction, i.e., we will construct an instance
such that the performance ratio for the instance is as worse
as the indicated bound. In the next subsection, we explain
the basic idea by restricting d to one (thus we will show that
the upper bound is 1− (2−

√
2)2/2 = 2(

√
2−1) < 0.82843).

We then extend the argument to larger d’s in the succeeding
subsections.

4.1 Basic Idea

4.1.1 Instance

In this subsection, we assume that n is a multiple of k.
Let S = {0, 1, . . . , n − 1} be the set of nodes and T =
{S 0, S 1, . . . , S n−1} be the set of node sets defined as follows:

S i
def
= {i, i + 1, . . . , i + k − 1},

where “+” denotes the addition in modulo n. In the follow-
ing, we suppose that nodes in S are arranged on a circle of
size n in the clockwise order, and each node set in T is as-
sociated with an interval of length k. See Fig. 1 (a) for illus-
tration. The reader should note that this instance is designed

such that

• i is contained in exactly k intervals S i, S i−1, . . ., S i−k+1,
i.e., Ni = k for any i, and
• the weight of an optimum solution is k × n.

In fact, an optimum solution of this instance is a partition
of T into k subsets c1, c2, . . . , ck such that each subset c j

consists of n/k intervals which are arranged on the circle
so that there is no uncovered node between two consecutive
intervals, i.e., there is no gap between two adjacent intervals.
See Fig. 1 (b) for illustration.

4.1.2 Intended Behavior of DET

Recall that in algorithm DET, the order of node sets to be
assigned a color is determined by a permutation π; i.e., node
sets in T are assigned to colors in the following order:

S π(1), S π(2), . . . , S π(n).

In the proof of the upper bound, permutation π is deter-
mined in such a way that DET should follow the following
sequence of assignments:

• The sequence is partitioned into two parts.
• In the first part, it assigns a given subset to a color so

that it is a new color for all nodes contained in the sub-
set (recall that a tie is broken by the subscript of colors).
• In the second part, it assigns a given subset to a color

so that it covers a gap of uncovered nodes which was
left at the end of the first part.

In other words, we determine permutation π so that for
each color c, there is a gap of length xk (< k) for any two
adjacent intervals assigned color c, where the value of pa-
rameter x will be determined later so that it minimizes the
resulting performance ratio (note that x can take discrete val-
ues since xk must be an integer). See Fig. 2 for illustration.
Concrete permutation π will be given in the next subsection.

Recall that an optimum solution to this instance has
weight k × n, i.e., the set of n intervals is partitioned into k
subsets so that each subset consisting of n/k intervals covers
all nodes in S . In the first part, DET assigns at most

η
def
=

⌈(n
k

)
×

(
1

1 + x

)⌉

intervals of length k to each color c, which implies that at
most k × η nodes are covered by color c. In the second part,
each interval can cover at most one remaining gap of length
xk. Thus, on average, the number of gaps covered by color
c is n

k − η, i.e., it newly covers xk × ( n
k − η) nodes. Since

n nodes are covered by color c in an optimum solution, by
letting f (x) be the performance ratio of DET, we have

n × f (x) = k × η + xk ×
(n

k
− η

)
.

That is,

f (x) <
k
n

(
n

k(1 + x)
+ 1

)
+

xk
n

(
n
k
− n

k(1 + x)

)
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(a) Placement in the first part.

(b) Placement in the second part.

Fig. 2 Arrangement of intervals controlled by the adversary.

=
1

1 + x
+

k
n
+ x

(
1 − 1

1 + x

)

=
1

1 + x
+ x − x

1 + x
+

k
n

= x +
1 − x
1 + x

+
k
n
.

Since

f ′(x) = 1 − 1
1 + x

− 1 − x
(1 + x)2

= 1 − 1 + x + 1 − x
(1 + x)2

= 1 − 2
(1 + x)2

,

function f (x) takes the minimum value when x =
√

2 − 1.
Although the actual value of x which could be taken by the
algorithm is �(

√
2− 1)k/k which is smaller than

√
2− 1 for

any k, it converges to
√

2 − 1 as the value of k increases.
In addition, the term of k/n converges to zero as n increases
provided that k = o(n). Thus, we can conclude that an up-
per bound on the performance ratio of DET for the above
instance is at most

f (
√

2 − 1) = 2
√

2 − 2 < 0.82843

provided that k = o(n).

4.1.3 Permutation

A concrete permutation π satisfying the above requirements
is given as follows:

(a) Arrangement of squares for two-dimensional instance.

(b) Partial coverage of a gap.

Fig. 3 Instance for d = 2.

• For i := 0 to η − 1, π(i) := (1 + x)k × i.
• For i := η to 2η − 1, π(i) := (1 + x)k × i + 1. Similarly,

for i := j × η to ( j + 1)η − 1 for some 2 ≤ j ≤ k − 1,
π(i) := (1 + x)k × i + j.
• The remaining part of the permutation, i.e., π((k−1)η),
π((k − 1)η + 1), . . ., π(n − 1), is given in an arbitrary
way.

4.2 Extension to Two-Dimensional Case

Before proceeding to the proof of theorem, we illustrate the
way of extending the above argument to two-dimensional
case (i.e., the case of d = 2) to help the reader to intuitively
grasp our idea. Recall that in the last subsection, we con-
sider a circle of size n and associate each subset in T with
an interval of length k on the circle. Our extension to the
two-dimensional case is very simple. We consider a ball
with surface area n, and associate each subset in T with a
square of size

√
k ×
√

k on the surface of the ball. The set
of squares is determined in such a way that: 1) each node is
covered by exactly k squares and 2) the weight of an opti-
mum solution is k × n.

Then, we consider an adversary (i.e., permutation) such
that DET should assign colors to squares so that the dis-
tance to an adjacent square with the same color is x

√
k. See

Fig. 3 (a) for illustration (in the following, we assume that
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Table 1 Upper bound on the performance ratio calculated for each d.

d 1 2 3 4 5 6 7 8 9 10 20 50
upper bound 0.8285 0.7973 0.7839 0.7764 0.7717 0.7684 0.7660 0.7641 0.7626 0.7614 0.7559 0.7524

x
√

k is an integer since it does not violate the correctness
of the analysis provided that k = o(n) and n is sufficiently
large). Since the gap virtually increases the size of a square
from

√
k×
√

k to (1+x)
√

k×(1+x)
√

k = (1+x)2k, the number
of squares of color c placed in the first part of the assignment
sequence is n

(1+x)2k . Since any square of size
√

k ×
√

k can
cover at most

k − (1 − x)2k = k
{
1 − (1 − x)2

}
nodes in the gap (see Fig. 3 (b)), we can use the same ar-
gument to the last subsection to derive an upper bound for
the two-dimensional instance (the proof of the claim will be
given in the next subsection as a claim for general d’s).

4.3 Proof of Theorem

Let d be a positive integer. In the following, we assume that
n is a multiple of k and k is an integer represented as k = hd

for some integer h ≥ 2. Each subset in T is associated with
a d-dimensional hypercube of size

d√
k × · · · × d√

k each, and
those hypercubes fill a d-dimensional space so that: 1) each
node is covered by exactly k hypercubes and 2) the weight
of an optimum solution is k × n.

We consider an adversary such that in the first part of
the assignment sequence, DET assigns hypercubes to colors
such that the distance between two adjacent hypercubes with
the same color is x

d√
k. Note that the number of hypercubes

of color c assigned in the first part is

η =
n

(1 + x)dk

(again, we assume that η is an integer to clarify the argu-
ment). In addition, in the second part of the assignment se-
quence, any hypercube of size

d√
k×· · ·× d√

k can newly cover

k − (1 − x)dk = k
{
1 − (1 − x)d

}
nodes in the gap (note that it corresponds to a placement
so that the placed hypercube of size k “inscribes” a virtual
hypercube of size (1 + x)dk).

Thus, since the number of gaps covered by color c is
n
k − η on average and n nodes are covered by color c in an
optimum solution, by letting f (x) be the peformance ratio of
DET, we have

n × f (x) = k × η + k
{
1 − (1 − x)d

}
×

(n
k
− η

)
,

that is,

f (x)

=
1

(1 + x)d
+

{
1 − (1 − x)d

}
×

{
1 − 1

(1 + x)d

}

=1 − (1 − x)d +
(1 − x)d

(1 + x)d
.

Since

f ′(x)

= d(1 − x)d−1 − d(1 − x)d−1

(1 + x)d
− d(1 − x)d

(1 + x)d+1

=d(1 − x)d−1 − d(1 − x)d−1

(1 + x)d+1
× (1 + x + 1 − x)

=d(1 − x)d−1 − 2d(1 − x)d−1

(1 + x)d+1
,

f (x) takes the minimum value when 1 = 2
(1+x)d+1 , i.e., when

x =
d+1√

2 − 1. Thus the performance ratio is at most

f (
d+1√

2 − 1) = 1 − (2 − d+1√
2)d +

(2 − d+1√
2)d

(
d+1√

2)d

= 1 − (2 − d+1√
2)d

(
1 − 1

(
d+1√

2)d

)

= 1 − (2 − d+1√
2)d

⎛⎜⎜⎜⎜⎝1 −
d+1√

2
2

⎞⎟⎟⎟⎟⎠ .
Hence the theorem follows. Q.E.D.

The result of numerical calculations is summarized in
Table 1. As shown in the table, the upper bound given in
the theorem gradually approaches to 0.75 as the value of
parameter d increases.

5. Concluding Remarks

In this paper, we give a non-trivial upper bound on the per-
formance ratio of an approximating algorithm proposed by
Abrams et al. for solving the set k-cover problem. More
concretely, we show that there is an instance such that the
performance ratio is at most 1 − (2 − d+1√

2)d+1/2 for any
d ≥ 1 provided that k = o(1).

A future work is to improve the algorithm of Abrams et
al. so that the performance ratio is at least 0.75. To this end,
probably we have to carefully consider the order of assign-
ments so that the “loss” of assignment due to the intersection
with a subset with the same color could be minimized.
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