
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014
431

PAPER Special Section on Foundations of Computer Science —New Trends in Theory of Computation and Algorithm—

Asynchronous Memory Machine Models with Barrier
Synchronization

Koji NAKANO†a), Member

SUMMARY The Discrete Memory Machine (DMM) and the Unified
Memory Machine (UMM) are theoretical parallel computing models that
capture the essence of the shared memory and the global memory of GPUs.
It is assumed that warps (or groups of threads) on the DMM and the UMM
work synchronously in a round-robin manner. However, warps work asyn-
chronously in real GPUs, in the sense that they are randomly (or arbitrarily)
dispatched for execution. The first contribution of this paper is to introduce
asynchronous versions of these models in which warps are arbitrarily dis-
patched. In addition, we assume that threads can execute the “syncthreads”
instruction for barrier synchronization. Since the barrier synchronization
operation may be costly, we should evaluate and minimize the number of
barrier synchronization operations executed by parallel algorithms. The
second contribution of this paper is to show a parallel algorithm to the
sum of n numbers in optimal computing time and few barrier synchro-
nization steps. Our parallel algorithm computes the sum of n numbers
in O(n

w + l log n) time units and O(log l
logw + log logw) barrier synchroniza-

tion steps using wl threads on the asynchronous UMM with width w and
latency l. Since the computation of the sum takes at least Ω(n

w + l log n)
time units, this algorithm is time optimal. Finally, we show that the prefix-
sums of n numbers can also be computed in O(n

w + l log n) time units and

O(log l
logw + log logw) barrier synchronization steps using wl threads.

key words: memory machine models, parallel algorithms, contiguous
memory access, asynchronous models, GPU, CUDA

1. Introduction

The GPU (Graphics Processing Unit), is a specialized cir-
cuit designed to accelerate computation for building and
manipulating images [9], [10], [16], [25], [27]. Latest GPUs
are designed for general purpose computing and can per-
form computation in applications traditionally handled by
the CPU. Hence, GPUs have recently attracted the attention
of many application developers [9], [21], [22]. NVIDIA pro-
vides a parallel computing architecture called CUDA (Com-
pute Unified Device Architecture) [24], the computing en-
gine for NVIDIA GPUs. CUDA gives developers access to
the virtual instruction set and memory of the parallel compu-
tational elements in NVIDIA GPUs. In many cases, GPUs
are more efficient than multicore processors [17], since they
have hundreds of processor cores and very high memory
bandwidth.

CUDA uses two types of memories in the NVIDIA
GPUs: the shared memory and the global memory [24]. The
shared memory is an extremely fast on-chip memory with
lower capacity, say, 16-48 Kbytes. The global memory is

Manuscript received April 8, 2013.
Manuscript revised July 29, 2013.
†The author is with the Department of Information Engineer-

ing, Hiroshima University, Higashihiroshima-shi, 739-8527 Japan.
a) E-mail: nakano@cs.hiroshima-u.ac.jp

DOI: 10.1587/transinf.E97.D.431

implemented as an off-chip DRAM, and has large capacity,
say, 1.5-6 Gbytes, but its access latency is very long. The
efficient usage of the shared memory and the global mem-
ory is a key for CUDA developers to accelerate applications
using GPUs. In particular, we need to consider bank con-
flicts of the shared memory access and coalescing of the
global memory access [16], [17], [23]. The address space of
the shared memory is mapped into several physical memory
bank. If two or more threads access the same memory banks
at the same time, the access requests are processed sequen-
tially. Hence, to maximize the memory access performance,
threads of CUDA should access distinct memory banks to
avoid the bank conflicts of the memory accesses. To maxi-
mize the bandwidth between the GPU and the DRAM chips,
the consecutive addresses of the global memory must be ac-
cessed at the same time. Thus, CUDA threads should per-
form coalesced access when they access the global memory.

In our previous paper [20], we have introduced two
parallel computing models, the Discrete Memory Machine
(DMM) and the Unified Memory Machine (UMM), which
reflect the essential features of the shared memory and the
global memory of NVIDIA GPUs. The outline of the archi-
tectures of the DMM and the UMM is illustrated in Fig.1.
In both architectures, a sea of threads (Ts) is connected
to the memory banks (MBs) through the memory manage-
ment unit (MMU). Each thread is a Random Access Machine
(RAM) [1], which can execute one of the fundamental oper-
ations in a time unit. We do not discuss the architecture of
the sea of threads in this paper, but we can imagine that it
consists of a set of multicore processors which can execute
multiple threads in parallel and/or in time-sharing manner.
Threads are executed in SIMD [5] fashion, and the threads
run on the same program and work on the different data.

MBs constitute a single address space of the memory.
A single address space of the memory is mapped to the MBs
in an interleaved way such that the word of data of address
i is stored in the (i mod w)-th MB, where w is the number
of MBs. The main difference of the two architectures is the
connection of the address line between the MMU and the
MBs, which can transfer an address value. In the DMM,
the address lines connect the MBs and the MMU separately,
while a single address line from the MMU is connected to
the MBs in the UMM. Hence, in the UMM, the same address
value is broadcast to every MB, and the same address of the
MBs can be accessed in each time unit. On the other hand,
different addresses of the MBs can be accessed in the DMM.
Since the memory access of the UMM is more restricted

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

432
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

Table 1 Performance of parallel algorithm for computing the sum and the prefix-sums.

algorithms time units threads syncthreads time optimality
Simple O(n

w + l log n) n
2 O(log n

w) optimal
Tree O(n

w logw + l log n) n O(log n
logw) overhead of factor logw

Simple-Tree O(n
w + l log n) n

2 O(log n
logw + log logw) optimal

Hybrid O(n
w + l log n) wl O(log l

logw + log logw) optimal

Fig. 1 The architectures of the DMM and the UMM.

than that of the DMM, the UMM is less powerful than the
DMM.

Since we believe that the memory machine models are
promising as computing models for GPUs, we have pub-
lished several efficient algorithms on the DMM and the
UMM [12], [18], [19]. For example, we have shown in [19]
that the sum and the prefix-sums of n numbers can be com-
puted in O(n

w
+ nl

p +l log n) time units using p threads both on
the DMM and the UMM and have proved that the computa-
tion of the sum takes at least Ω(n

w
+ nl

p + l log n) time units.
Thus, the algorithms for the sum and the prefix-sums are
time optimal. Further, in our previous paper [20], we have
presented offline permutation algorithms on the DMM and
the UMM. We also implemented the offline permutation al-
gorithm in a GPU and showed that theoretical analysis of the
performance on the DMM provides very good approxima-
tion of the CUDA C implementation of offline permutation
algorithm [12]. This fact implies that the DMM is a good
theoretical model for computation using the shared memory
on GPUs.

Suppose that we use p threads T (0),T (1), . . . ,T (p −
1). Threads on the DMM and the UMM are parti-
tioned into p

w
groups of w threads called warps. Let

W(0),W(1), . . . ,W(p
w
− 1) denote the p

w
groups. In our pre-

vious papers [12], [18], [19], it is assumed that threads on
the DMM and the UMM works synchronously in the sense
that warps are dispatched for memory access from W(0) to
W(p
w
− 1) in turn by a round-robin manner. Note that a pa-

rameter w is used to denote the number of memory banks
and the number of threads in a warp. Since each warp has
32 threads and the shared memory are implemented in 32
memory banks in CUDA compute capability 3.x [24], this
assumption makes sense.

The first contribution of this paper is to extend mem-
ory machine models presented in our previous paper [20] for
more realistic parallel computing models. More specifically,
we assume that threads work asynchronously in the sense
that warps are dispatched for memory access arbitrarily.
The scheduler arbitrarily selects one of the warps and dis-
patches it for memory access. In addition, we assume that
threads can execute a special instruction syncthreads for
the purpose of barrier synchronization. In NVIDIA GPUs,
syncthreads() instruction is supported for synchroniza-

tion of all threads in a CUDA block. However, it takes at
least p

16 clock cycles to synchronize p threads [24]. Also,
for the purpose of synchronization of threads in multiple
blocks, we need to separate an algorithm into different ker-
nel calls [24]. Hence, barrier synchronization may be costly
and it is very important to evaluate and minimize the num-
ber of barrier synchronization steps executed by algorithms.
Note that, parallel algorithms on the asynchronous models
must work correctly for any worst choice of warps by a ma-
licious scheduler. Also, the performance including the com-
puting time should be evaluated for the case of worst choice
of warps.

The second contribution of this paper is to show a time-
optimal summing algorithm on the asynchronous version of
the UMM. Our summing algorithm computes the sum of n
numbers in O(n

w
+ l log n) time units and O(log l

logw + log logw)
barrier synchronization steps using wl threads on the asyn-
chronous UMM with width w and latency l. Quite surpris-
ingly, the number of barrier synchronization steps and the
number of threads are independent of n. Even if the input
size n is quite large, our parallel algorithm computes the sum
in optimal time units and a fixed number of syncthreads us-
ing a fixed number of threads. Our summing algorithm uses
several intermediate algorithms. Table 1 summarizes our
summing algorithms presented in this paper.

The prefix-sum computation is a task to compute a[0]+
a[1]+ · · ·+ a[i] for all i (0 ≤ i ≤ n− 1) for a given array a of
n numbers. The third contribution of this paper is to extend
our parallel algorithm for the sum to compute the prefix-
sums. We modify each algorithm Simple, Tree, Simple-
Tree, and Hybrid in Table 1 to compute the prefix-sums.
Also, since the asynchronous UMM is less powerful than
the asynchronous DMM, our summing and prefix-summing
algorithms on the asynchronous UMM are also work for the
asynchronous DMM.

The computation of the sum and the prefix-sums is very
important, in particular, in the area of parallel computing,
although it is trivial in sequential computation. For exam-
ple, the sum computation is frequently used in linear alge-

NAKANO: ASYNCHRONOUS MEMORY MACHINE MODELS WITH BARRIER SYNCHRONIZATION
433

bra such as matrix multiplication. The prefix-sums compu-
tation are used in many parallel algorithms including graph
algorithms [6], geometric algorithms [3], discrete optimiza-
tion problem [13], among others. Thus, parallel algorithms
for the sum and the prefix-sums on various parallel comput-
ing models are explained in the first or the second chapters
of most text books of parallel computing [11], [15], [26]. On
the GPUs, the prefix-sums computations are used for inter-
active rendering of glossy environment reflections and re-
fractions [8]. Also, we have shown parallel algorithms of
ant colony optimization for the traveling salesman problem
on the GPU [28]. Our parallel algorithms uses the prefix-
sums computation, which dominates the total computing
time. Since many parallel algorithms involves the compu-
tation of the sum and the prefix-sums, it is very important to
show efficient parallel algorithms for them on the memory
machine models.

Note that our algorithms for the sums and the prefix-
sums are designed for the asynchronous UMM. Although
the asynchronous UMM is inspired by the architecture of
CUDA-enabled GPUs, it is a simple abstract parallel com-
puting model and independent of actual implementation of
architectures. If the cost of barrier synchronization is small
enough, then our algorithm runs in O(n

w
+ l log n) time. This

computing time is optimal, and thus, no algorithm can run
faster than this computing time. If the barrier synchroniza-
tion cost is very large and the time for the barrier synchro-
nization dominates the computing time, our algorithm runs
in O(log l

logw + log logw) time. The global memory access la-
tency of CUDA-enabled GPUs is several hundred clock cy-
cles and the number of threads in a warp is 32 [23]. The
value of log l

logw+log logw for l = 10000 and w = 32 is no more
than 6. Also, this value is independent of the input size n.
Hence, we can say that the algorithm performs a small fixed
number of barrier synchronization steps and even if the bar-
rier synchronization is costly, the time for it in our algorithm
is negligible for enough large n.

2. The Asynchronous Unified Memory Machine

We first define the Unified Memory Machine (UMM) of
width w and latency l. Let A[j] = {m[j · w],m[j · w +
1], . . . ,m[(j + 1) · w − 1]} denote the j-th address group.
We assume that memory cells in the same address group are
accessed at the same time. However, if they are in differ-
ent address groups, one time unit is necessary for each of
the groups. Also, we assume that l time units are necessary
to complete an access request and continuous requests are
processed in a pipeline fashion through the MMU. Thus, it
takes k+l−1 time units to complete access requests destined
for k address groups. We also assume that a thread cannot
send a new memory access request until the previous mem-
ory access request is completed. Hence, if a thread send a
memory access request, it must wait at least l time units to
send a new memory access request.

We assume that p threads are partitioned into p
w

groups

of w threads called warps. More specifically, p threads are
partitioned into p

w
warps W(0),W(1), . . ., W(p

w
− 1) such

that W(i) = {T(i · w),T(i · w + 1), . . . ,T((i + 1) · w − 1)}
(0 ≤ i ≤ p

w
− 1). Warps are dispatched for memory access

in turn and w threads in a warp try to access the memory
at the same time. We define two assumptions synchronous
manner and asynchronous manner in terms of the warp dis-
patch. In the synchronous manner, W(0),W(1), . . . ,W(p

w
−1)

are dispatched in a round-robin manner if at least one thread
in a warp requests memory access. More specifically, sup-
pose that every thread executes T instructions. In the syn-
chronous manner, warps work equally as follows:

[Synchronous Model]
for t ← 0 to T − 1 do
for i← 0 to p

w
− 1 do

Every thread in W(i) executes an instruction.

On the other hand, in asynchronous operations, one of the
warps is dispatched and executed as follows:

[Asynchronous Model]
for t ← 0 to T p

w
− 1 do

Arbitrarily select a warp W(i) to be executed.
Every thread in W(i) executes an instruction.

Note that, in the asynchronous model, if all threads in a warp
W(i) have no instruction to be executed, such warp W(i) is
not selected. For example, if threads in W(i) have just sent
memory access requests and they are waiting for completion
of memory access, W(i) is not selected. Such warp W(i) will
be selected after the completion of memory access.

We also assume that, for the purpose of barrier syn-
chronization, all threads can execute the syncthreads in-
struction. Suppose that at least one of the p threads exe-
cutes syncthreads. After that, all threads executing sync-
threads have been blocked until all threads execute sync-
threads. Once all threads execute syncthreads, they restart
executing instructions.

For the reader’s benefit, let us evaluate the time for
memory access on the UMM for p = 8, w = 4, and
l = 5 using Fig. 2. In the figure, p = 8 threads are parti-
tioned into p

w
= 2 warps W(0) = {T(0),T (1),T (2),T (3)} and

W(1) = {T(4),T(5),T(6),T(7)}. As illustrated in the figure,
4 threads in W(0) try to access m[7],m[5],m[15], and m[0],
and those in W(1) try to access m[10],m[11],m[12], and
m[9]. The time for the memory access is evaluated under
the assumption that memory access are processed by imag-
inary l pipeline stages with w registers each as illustrated in
the figure. We assume that the memory access completes
when the request reaches the last stage of the pipeline. Note
that, the architecture of pipeline registers illustrated in Fig. 2
are imaginary, and it is used only for evaluating the comput-
ing time. The actual architecture should involves a multi-
stage interconnection network [7], [14], sorting network [2],
[4], or Network-on-Chip (NoC) to route memory access re-
quests.

Let us evaluate the time for memory access on the

434
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

Fig. 2 Examples of memory access on the UMM.

Fig. 3 Contiguous memory access.

UMM with width w = 4 and latency l = 5. First, access
request for m[7],m[5],m[15] and m[0] by W(0) are sent to
the first stage. Memory requests by W(0) are partitioned
into address groups, the memory requests by W(0) occupy 3
stages. After that, those by W(1) occupies 2 stages. Finally,
after l − 1 = 4 time units, these memory requests are pro-
cessed. Hence, the UMM takes 3 + 2 + 4 = 9 time units to
complete the memory access.

3. Contiguous Memory Access

The main purpose of this section is to show the contigu-
ous memory access on the asynchronous UMM. The evalu-
ation of the computing time for the contiguous access on the
synchronous DMM and the synchronous UMM is not diffi-
cult [19], [20]. However, that for the asynchronous version
is complicated.

Suppose that an array a of size n (≥ p) is given. We use
p threads to access all of n memory cells in a such that each
thread accesses n

p memory cells. Note that “accessing” can
be “reading from” or “writing in.” The contiguous memory
access can be performed as follows:

[Contiguous memory access]
for t ← 0 to n

p − 1 do
for i← 0 to p − 1 do in parallel

T (i) accesses a[t · p + i]

Let evaluate the computing time. Each warp W(j)
(0 ≤ j ≤ p

w
− 1) with w threads accesses w memory cells in

the same address group. Note that p threads are partitioned

into p
w

warps, and each thread sends a memory access re-
quest n

p times. We will evaluate the computing time for the
following two cases:
Case 1: p

w < l First, one of the warps is randomly dis-
patched and sends memory access requests. After a warp
sends requests, it will not be selected at least l time units.
Thus, all of the p

w
warps are dispatched in the first p

w
time

units. Each warp takes l time units to complete the mem-
ory access, Thus, the second memory access is started at
time l. Figure 3 illustrates how contiguous memory access
is performed when p

w
< l. Contiguous memory access re-

quests by p
w

warps are repeatedly sent n
p times. Thus, it takes

p
w
+ l · n

p = O(p
w
+ nl

p) time units for the contiguous memory
access.
Case 2: p

w ≥ l Each of the p
w

warps sends memory access
requests n

p times. Hence, totally they send memory access
requests n

p ·
p
w
= n
w

times. Clearly, if at least l warps have not
completed memory access, they can send memory access
requests continuously. On the other hand, if no warp send
memory access requests in a particular time unit, then less
than l warps still have memory access requests to be sent.
If this is the case, less than l such warps can send memory
access requests exactly once in l time units. Since each warp
sends memory access n

p times, it takes at most l · n
p = O(nl

p)
time units for less than l such warps to complete the memory
access requests. Therefore, the contiguous memory access
can be completed in O(n

w
+ nl

p) time units.
Thus, we have,

Lemma 1: The contiguous access to an array of size n can
be done in O(n

w
+ nl

p) time units with 0 barrier synchroniza-

NAKANO: ASYNCHRONOUS MEMORY MACHINE MODELS WITH BARRIER SYNCHRONIZATION
435

tion step using p threads on the asynchronous UMM with
width w and latency l.

4. Summing Algorithms on the UMM

4.1 A Simple Summing Algorithm

The main purpose of this subsection is to show a simple
parallel algorithm for computing the sum on the memory
machine models. The summing algorithm presented in this
subsection is the essentially same as one presented in [19]
on the synchronous DMM and the synchronous UMM.

Let a be an array of n = 2m numbers. Let us show an
algorithm to compute the sum a[0]+a[1]+· · ·+a[n−1]. The
algorithm uses a well-known parallel computing technique
which repeatedly computes the sums of pairs. We imple-
ment this technique to perform contiguous memory access
using n

2 threads. The details are spelled out as follows:

[Summing Algorithm Simple]
for t ← m − 1 down to 0 do
begin

for i← 0 to 2t − 1 do in parallel
T(i) performs a[i]← a[i] + a[i + 2t]

if(2t > w) syncthreads
end

Let us evaluate the computing time. For each t (0 ≤ t ≤
m− 1), 2t operations “a[i]← a[i]+ a[i+ 2t]” are performed.
These operation involve the following memory access oper-
ations:

• reading from a[0], a[1], . . . , a[2t − 1],
• reading from a[2t], a[2t + 1], . . . , a[2 · 2t − 1], and
• writing in a[0], a[1], . . . , a[2t − 1],

Since these memory access operations are contiguous, they
can be done in O(2t

w
+ 2t l

2t) = O(2t

w
+l) time using 2t threads on

the UMM with width w and latency l from Lemma 1. Thus,
the total computing time is

m−1∑

t=0

O(
2t

w
+ l) = O(

2m

w
+ lm) = O(

n
w
+ l log n).

Barrier synchronization syncthreads is executed m− logw−
1 = O(log n

w
) times. Thus, we have,

Lemma 2: Summing Algorithm Simple computes the sum
of n numbers in O(n

w
+ l log n) time units and O(log n

w
) bar-

rier synchronization steps using n
2 threads on the UMM with

width w and latency l.

Suppose that Summing Algorithm Simple is executed for
w numbers. If this is a case, the sum can be computed in
O(l logw) time units and 0 barrier synchronization step us-
ing one warp with w2 threads on the UMM. For later refer-
ence, we call this algorithm Summing Algorithm One-Warp.

4.2 A Summing Algorithm Based on a w-Ary Tree

The goal of the summing algorithm shown in this subsection

Fig. 4 A summing algorithm based on a w-ary tree.

is to minimize the number of barrier synchronization steps.
For simplicity, we assume that n = wk for some in-

teger k. We can build a w-ary tree with n leaves, each of
which corresponds to an input number. The n leaves are
partitioned into n

w
groups and each group is connected to an

first-level internal node. Thus, we have n
w

first-level internal
nodes. The first-level internal nodes are partitioned into n

w2

groups and each group is connected to an second-level in-
ternal node. Continuing similarly, we can build a w-ary tree
with k-levels.

The computation of the sum is performed from leaves
to the root. The sum of each group of the leaves is computed
by a warp. The resulting sum is stored in a first level internal
node. After that, the sum of each group in the first level in-
ternal nodes is computed by a warp, and the resulting sum is
stored in a second level internal node. Continuing similarly,
we can obtain the sum at the root.

Let a0 denote the input array, and a1, a2, . . . , ak be
working space each of which corresponds to internal nodes
of the tree. Each ai (1 ≤ i ≤ k) can store n

wi numbers. Sum-
ming Algorithm Tree computes the resulting sum in ak[0] as
follows:

[Summing Algorithm Tree]
for t ← 1 to k do
for i← 0 to n

wt − 1 do in parallel
begin

W(i) computes at[i]← at−1[i · w] + at−1[i · w + 1]
+ · · · + at−1[(i + 1) · w − 1]
using Summing Algorithm One-Warp

syncthreads
end

Let us evaluate the computing time for each value of t.
First, when t = k, Summing Algorithm One-Warp is used to
compute the sum of w numbers using one warp. This takes
O(l logw) time units. When t = k − 1, each of w warps ex-
ecutes Summing Algorithm One-Warp to compute the sum
of w numbers independently. In Summing Algorithm One-
Warp w

2 threads in a single warp performs memory access
to one address group O(logw) times. Hence, we can sim-
ply think that w2 threads in w warps perform the contigu-
ous memory access of w2 numbers O(logw) times. From
Lemma 1, it takes O(w

2

w
+ w

2l
w2) · O(logw) = O((w + l) logw)

time units. Let us consider the general case for t = k − j

436
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

(0 ≤ j ≤ k − 1). If this is the case, each of w j warps ex-
ecutes Summing Algorithm One-Warp to compute the sum
of w numbers independently. Similarly, we can think that
w j+1 threads in w j warps perform the contiguous memory
access to w j+1 numbers O(logw) times. Hence, it takes
O(w

j+1

w
+ w

j+1l
w j+1)·O(logw) = O((w j+l) logw) time units. There-

fore, the total computing time of Summing Algorithm Tree
is:

k−1∑

j=0

O((w j + l) logw) = O((wk−1 + kl) logw)

= O(
n
w

logw + l logw)

from k = log n
logw . Also, Summing Algorithm Tree performs

syncthreads k = log n
logw times. Thus, we have,

Lemma 3: Summing Algorithm Tree compute the sum of
n numbers in O(n

w
logw + l log n) time units with O(log n

logw)
barrier synchronization steps using n threads on the UMM
with width w and latency l.

4.3 A Time-Optimal Algorithm for Computing the Sum
Using Few Barrier Synchronization Steps

We can obtain time optimal summing algorithms with com-
pensation of few additional barrier synchronization steps.
This subsection is devoted to show such time optimal sum-
ming algorithms.

Suppose that Summing Algorithm Simple is executed
for t = m − 1,m − 2, . . . ,m − log logw. It should be clear
that the interim sum are stored in a[0], a[1], . . . , a[n

logw − 1].
After that, the sum of these n

logw numbers are computed by
Summing Algorithm Simple. The details are spelled out as
follows:

[Summing Algorithm Simple-Tree]
for t ← m − 1 down to m − log logw do
begin

for i← 0 to 2t − 1 do in parallel
T(i) performs a[i]← a[i] + a[i + 2t]

syncthreads
end

Use Summing Algorithm Tree to compute the sum a[0]+
a[1]+ · · · + a[n

logw − 1].

Let us evaluate the computing time. As we have dis-
cussed, Summing Algorithm Simple takes O(2t

w
+ l) time

units for each t. Thus, the execution of Summing Algorithm
Simple for t = m − 1,m − 2, . . . ,m − log logw takes

m−1∑

t=m−log logw

O(
2t

w
+ l) = O(

2m

w
+ l log logw)

= O(
n
w
+ l log logw).

Also, it has log logw barrier synchronization steps. After

that, Summing Algorithm Tree is executed for n
logw num-

bers. From Lemma 3, it takes

O(
n

logw

w
logw + l log

n
logw

) = O(
n
w
+ l log n)

time units. Further, it has O(
log n

logw

logw) = O(log n
logw) synchroniza-

tion steps. Thus, we have,

Theorem 4: Summing Algorithm Simple-Tree computes
the sum of n numbers in O(n

w
+ l log n) time units with

O(log n
logw + log logw) barrier synchronization steps using n

threads on the UMM with width w and latency l.

We will show that, the number of syncthreads can be
independent of the number n of input numbers. Suppose
that input n (≥ wl) numbers are stored in an array a of size
n
wl×wl (n

wl rows and wl columns). First, we assign one thread
to each column and compute the column-wise sum. After
that, the sum of the column-wise sums using Summing Al-
gorithm Simple-Tree. The details are spelled out as follows:

[Summing Algorithm Hybrid]
for t ← 1 to n

wl − 1 do
for i← 0 to wl − 1 do in parallel

T(i) performs a[0][i]← a[0][i] + a[t][i]
Use Summing Algorithm Simple-Tree to compute the sum
a[0][0] + a[0][1] + · · · + a[0][wl − 1].

Let us evaluate the computing time. The computation
of the column-wise sums performs contiguous access. Thus,
from Lemma 1, it takes O(n

w
+ nl
wl) = O(n

w
+ l) time units.

After that, Summing Algorithm Simple-Tree is executed for
wl numbers. From Theorem 4, it takes O(wl

w
+ l log(wl)) =

O(l log n) time units using O(log(wl)
logw + log logw) = O(log l

logw +

log logw) barrier synchronization steps. Thus, we have,

Theorem 5: Summing Algorithm Hybrid computes the
sum of n numbers in O(n

w
+ l log n) time units with O(log l

logw +

log logw) barrier synchronization steps using wl threads on
the UMM with width w and latency l.

Since the computation of the sum of n numbers takes at least
Ω(n
w
+ nl

p + l log n) time units using p threads on the UMM
with width w and latency l [20], Summing Algorithm Hybrid
is optimal from p = wl.

5. Prefix-Sum Algorithms on the Memory Machine
Models

5.1 A Simple Prefix-Summing Algorithm

This subsection shows an algorithm for the prefix-sums run-
ning in O(n

w
+ l log n) time units using n

2 threads. The used
technique is essentially the same as one shown in [19]. We
use m arrays a0, a1, . . . am−1 as work space, where n = 2m.
Each at (0 ≤ t ≤ m−1) can store 2t numbers. Thus, the total
size of the m arrays is no more than 20 + 21 + · · · + 2m−1 =

2m − 1 = n − 1. We assume that the input of n numbers are

NAKANO: ASYNCHRONOUS MEMORY MACHINE MODELS WITH BARRIER SYNCHRONIZATION
437

Fig. 5 Illustrating the computation of interval sums in m arrays.

Fig. 6 Illustrating the computation of the sums of the interval sums in m arrays.

stored in array am of size n.
The algorithm has two stages. In the first stage, in-

terval sums are stored in the m arrays. The second stage
uses interval sums in the m arrays to compute the resulting
prefix-sums. The details of the first stage are spelled out as
follows.

[Compute the interval sums]
for t ← m − 1 downto 0 do
begin

for i← 0 to 2t − 1 do in parallel
T (i) performs at[i]← at+1[2 · i] + at+1[2 · i + 1]

if(2t > w) syncthreads
end

Figure 5 illustrates how the interval sums are computed.
When this program terminates, each at[i] (0 ≤ t ≤ m−1, 0 ≤
i ≤ 2t−1) stores at[i · n

2t]+at[i · n
2t +1]+ · · ·+at[(i+1) · n

2t −1].
In the second stage, the prefix-sums are obtained by

computing the sums of the interval sums as follows:

[Compute the sums of the interval sums]
for t ← 0 to m − 1 do
begin

for i← 0 to 2t − 1 do in parallel
T (i) performs at+1[2 · i + 1]← at[i]

for i← 0 to 2t − 2 do in parallel
T (i) performs at+1[2 · i + 2]← at+1[2 · i + 2] + at[i]

if(2t > w) syncthreads

end

Figure 6 shows how the prefix-sums are computed. In the
figure, “at+1[2 · i+ 1]← at[i]” and “at+1[2 · i+ 2]← at+1[2 ·
i + 2] + at[i]” correspond to “copy” and “add”, respectively.

When this algorithm terminates, each am[i] (0 ≤ i ≤
2t − 1) stores the prefix-sum am[0]+ am[1]+ · · ·+ am[i]. We
assume that n

2 threads are available and evaluate the com-
puting time. The first stage involves the following memory
access operations for each t (0 ≤ t ≤ m − 1):

• reading from at+1[0], at+1[2], . . . , at+1[2t+1 − 2],
• reading from at+1[1], at+1[3], . . . , at+1[2t+1 − 1], and
• writing in at[0], at[1], . . . , at[2t − 1].

Every two addresses is accessed in the reading operations.
Thus, these three memory access operations are essentially
contiguous access and they can be done in O(2t+1

w
+ 2t+1l

2t) =
O(2t

w
+ l) time units using 2t threads. Therefore, the total

computing time of the first stage is

m−1∑

t=1

O(
2t

w
+ l) = O(

n
w
+ l log n).

Also, syncthreads is executed for t = m − 1,m − 2, . . . , and
logw+1. Thus, it is executed at most m−logw−1 = O(log n

w
)

times. The second stage consists of the following memory
access operations for each t (0 ≤ t ≤ m − 1):

• reading from at[0], at[1], . . . , at[2t − 1],

438
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

Fig. 7 The interval sums for the prefix-summing based on 4-ary tree.

Fig. 8 Computation of the prefix-sums of the interval sums.

• reading from at+1[2], at+1[4], . . . , at+1[2t+1 − 2], and
• writing in at+1[0], at+1[1], . . . , at+1[2t+1 − 1].

Similarly, these operations can be done in O(2t+1

w
+ l) time

units. Hence, the total computing time of the second stage is
also O(n

w
+l log n). Further, syncthreads is executed O(log n

w
)

times. Thus, we have,

Lemma 6: The prefix-sums of n numbers can be computed
in O(n

w
+ l log n) time units with O(log n

w
) barrier synchro-

nization steps using n
2 threads on the UMM with width w

and latency l.

For later reference we call the algorithm for Lemma 6
Prefix-summing Algorithm Simple analogously to Sum-
ming Algorithm Simple. Further, we can design Prefix-
summing Algorithm One-Warp as a special case of Prefix-
summing Algorithm Simple, analgously to Summing Algo-
rithm One-Warp. In other words, Prefix-summing Algo-
rithm One-Warp computes the prefix-sums of w numbers
using one warp of w2 threads in O(l logw) time and 0 bar-
rier synchronization step.

5.2 A Prefix-Summing Algorithm Based on a w-Ary Tree

We will show that a prefix-summing algorithm based on a
w-ary tree, which is analogous to the summing algorithm
based on it. Similarly, we assume that n = wk for some
integer k. We can build a rooted w-ary tree with n leaves,
each of which corresponds to an input number as before.

Let ak denote the input array, and a1, a2, . . . , ak−1 be

working space each of which corresponds to internal nodes
of the tree. Each ai (1 ≤ i ≤ k) can store wi numbers. Fig-
ure 7 illustrates these arrays for n = 64, w = 4 and k = 3.
We store the sum of the leaves in each internal node as illus-
trated in the figure. We use Summing Algorithm One-Warp
to compute the sum to be stored in each array. During the
computation of the sum, no barrier synchronization is neces-
sary. After the sum computation by a warp terminates, sync-
threads instruction is executed. The reader should have no
difficulty to confirm that the computing time and the number
of barrier synchronization steps are equal to those of Sum-
ming Algorithm Tree. Thus, the interval sums of n num-
bers can be computed in O(n

w
logw+ l log n) time units with

O(log n
logw) barrier synchronization steps using n threads on the

UMM with width w and latency l.
Next, we will show that the prefix-sums can be com-

puted using the interval sums using Fig. 8. First, the prefix
sums of w = 4 sums in a1 are computed. We can think that
a2 is partitioned into w = 4 groups of w = 4 sums each,
which corresponds to a node of the 4-ary tree. The prefix-
sums in a1 are added to the first number of each group in
a2. Next, the prefix-sums of each group in a2 are computed
independently. Again, we can think that a3 is partitioned
into 16 groups of 4 numbers each. The prefix-sums in a2 are
added to the first number of each group in a3 similarly. Fi-
nally, the prefix-sums within each group of a3 are computed.
In this way, the prefix-sums are computed in array a3.

Let us evaluate the computing time. We use Prefix-
summing Algorithm One-warp to compute the prefix-sums

NAKANO: ASYNCHRONOUS MEMORY MACHINE MODELS WITH BARRIER SYNCHRONIZATION
439

Fig. 9 The computation of the interval sums for Prefix-summing Algorithm Simple-Tree for
logw = 4.

Fig. 10 The computation of the sums of the interval sums for Prefix-summing Algorithm Simple-Tree
for logw = 4.

within each group. Similarly to Summing Algorithm Tree,
we can prove that the prefix-sums of a1 can be computed in
O(l logw) time units. Also, we can say that the prefix-sums
of a j+1 (0 ≤ j ≤ m − 1) within each group can be computed
in O((w j + l) logw) time units. Hence, the total computing
time is O(n

w
logw+ l log n) time units. Also, the barrier syn-

chronization is necessary after computing the prefix-sums
of each a j+1. Further, it should be clear that the computing
time for adding the prefix-sums to the first element of each
group is dominated by the computation of the prefix-sums
within each group. Hence, we can ignore this computing
time. Thus, we have,

Lemma 7: The prefix-sums of n numbers can be computed
in O(n

w
logw + l log n) time units with O(log n

logw) barrier syn-
chronization steps using n threads on the UMM with width
w and latency l.

Again, for later reference, we call the algorithm for
Lemma 7 Prefix-summing Algorithm Tree.

From Prefix-summing Algorithm Tree, we can get a
general idea for computing the prefix-sums. By hierarchi-
cal partitioning of the input, we can build a rooted tree data
structure such that the leaves are the input numbers and each
internal node corresponds to the sum of the children. This
can be done by computing the sum of the children for each
internal node toward the root. After that, the prefix-sums of
the children are computed for each internal nodes from the
root to the leaves. Clearly, the computation of the prefix-
sums involves that of the sum. Hence, it is sufficient to
show how we compute the prefix-sums of children of each
internal node for every level of the rooted tree. We use this
idea to obtain Prefix-summing Algorithm Simple-Tree and
Prefix-summing Algorithm Hybrid shown in the following
subsection.

5.3 The Prefix-Summing Algorithm Using Few Barrier
Synchronization Steps

We first show Prefix-summing Algorithm Simple-Tree anal-
ogously to Summing Algorithm Simple-Tree. We use a
rooted tree of height 2. The root has n

logw children with logw
leaves each.

It should have no difficulty to confirm that the prefix-
sums can be computed by the following two computations:

(A) the prefix-sums of logw leaves of every children, and
(B) the prefix-sums of n

logw children.

We first show (A). Similarly to Summing Algorithm
Simple-Tree, we execute the first log logw steps of the first
stage of Prefix-summing Algorithm Simple. Figure 9 illus-
trates the computation of the interval sums for logw = 4
and log logw = 2. After that, we execute the last log logw
steps of the second stage of Prefix-summing Algorithm Sim-
ple. Recall that the second stage performs “copy” and “add”
operations as illustrated in Fig. 6. Note that “add” oper-
ations to the neighbor’s children are omitted, because we
need the prefix-sums within logw children. For example,
the “add” operation from 0-3 in a3 to 4-5 in a4 is omitted
in the figure. Similarly to Algorithm Simple-Tree, the two
stages of log logw steps each take O(n

w
+ l log n) time units

and O(log logw) barrier synchronization steps.
Next, we show (B). The prefix sums of the n

logw chil-
dren of the root are computed by Prefix-summing Algorithm

Tree, which takes O(
n

logw

w
logw + l logw) = O(n

w
+ l logw)

time units and O(
log n

logw

logw) = O(log n
logw) barrier synchronization

steps. Thus, we have,

Theorem 8: Prefix-Summing Algorithm Simple-Tree com-
putes the prefix-sums of n numbers in O(n

w
+ l log n) time

units with O(log n
logw + log logw) barrier synchronization steps

440
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

Fig. 11 Transpose of a of size wl × n
wl .

using n
2 threads on the UMM with width w and latency l.

Next, we show Prefix-summing Algorithm Hybrid
analogous to Summing Algorithm Hybrid. We use a rooted
tree which has wl children with n

wl leaves each. Similarly, it
is sufficient to show the following two computations:

(A) the prefix sums of n
wl leaves of every children, and

(B) the prefix sums of wl children.

We can consider that the input is a 2-dimensional array
a with wl rows and n

wl columns. Clearly, (A) corresponds
to the row-wise prefix-sums of a. However, the straightfor-
ward row-wise prefix-sums algorithm using wl threads re-
quires non-coalesced memory access. Thus, we transpose
the 2-dimensional array a as illustrated in Fig. 11. After the
transpose, (A) corresponds to the column-wise prefix-sums
which can be computed as follows:

[Column-wise prefix-sums]
for t ← 1 to n

wl − 1 do
for i← 0 to wl − 1 do in parallel

T(i) performs a[t][i]← a[t][i] + a[t − 1][i]

For each t, wl threads access to the t-th and the (t−1)-th rows.
Thus, these threads performs contiguous memory access for
each t and the computing time is O(wl

w
+ wll
wl) · n

wl = O(n
w

)
time units and 0 barrier synchronization step from Lemma 1.
Also transpose can be done in O(n

w
+ nl
wl + l) = O(n

w
+ l) time

units using wl threads on the UMM using the technique for
transposing a matrix shown in [20]. After transposing, 1 bar-
rier synchronization step is necessary to confirm that trans-
pose is completed before the computation of the column-
wise prefix-sums. Thus, (A) can be done in O(n

w
+ l) time

units and 1 barrier synchronization step.
We use Prefix-summing Algorithm Simple-Tree for

(B). From Theorem 8, (B) can be done in O(wl
wl + l log(wl)) =

O(l log n) time units and O(log l
logw + log logw) barrier synchro-

nization steps. Thus, we have,

Theorem 9: Prefix-summing Algorithm Hybrid computes
the prefix-sums of n numbers in O(n

w
+ l log n) time units

with O(log l
logw + log logw) barrier synchronization steps using

wl threads on the UMM with width w and latency l.

6. Conclusion

The main contribution of this paper is to introduce the asyn-
chronous version of the UMM. We have also presented time-
optimal parallel summing algorithm running in O(n

w
+l log n)

time units and O(log l
logw + log logw) barrier synchronization

steps. Further, we have shown that the prefix-sums can
be computed in the same time units and the same barrier
synchronization steps. It is an interesting open problem to
further reduce the number of barrier synchronization steps
of time-optimal parallel summing computation. Finding a
good lower bound of the number of barrier synchronization
steps is also a challenging open problem.

References

[1] A.V. Aho, J.D. Ullman, and J.E. Hopcroft, Data Structures and Al-
gorithms, Addison Wesley, 1983.

[2] S.G. Akl, Parallel Sorting Algorithms, Academic Press, 1985.
[3] S.G. Akl and K.A. Lyons, Parallel Computational Geometry,

Prentice-Hall, 1993.
[4] K.E. Batcher, “Sorting networks and their applications,” Proc.

AFIPS Spring Joint Comput. Conf., vol.32, pp.307–314, 1968.
[5] M.J. Flynn, “Some computer organizations and their effectiveness,”

IEEE Trans. Comput., vol.C-21, pp.948–960, 1972.
[6] A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge

University Press, 1988.
[7] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph,

and M. Snir, “The NYU ultracomputer – designing an MIMD shared
memory parallel computer,” IEEE Trans. Comput., vol.C-32, no.2,
pp.175–189, Feb. 1983.

[8] M. Harris, S. Sengupta, and J.D. Owens, “Parallel prefix sum (scan)
with CUDA,” in GPU Gems 3, Chapter 39, Addison-Wesley, 2007.

[9] W.W. Hwu, GPU Computing Gems Emerald Edition, Morgan
Kaufmann, 2011.

[10] Y. Ito, K. Ogawa, and K. Nakano, “Fast ellipse detection algorithm
using Hough transform on the GPU,” Proc. of International Confer-
ence on Networking and Computing, pp.313–319, Dec. 2011.

[11] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley,
1992.

[12] A. Kasagi, K. Nakano, and Y. Ito, “An implementation of conflict-
free off-line permutation on the GPU,” Proc. of International Con-
ference on Networking and Computing, pp.226–232, 2012.

[13] V. Kumar, A. Grama, A. Gupta, and G. Karyapis, Introduction
to Parallel Computing: Design and Analysis of Algorithms, The
Benjamin/Cumming Publishing, 1994.

[14] D.H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol.C-24, no.12, pp.1145–1155, Dec. 1975.

[15] F.T. Leighton, Introduction to Parallel Algorithms and Architec-
tures: Arrays, Trees, Hypercubes, Morgan Kaufmann, 1991.

[16] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU implementation of
computing euclidean distance map with efficient memory access,”
Proc. of International Conference on Networking and Computing,
pp.68–76, IEEE CS Press, Dec. 2011.

[17] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementa-
tions of a parallel algorithm for computing euclidean distance map in
multicore processors and GPUs,” International Journal of Network-
ing and Computing, vol.1, no.2, pp.260–276, July 2011.

[18] K. Nakano, “Efficient implementations of the approximate string
matching on the memory machine models,” Proc. of International
Conference on Networking and Computing, pp.233–239, Dec. 2012.

[19] K. Nakano, “An optimal parallel prefix-sums algorithm on the mem-
ory machine models for GPUs,” Proc. of International Conference

NAKANO: ASYNCHRONOUS MEMORY MACHINE MODELS WITH BARRIER SYNCHRONIZATION
441

on Algorithms and Architectures for Parallel Processing (ICA3PP,
LNCS 7439), pp.99–113, Springer, Sept. 2012.

[20] K. Nakano, “Simple memory machine models for GPUs,” Proc. of
International Parallel and Distributed Processing Symposium Work-
shops, pp.788–797, IEEE CS Press, May 2012.

[21] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic pro-
gramming for the matrix chain product on the GPU,” Proc. of Inter-
national Conference on Networking and Computing, pp.320–326,
Dec. 2011.

[22] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic pro-
gramming for the optial poygon triangulation on the GPU,” Proc. of
International Conference on Algorithms and Architectures for Par-
allel Processing (ICA3PP, LNCS 7439), pp.1–15, IEEE CS Press,
Sept. 2012.

[23] NVIDIA Corporation, NVIDIA CUDA C best practice guide version
3.1, 2010.

[24] NVIDIA Corporation, NVIDIA CUDA C programming guide ver-
sion 5.0, 2012.

[25] K. Ogawa, Y. Ito, and K. Nakano, “Efficient canny edge detection
using a gpu,” Proc. of International Conference on Networking and
Computing, pp.279–280, Nov. 2010.

[26] M.J. Quinn, Parallel Computing: Theory and Practice, McGraw-
Hill, 1994.

[27] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” Proc. of Inter-
national Conference on Networking and Computing, pp.153–159,
IEEE CS Press, Dec. 2011.

[28] A. Uchida, Y. Ito, and K. Nakano, “An efficient GPU implementa-
tion of ant colony optimization for the traveling salesman problem,”
Proc. of International Conference on Networking and Computing,
pp.94–102, Dec. 2012.

Koji Nakano received the BE, ME and Ph.D
degrees from Department of Computer Science,
Osaka University, Japan in 1987, 1989, and
1992 respectively. In 1992-1995, he was a Re-
search Scientist at Advanced Research Labora-
tory. Hitachi Ltd. In 1995, he joined Depart-
ment of Electrical and Computer Engineering,
Nagoya Institute of Technology. In 2001, he
moved to School of Information Science, Japan
Advanced Institute of Science and Technology,
where he was an associate professor. He has

been a full professor at School of Engineering, Hiroshima University from
2003. He has published extensively in journals, conference proceedings,
and book chapters. He served on the editorial board of journals including
IEEE Transactions on Parallel and Distributed Systems, IEICE Transac-
tions on Information and Systems, and International Journal of Foundations
on Computer Science. He has also guest-edited several special issues in-
cluding IEEE TPDS Special issue on Wireless Networks and Mobile Com-
puting, IJFCS special issue on Graph Algorithms and Applications, and
IEICE Transactions special issue on Foundations of Computer Science.
He has organized conferences and workshops including International Con-
ference on Networking and Computing, International Conference on Par-
allel and Distributed Computing, Applications and Technologies, IPDPS
Workshop on Advances in Parallel and Distributed Computational Models,
and ICPP Workshop on Wireless Networks and Mobile Computing. His
research interests includes image processing, hardware algorithms, GPU-
based computing, FPGA-based reconfigurable computing, parallel comput-
ing, algorithms and architectures.

