
448
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

PAPER Special Section on Foundations of Computer Science —New Trends in Theory of Computation and Algorithm—

A Formulation of Composition for Cellular Automata on Groups

Shuichi INOKUCHI†a), Takahiro ITO††, Mitsuhiko FUJIO†††, Nonmembers,
and Yoshihiro MIZOGUCHI††††, Member

SUMMARY We introduce the notion of ’Composition’, ’Union’ and
’Division’ of cellular automata on groups. A kind of notions of composi-
tions was investigated by Sato [10] and Manzini [6] for linear cellular au-
tomata, we extend the notion to general cellular automata on groups and
investigated their properties. We observe the all unions and compositions
generated by one-dimensional 2-neighborhood cellular automata over Z2

including non-linear cellular automata. Next we prove that the composi-
tion is right-distributive over union, but is not left-distributive. Finally, we
conclude by showing reformulation of our definition of cellular automata
on group which admit more than three states. We also show our formula-
tion contains the representation using formal power series for linear cellular
automata in Manzini [6].
key words: cellular automata, groups, models of computation, automata

1. Introduction

The study of cellular automata was initiated by [11] and
have been developed by many researchers as a good com-
putational model for physical systems simulation. Recently
cellular automata have been investigated in various fields in-
cluding computer science, biology, physics, since they pro-
vide simple and powerful models for parallel computation
and natural phenomena.

In this paper, we investigate cellular automata on
groups as a formal model of computation. To compose
simple cellular automata into a complex cellular automa-
ton, we introduce the notion of ’Composition’ of cellular
automata on groups. The notion of automata on groups was
first treated as a special case for automata on graphs (Caley
graphs) which represent groups in [8], [9]. Watanabe and
Noguchi investigated the decomposition of finite automata
from the view point of spatial networks using groups [12].
Pries et al. investigated cellular automata as a tool for imple-
menting hardware algorithms in VLSI [7]. They considered
configurations decided by a cellular automaton as a group
and divided configurations into simple configurations using
group properties. Sato introduced group structured linear
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cellular automata and the star operation of local transition
rules [10]. The star operation is a kind of composition of cel-
lular automata but the definition of it is different from ours.
Manzini also investigated the linear cellular automata using
the formal power series and their product to find inverse lo-
cal transition functions [6]. The product of formal power
series are equal to our composition of cellular automata for
linear cases. An abstract collision system in [5] is consid-
ered as an extension of a cellular automaton, the notion of
’composition’ for an abstract collision system on G-sets is
investigated in [4]. Further investigation about collision sets
related to the set of all connected subsets of a topological
space are studied in [3].

This paper follows on from [2]. He introduced the com-
position of cellular automata on groups in order to reduce a
complex behaved dynamics into simpler ones. We introduce
a formal definition of cellular automata on group over Z2.
In our framework, operations on cellular automata ’Union’,
’Division’ and ’Composition’ are introduced. Unions of all
2-neighborhood cellular automata are investigated. Com-
positions of all 2-neighborhood cellular automata are also
investigated and determined the subset of 3-neighborhood
cellular automata which are generated by composing two
2-neighborhood cellular automata. Next we prove that the
composition is right-distributive over union, but is not left-
distributive. Finally, we conclude by showing reformulation
of our definition of cellular automata on group which admit
more than three states. We also show our formulation con-
tains the representation using formal power series for linear
cellular automata in [6].

2. Notion of Cellular Automata on Groups and Their
Basic Properties

In this section we introduce a notion of cellular automata on
groups and show some examples. First we define cellular
automata on a group.

Definition 1: Let G be a group with operator · and iden-
tity element e. A cellular automaton on G is a triple C =
(G,V,L) of a group G, subsets V ⊂ G and L ⊂ 2V . An ele-
ment of 2G is called a configuration and 2G is the configura-
tion space of C. V is the neighborhood of C and we define a
local transition function lL : 2V → {φ, {e}} by L ⊂ 2V ;

lL(X) =

{
φ (X � L)
{e} (X ∈ L),
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and the global transition function FC : 2G → 2G by

FC(c) =
⋃
g∈G
glL(g

−1c ∩ V).

Note that x · Y = {x · y | y ∈ Y} for x ∈ G and Y ⊂ G.
The equation FC1 = FC2 means that FC1 (c) = FC2 (c) for any
c ∈ 2G. In the following proposition we show a necessary
and sufficient condition for FC1 = FC2 .

Proposition 2: Let C1 = (G,V1,L1) and C2 = (G,V2,L2)
be cellular automata. The equation FC1 = FC2 holds if and
only if

e ∈ FC1 (c) ⇔ e ∈ FC2 (c) (for any c ∈ 2G).

Proof. Since FC1 (c) = {g ∈ G | lL1 (g−1c ∩ V1) = {e}} = {g ∈
G | g−1c ∩ V1 ∈ L1}, we have g ∈ FC1 (c)⇔ g−1c ∩ V1 ∈ L1

⇔ e ∈ FC1 (g−1c) ⇔ e ∈ FC2 (g−1c) ⇔ g−1c ∩ V2 ∈ L2 ⇔
g ∈ FC2 (c). �

Lemma 3: Let C = (G,V,L) be a cellular automaton. For
∀X ⊂ V the followings are equivalent;

1. X ∈ L
2. ∀Y ∈ 2G if X = Y ∩ V , then e ∈ FC(Y).

Proof. (1. ⇒ 2.) We assume that X ∈ L and for any Y ′ ∈
2G\V we let Y = X∪Y ′. Trivially X = Y ∩V and lL(Y ∩V) =
{e}. Then

FC(Y) =
⋃
g∈G
glL(g

−1Y ∩ V)

⊃ elL(e
−1Y ∩ V)

= e{e}
= {e}

Hence we have e ∈ FC(Y).
(1.⇐ 2.) For ∀g ∈ G and ∀Y ∈ 2G we have glL(g−1Y ∩V) ∈
{φ, {g}} by definition lL and e �

⋃
g∈G\{e}

glL(g
−1Y ∩ V). Now

we let X = Y ∩ V and e ∈ FC(Y), and assume that X � L.
Then

FC(Y) =
⋃
g∈G
glL(g

−1Y ∩ V)

=
⋃
g∈G\{e}

glL(g
−1Y ∩ V) ∪ elL(e

−1Y ∩ V)

=
⋃
g∈G\{e}

glL(g
−1Y ∩ V) ∪ lL(X)

=
⋃
g∈G\{e}

glL(g
−1Y ∩ V) ∪ φ

=
⋃
g∈G\{e}

glL(g
−1Y ∩ V)

� e.

This is contradiction. �
In the followings, we consider the set of all integers Z

as an additive group Z = (Z,+, 0). So usual one dimen-
sional cellular automata with 2-states are represented as cel-
lular automata on the group Z. We define 2-neighborhood
and 3-neighborhood 2-states cellular automata in the next
definition and introduce some examples.

Definition 4: For k ≥ 1 and n ∈ {0, 1, · · · , 22k − 1}, we de-
fine cellular automata CA(k, n) on Z by CA(k, n) = (Z,V,Ln)
where V = {0, 1, · · · , k− 1}, and Ln is the subset of 2V which
satisfies n =

∑
X∈Ln

2
∑

i∈X 2i
.

We note CA(1, 0) = (Z, {0}, φ) and CA(1, 2) = (Z, {0}, {{0}}).
Example 5: Since 6 = 2 + 22 = 220

+ 221
, we have

CA(2, 6) = (Z, {0, 1}, {{0}, {1}}). Since 90 = 2 + 23 +

24 + 26 = 220
+ 220+21

+ 222
+ 221+22

, we have CA(3, 90) =
(Z, {0, 1, 2}, {{0}, {2}, {0, 1}, {1, 2}}). The elements X in Ln

represents the state of neighborhood which induce the next
states ’1’. For a rule number 90, we have the following ta-
ble:

Neighborhood 111 110 101 100
X ∈ Ln {0, 1, 2} {1, 2} {0, 2} {2}
lL(X) φ {e} φ {e}
Neighborhood 011 010 001 000
X ∈ Ln {0, 1} {1} {0} φ
lL(X) {e} φ {e} φ

The configuration c ⊂ Z represents places where the
state is 1. Since n ∈ FC(c)⇔ lL(n−1c∩V) = {e} ⇔ n−1c∩V ∈
L⇔ c∩ nV ∈ nL, the next state at n is 1 if c∩ nV ∈ nL. For
3-neighborhood case we are choosing V = {0, 1, 2}, the left-
hand side of the state is changing. It seems to be better that
we choose V = {−1, 0, 1} but it is not convenient for even-
neighborhood case. Our numbered 3-neighborhood cellular
automata CA(3, n) is a shifted version of usual numbered
elementary cellular automata. Later, we define a cellular
automaton SHIFT which represent a shift operation and an
operator ‘composition’ (�) of two cellular automata. After
that the usual numbered elementary cellular automata are
represented as SHIFT�CA(3, n).

Example 6: SHIFT = (Z, {−1, 0}, {{−1}, {−1, 0}}) is a cel-
lular automata on group Z.

Z2 is also considered as a group, so it is easy to rep-
resent a multi dimensional cellular automata such as The
Game of Life ([1]) as a cellular automata on a group.

Example 7: LIFE = (Z2,VLIFE,LLIFE) is a cellular au-
tomata on group Z2, where

VLIFE={
(−1
−1

)
,

(
0
−1

)
,

(
+1
−1

)
,

(−1
0

)
,

(
0
0

)
,

(
+1
0

)
,

(−1
+1

)
,

(
0
+1

)
,

(
+1
+1

)
}, and

LLIFE={v ∈ 2V | (#v = 3) ∨ (#v = 4 ∧
(
0
0

)
∈ v)}.

We note that #v is the number of elements in a set v.

One dimensional cellular automaton on Z is embedded
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into the two dimensional cellular automaton on Z2. We de-
fine two natural embeddings EX and EY in the following.

Definition 8: For a cellular automata C = (Z,V,L), we
define a cellular automata EX(C) on Z2 by EX(C) =
(Z2,VEX(C),LEX(CA)) where

VEX(C) = {
(
x
0

)
| x ∈ V}, and

LEX(C) = {{
(
x
0

)
| x ∈ X} | X ∈ L}.

We also define a cellular automata EY(C) on Z2 by
EY(C) = (Z2, VEY(C), LEY(C)) where

VEY(C) = {
(
0
x

)
| x ∈ V}, and

LEY(C) = {{
(
0
x

)
| x ∈ X} | X ∈ L}.

Definition 9: Let 1 ≤ k < k′, 0 ≤ x ≤ k′ − k and
CA(k, n) = (Z,V,L). CA(k, n)k′

x is defined by CA(k, n)k′
x =

(Z, {0, 1, · · · , k′ − 1},L′) where

L′ = {s1 ∪ (x + v) ∪ s2 | s1 ∈ S 1, s2 ∈ S 2, v ∈ L},
S 1 =

{{φ} (x = 0)
2{0,···,x−1}(x > 0)

,

S 2 =

{{φ} (k + x = k′)
2{k+x,···,k′−1}(k + x < k′)

We note that FCA(k,n)k′
0
= FCA(k,n) and FCA(k,n)k′

1
=

S HIFT�FCA(k,n).

3. Operations for Cellular Automata on Groups

In this section we introduce operations, union and compo-
sition, for cellular automata on groups. First we define the
operation of union and show some examples for union of
2-neighborhood cellular automata.

Definition 10 (Union): Let C1 = (G,V1,L1) and C2 =

(G,V2,L2) be cellular automata on G. The union C1 ∪ C2

of C1 and C2 is defined by C1 ∪C2 = (G,V1 ∪ V2,L1 ∪ L2).

Definition 11 (Division): Let C = (G,V,L) be a cellular
automaton on G. If there exist C1 = (G,V1,L1) and C2 =

(G,V2,L2) be cellular automata on G such that V = V1 ∪ V2

and L = L1 ∪ L2, then we call C1 and C2 are division of C
and C is dividable by C1 and C2.

Example 12: The class of all 2-neighborhood cellular au-
tomata {CA(2, n) | n = 0, .., 15} is generated by {CA(2, 0),
CA(2, 1), CA(2, 2), CA(2, 4), CA(2, 8)} using ‘union’ oper-
ations. For example, CA(2, 13) is dividable by CA(2, 1),
CA(2, 4), and CA(2, 8). Fig. 1 is the table of unions for
CA(2, n) (n = 0, .., 15).

For a cellular automaton C = (G,V,L) we define two
cellular automata for expansion and restriction of V .

Definition 13: Let C = (G,V,L) be a cellular automaton

Fig. 1 Table of unions: CA(2, n) ∪CA(2,m).

on G and W ⊂ G. We define two cellular automata CW =

(G,W,LW ) and CW = (G,W,LW ) where LW = {X ∩W | X ∈
L} and LW = {Y ∈ 2W |Y ∩ V ∈ L}.

Next we prove the following proposition for expansion
and restriction of V to show a necessary and sufficient con-
dition for FC1 = FC2 using the operation of union in theorem
15.

Proposition 14: Let C = (G,V,L) be a cellular automaton
on G, W ⊂ V , CW = (G,W,LW ) and (CW )V = (G,V, (LW )V ).
Then, FC = FCW if and only if L = (LW )V .

Proof. We assume L = (LW )V . For c ∈ 2G, we have e ∈
FC(c) ⇔ c ∩ V ∈ L(= (LW )V ) ⇔ c ∩ V ∩ W ∈ LW ⇔
c ∩W ∈ LW ⇔ e ∈ FCW (c). So we have FC = FCW .
Conversely, we assume FC = FCW . We have

L = {V ∈ 2V |V ∈ L}
= {c ∩ V | c ∈ 2G and c ∩ V ∈ L}
= {c ∩ V | c ∈ 2G and e ∈ FC(c)}
= {c ∩ V | c ∈ 2G and e ∈ FCW (c)}
= {c ∩ V | c ∈ 2G and c ∩ V ∈ LW }
= (LW )V .

�
Theorem 15: Let C1 = (G,V1,L1) and C2 = (G,V2,L2) be
cellular automata on G. We have FC1 = FC2 if and only if
the following conditions hold.

1. (L1)V1∩V2 = (L2)V1∩V2 ,
2. L1 = ((L1)V1∩V2 )V1 ,
3. L2 = ((L2)V1∩V2 )V2 .

Proof. First, we assume that FC1 = FC2 . For the first equality
in the statement of Theorem,
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(L1)V1∩V2

= {X ∩ V1 ∩ V2 | X ∈ L1}
= {X ∩ V1 ∩ V2 |

∃Y ∈ 2G s.t. X = Y ∩ V1 and e ∈ FC1 (Y)}
= {Y ∩ V1 ∩ V2 |Y ∈ 2G and e ∈ FC1 (Y)}

(by Lemma 3)

= {Y ∩ V1 ∩ V2 |Y ∈ 2G and e ∈ FC2 (Y)}
= (L2)V1∩V2 .

For the second equality, the inclusion relationship L1 ⊂
((L1)V1∩V2 )V1 holds a-priorily. For the converse inclusion
((L1)V1∩V2 )V1 ⊂ L1, assume X ∈ ((L1)V1∩V2 )V1 . Then X ∈ 2V1

and X ∩ (V1 ∩ V2) = Y ∩ (V1 ∩ V2) for some Y ∈ L1. Since
both of X and Y are in 2V1 , X ∩ (V1 ∩ V2) = Y ∩ (V1 ∩ V2)
means X ∩ V2 = Y ∩ V2. Then by the locality of FC2 on
V2 at e, we have FC2 (X) ∩ {e} = FC2 (Y) ∩ {e}. But by the
assumption FC1 = FC2 , FC1 (X) ∩ {e} = FC1 (Y) ∩ {e} = {e}.
This means that e ∈ FC1 (X). Hence we have X ∈ L1.
Conversely, let us assume that the three equalities hold. It
follows form the second and third equalities that FC1 =

F(C1)V1∩V2
and FC2 = F(C2)V1∩V2

using Proposition. 14. Fur-
ther, from the first equality we have (C1)V1∩V2 = (G,V1 ∩
V2, (L1)V1∩V2 ) = (G,V1 ∩ V2, (L2)V1∩V2 ) = (C2)V1∩V2 and
F(C1)V1∩V2

= F(C2)V1∩V2
. Hence we have FC1 = FC2 . �

Colorally 16: For a cellular automaton C = (G,V,L), we
have FC = id if and only if e ∈ V and L = {X ∈ 2V | e ∈ L}.

Next we introduce composition of cellular automata on
a group by defining the operation � for L, and we show that
the composition C1�C2of cellular automata C1 and C2 is
equivalent to the cellular automaton defined by the compo-
sition of the transition functions FC1 and FC2 .

Definition 17 (Composition): Let C1 = (G,V1,L1) and
C2 = (G,V2,L2) be cellular automata on G. The compo-
sition C1�C2 of C1 and C2 is defined by C1�C2 = (G,V1 ·
V2,L1�L2) where

V1 · V2 = {v1v2 ∈ G | v1 ∈ V1, v2 ∈ V2} and

L1�L2 = {X ∈ 2V1·V2 | {v ∈ V1 | v−1X ∩ V2 ∈ L2} ∈ L1}.
Example 18: We calculate CA(2, 6)�CA(2, 6). Let V =
{0, 1}, L = {{0}, {1}} then CA(2, 6) = (Z,V,L). We have
V + V = {0, 1, 2}. We let X = {0, 1} ∈ 2V+V then

(1−1 + X) ∩ V= (1−1 + {0, 1}) ∩ {0, 1}
= {−1 + 0,−1 + 1} ∩ {0, 1}
= {−1, 0} ∩ {0, 1}
= {0}
∈ L

and

(0−1 + X) ∩ V= (0−1 + {0, 1}) ∩ {0, 1}
= {0 + 0, 0 + 1} ∩ {0, 1}
= {0, 1} ∩ {0, 1}

Fig. 2 Table of compositions: CA(2, n)�CA(2,m).

= {0, 1}
� L.

So {v ∈ V | v−1X ∩ V ∈ L} = {0} ∈ L, that is, X = {0, 1} ∈
L�L. Similarly we can calculate for other elements of 2V+V

and we have L�L = {{0}, {2}, {0, 1}, {1, 2}}. So we have
CA(2, 6)�CA(2, 6) = (Z, {0, 1, 2}, {{0}, {2}, {0, 1}, {1, 2}}),
that is, CA(2, 6)�CA(2, 6) = CA(3, 90).

Example 19: The rule numbers of the 3-neighborhood cel-
lular automata generated by composing 2-neighborhood
cellular automata is {0, 1, 2, 3, 8, 12, 15, 16, 17, 18, 19, 24,
34, 36, 46, 48, 51, 55, 60, 63, 64, 66, 68, 72, 85, 90, 102,
116, 119, 126, 127, 128, 129, 136, 139, 153, 165, 170, 183,
187, 189, 191, 192, 195, 200, 204, 207, 209, 219, 221, 231,
236, 237, 238, 239, 240, 243, 247, 252, 253, 254, 255}.
There are 62 kinds of 3-neighborhood cellular automata.
Figure 2 is the table of compositions for CA(2, n) (n =
0, .., 15).

Lemma 20: Let C = (G,V,L) be a cellular automaton and
V0 ⊂ G. For any c ∈ 2G,

FC(c) ∩ V0 = FC(c ∩ (V0 · V)) ∩ V0

Proof. We have FC(c) ∩ V0 = {v0 ∈ V0 | v−1
0 c ∩ V ∈ L}

= {v0 ∈ V0 | c∩v0V ∈ v0L} = {v0 ∈ V0 | (c∩V0 ·V)∩v0V ∈ v0L}
= FC(c ∩ (V0 · V)) ∩ V0. �

The composition of cellular automata corresponds to
find a cellular automaton which global transition function
is the composition of global transition functions of original
cellular automata.

Theorem 21 (Fujio [2]): Let C1 = (G,V1,L1) and C1 =

(G,V2,L2) be cellular automata on G. Then

FC1 ◦ FC2 = FC1�C2
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holds.

Proof. By virtue of Proposition 2, it is sufficient to show that

e ∈ FC1 ◦ FC2 (c) ⇔ e ∈ FC1�C2 (c) (∀c ∈ 2G).

Let c ∈ 2G. Then we have

e ∈ FC1 (FC2 (c))

⇔ FC2 (c) ∩ V1 ∈ L1 (by Lemma 3)

⇔FC2 (c ∩ V1 · V2) ∩ V1 ∈ L1 (by Lemma 20)

On the other hand, since FC2 (c′)∩V1 = {v ∈ V1 | v−1c′ ∩V2 ∈
L2},

FC2 (c ∩ V1 · V2) ∩ V1

= {v ∈ V1 | v−1(c ∩ V1 · V2) ∩ V2 ∈ L2}
Hence by the definition of composition (Definition 17),

FC2 (c ∩ V1 · V2) ∩ V1 ∈ L1

⇔ c ∩ V1 · V2 ∈ L1�L2

⇔ e ∈ FC1�C2 (c)

which establishes the assertion. �
We prove that the right distributive law holds for union

and composition of cellular automata on groups.

Theorem 22: Let C1 = (G,V,L1), C2 = (G,V,L2) and
C3 = (G,V3,L3) be cellular automata on a group G. Then,

(C1 ∪C2)�C3 = (C1�C3) ∪ (C2�C3)

Proof. First, we note

(C1 ∪C2)�C3 = (G,V · V3, (L1 ∪ L2)�L3),

and

(C1�C3)∪(C2�C3)= (G,V · V3, (L1�L3)∪(L2�L3)).

Next, we have

(L1 ∪ L2)�L3

= {X ∈ 2V ·V3 | {v ∈ V | v−1X ∩ V3 ∈ L3} ∈ L1 ∪ L2}
= {X ∈ 2V ·V3 | {v ∈ V | v−1X ∩ V3 ∈ L3} ∈ L1}
∪{X ∈ 2V ·V3 | {v ∈ V | v−1X ∩ V3 ∈ L3} ∈ L2}
= (L1�L3) ∪ (L2�L3)

�
We note that C1�(C2 ∪ C3) = (C1�C2) ∪

(C1�C3) does not always holds for cellular automata
C1, C2 and C3. For example CA(2, 6)�(CA(2, 2) ∪
CA(2, 4)) = CA(2, 6)�CA(2, 6) = CA(3, 90), and
(CA(2, 6)�CA(2, 2)) ∪ (CA(2, 6)�CA(2, 4)) = CA(3, 46) ∪
CA(3, 116) = CA(3, 126).

Proposition 23: Let CA(1, n)k1
x , CA(k2, n2) and CA(k2, n3)

be cellular automata on Z, where 0 ≤ x < k1, and n = 0, 1.
Then,

CA(1, n)k1
x �(CA(k2, n2) ∪CA(k2, n3))

= (CA(1, n)k1
x �CA(k2, n2)) ∪ (CA(1, n)k1

x �CA(k2, n3)).

Fig. 3 A configuration of CA(3, 3).

Proof. Let V1 = {0, · · · , k1 − 1}, L1 = {X ∈
2V | x ∈ X}, L̄1 = {X ∈ 2V | x � X}, CA(k2, n2) =
(Z,V2,L2), and CA(k2, n3) = (Z,V2,L3). First, we note
CA(1, 0)k1

x = (Z,V1, L̄1), CA(1, 1)k1
x = (Z,V1,L1), CA(1, 0)k1

x

� (CA(k2, n2)∪CA(k2, n3)) = (Z,V1 ·V2, L1�(L2∪L3)), and
(CA(1, n)k1

x � CA(k2, n2)) ∪ (CA(1, n)k1
x � CA(k2, n3)) = (Z,

V1 · V2, (L1�L2) ∪ (L1�L3)). Since

L1�(L2 ∪ L3)

= {X ∈ 2V1·V2 | {v ∈ V | v−1X ∩ V2 ∈ (L2 ∪ L3)} ∈ L1}
= {X ∈ 2V1·V2 | x−1X ∩ V2 ∈ (L2 ∪ L3)},

and

(L1�L2) ∪ (L1�L3)

= {X ∈ 2V1·V2 | {v ∈ V | v−1X ∩ V2 ∈ L2} ∈ L1}
∪{X ∈ 2V1·V2 | {v ∈ V | v−1X ∩ V2 ∈ L3} ∈ L1}
= {X ∈ 2V1·V2 | x−1X ∩ V2 ∈ L2}
∪{X ∈ 2V1·V2 | x−1X ∩ V2 ∈ L3},

we have L1�(L2∪L3) = (L1�L2)∪ (L1�L3), and CA(1, 1)k1
x

� (CA(k2, n2) ∪ CA(k2, n3)) = (CA(1, 1)k1
x � CA(k2, n2))

∪ (CA(1, 1)k1
x � CA(k2, n3)). Similarly, we can prove

CA(1, 0)k1
x � (CA(k2, n2) ∪ CA(k2, n3)) =

(CA(1, 0)k1
x � CA(k2, n2)) ∪ (CA(1, 0)k1

x � CA(k2, n3)). �

Example 24: We note CA(3, 3) = (Z, {0, 1, 2}, {φ, {0}}),
CA(3, 102) = (Z, {0, 1, 2}, {{0}, {1}, {0, 2}, {1, 2}}) and
CA(3, 18) = (Z, {0, 1, 2}, {{0}, {2}}). The composition of cel-
lular automata CA(3, 3) and CA(3, 102) is

CA(3, 3)�CA(3, 102)

= (Z, {0, 1, 2, 3, 4},
{{1}, {0, 1}, {1, 4}, {0, 1, 4}, {3}, {0, 3}, {3, 4}, {0, 3, 4}}).

Since CA(3, 18)5
1 = (Z, {0, 1, 2, 3, 4},L) and

L = {s1 ∪ (1 + v) ∪ s2

| s1 ∈ 2{0}, s2 ∈ 2{4}, v ∈ {{0}, {2}}}
= {{1}, {0,1}, {1,4}, {0,1,4}, {3}, {0,3}, {3,4}, {0,3,4}}),

we have CA(3, 3) � CA(3, 102) = CA(3, 18)5
1.

(cf. Fig. 3, Fig. 4, Fig. 5)

Example 25: We can consider a 2-neighborhood cellular
automaton as a 3-neighborhood cellular automaton and also
a 3-neighborhood cellular automaton as a 5-neighborhood
cellular automaton. The followings is an observation of the
embeddings and compositions.
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Fig. 4 A configuration of CA(3, 102).

Fig. 5 An example of configurations of CA(3, 18) =
CA(3, 3)�CA(3, 102).

• CA(2, 1) = (Z, {0, 1}, {φ})
• CA(2, 1)3

0 = (Z, {0, 1, 2}, {φ, {2}}) = CA(3, 17)
• CA(2, 1)�CA(2, 1)
= (Z, {0, 1, 2}, {{0, 1}, {0, 2}, {1, 2}, {1}}) = CA(3, 236)
• CA(3, 17)�CA(3, 17) = (Z, {0, 1, 2, 3, 4, 5},L)
= CA(5, 3974950124) = CA(3, 236)5

0• L = ⋃{{s, s ∪ {3}, s ∪ {4}, s ∪ {3, 4}} | s ∈ CA(3, 236)}

4. Generalization

A subset V of G is considered as a characteristic function
V : G → 2 where 2 = {0, 1}. That is V is a function which
values are

V(g) =

{
0 (g � V)
1 (g ∈ V).

Sometimes V is represented as an injection iV : V → G
where iV (g) = g.

Extending our 2-states cellular automata on groups to
many-states cellular automata on groups, we replace the set
2 = {0, 1} to a finite set S .

Definition 26: Let G be a group, S a finite set. A general-
ized cellular automaton on G is a four-tuple C = (G, S , iV ,L)
of the group G, an injection iv : V → G, and a function
L : S V → S where S V is the set of all functions from
V to S . A configuration c : G → S is a function. The
global transition function FC : S G → S G is defined by
FC(c)(g) = L(c ◦ g ◦ iV ).

Proposition 27: Let G be a group, V ⊂ G, and S = 2 =
{0, 1}. And let FC : 2G → 2G and F′C : 2G → 2G be the
global transition functions of a generalized cellular automa-
ton C = (G, S , iV ,L) and a cellular automaton C′ = (G,V,L)
on G. Then F′C coincides FC .

Proof. We will show that for ∀c ∈ 2G

FC(c)= {g ∈ G |L(c ◦ g ◦ iV ) = 1}
=

⋃
g∈G
g · lL(g−1 · c ∩ V)

= F′C(c).

For g ∈ G, we have

g ∈ FC′(c)

⇔ g ∈
⋃
g∈G
g · lL(g−1 · c ∩ V)

⇔ lL(g
−1 · c ∩ V) = {e}

⇔ g−1 · c ∩ V ∈ L
⇔ g−1{x | c(x) = 1} ∩ V ∈ L
⇔ {g−1x | c(x) = 1} ∩ V ∈ L
⇔ {v | c(gv) = 1} ∩ V ∈ L (cf. (x = gv))

⇔ {v | c(gv) = 1, v ∈ V} ∈ L
⇔ {v | c ◦ g ◦ iV (v) = 1} ∈ L
⇔ L(c ◦ g ◦ iV ) = 1

⇔ g ∈ FC(c).

�
Example 28: Let G = Z, S = Zm, and V = {−r,−r +

1, · · · , 0, · · · ,+r}. For a polynomial f (X) =
+r∑

i=−r

aiX
i, (ai ∈

Zm), we define the function L f (X) : ZV
m → Zm by

L(x−r, x−r+1, · · · , x0, · · · , x+r)=
+r∑

i=−r

a−i xi,

((x−r, x−r+1, · · · , x0, · · · , x+r) ∈ Zm
V ). A configuration c ∈

ZZ
m is represented as a formal power series

∑
ciX

i where
ci = c(i) (cf. [6], [10]). Since c ◦ j ◦ iV (i) = c( j + i) = c j+i,
and c ◦ j ◦ iV = (c j−r, c j−r+1, · · · , c j, · · · , c j+r), we have

(
∑

c(i)Xi) f (X)

= (
∑

ciX
i) f (X)

= (
∑

ciX
i)(
+r∑

i′=−r

ai′X
i′ )

= (
∑

ciX
i)(
+r∑

i′=−r

a−i′X
−i′ )

=
∑

(
+r∑

i′=−r

cia−i′X
i−i′ )

=
∑

((
+r∑

i′=−r

a−i′c j+i′ )X
j) (cf. j = i − i′)

=
∑

(L(c j−r, c j−r+1, · · · , c j, · · · , c j+r)X
j)

=
∑

(L(c ◦ j ◦ iV )X j).

=
∑

(FC(c)( j)X j).

The transition of the cellular automaton C = (Z,Zm,iV ,L f (X))
is corresponding to the product of polynomials (the formal
power series).
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