
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014
589

LETTER

Implementation of the Complete Predictor for DDR3 SDRAM

Vladimir V. STANKOVIC†a), Member, Nebojsa Z. MILENKOVIC†, and Oliver M. VOJINOVIC†, Nonmembers

SUMMARY In the arsenal of resources for improving computer mem-
ory system performance, predictors have gained an increasing role in the
past few years. They can suppress the latencies when accessing cache or
main memory. In our previous work we proposed predictors that not only
close the opened DRAM row but also predict the next row to be opened,
hence the name ‘Complete Predictor’. It requires less than 10 kB of SRAM
for a 2 GB SDRAM system. In this paper we evaluate how much additional
hardware is needed and whether the activations of the predictors will slow
down the DRAM controller.
key words: DDR3 SDRAM, latency, predictor

1. Introduction

The Complete Predictor [1] consists of two predictors: a
close page predictor and an open page predictor. First the
close page predictor predicts whether to close the currently
opened DRAM row or to keep it open. In the case of a row
closing, the open page predictor predicts the next row to be
opened. The mentioned close page predictor also consists
of two predictors: a zero live time predictor and a dead time
predictor. The first one is always used when a new row is
opened, and it predicts whether the row’s live time will be a
zero live time or not. If yes, that row is closed immediately
after completing the DRAM access. If not, the row is kept
open and after that access and during further accesses the
dead time predictor is used to predict whether that row has
entered its dead time. If it has, the row is closed. In case of
a prediction that closes the row (either by the zero live time
or by the dead time predictor) the open page predictor is ac-
tivated. It predicts the next row to be opened, so the DRAM
controller may open this row in advance.

The goal when using predictors is to achieve a hybrid
policy that yields lower DRAM latency than both the Open
Row Policy and the Close Row Autoprecharge Policy. Since
we have already achieved this [1], we wanted to estimate the
quantity of hardware needed to implement our predictors.
We were mainly interested in seeing what percentage would
be spent on SRAM memory and what on all the other hard-
ware elements. Namely, we know that the amount of the
needed SRAM is small. But what about the rest of the com-
ponents? With a variety of additional hardware elements,
they may occupy a significant part of the total hardware re-
quirements. Therefore, we gave ourselves the task of es-

Manuscript received September 24, 2013.
Manuscript revised November 19, 2013.
†The authors are with the Faculty of Electronic Engineering,

Aleksandra Medvedeva 14, 18000 Nis, Serbia.
a) E-mail: vladimir.stankovic@elfak.ni.ac.rs

DOI: 10.1587/transinf.E97.D.589

timating the amount of hardware needed to implement the
rest of the components, compared to the needed amount of
SRAM. We decided to implement the Complete Predictor
on an FPGA chip and see the number of equivalent gates
we will gain. That way we will be able to directly com-
pare the SRAM part and all the other components, since the
number of equivalent gates for the SRAM memory is practi-
cally known up front, it depends only on the SRAM amount.
The number of equivalent gates (or equivalent gate count)
is a measure of logic capacity, where a gate is ostensibly
a 2-input NAND [5]. Another important thing we wanted
to see is whether the activations of the predictors will slow
down the DRAM controller and by how much. If they slow
it down too much, then using the predictors is pointless.
Knowing these two things will help us judge if similar pre-
dictors may be implemented as parts of modern DRAM con-
trollers, i.e. modern processors (in contemporary processors
the DRAM controller is part of the processor). Using the
software packet Xilinx ISE WebPack v.8.2, we have imple-
mented the best variants of the zero live time, dead time and
open page predictor from [1] on FPGA chip, Xilinx Spar-
tanII family, model xc2v500-6fg256, and we show these re-
sults in Sects. 2, 3 and 4, respectively. Section 5 contains
results of the implementation of the sync algorithm of the
predictors and Sect. 6 contains the complete results. Sec-
tion 7 is the conclusion.

2. Zero Live Time Predictor

2.1 Behavior

It is easy to implement the zero live time predictor in a form
of SRAM memory. Namely, the best variant of the zero
live time predictor from [1], signed as 2b16, has two bits for
every 16 adjacent DRAM rows in the system, used as a satu-
rated counter, with values from 0 to 3. For the adopted 2 GB
DDR3 SDRAM structure from [1] with total of 16 banks in
the system and 8 k rows per bank, the total number of rows
in the system is 128 k. For that number of rows we need
16 kb or 2 kB of SRAM memory.

2.2 Hardware Cost Estimation

The implementation of the zero live time predictor demands
65,595 equivalent gates. Only 59 gates of those are spent on
implementation of the control block while the rest 65,536
gates are spent on the 2 kB SRAM. This means that 4 gates

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



590
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

are spent for each bit of the SRAM, so we could even cal-
culate this number in advance. Only 4 4-input LUTs were
used for this predictor.

Another important thing considering the implementa-
tion are the time intervals needed to execute the two basic
operations of the predictors: Lookup and Update. It is im-
portant that the time parameters are such that the execution
of these operations does not slow down the DRAM con-
troller, or at least not too much. Obviously, Lookup is per-
formed when the controller calls a predictor for its predic-
tion, and Update is performed when important cases occur,
that demand the predictor to update the data upon which the
predictions are performed. In case of the zero live time pre-
dictor, the needed times for executing these two operations
are 1 clock cycle for Lookup and 2 clock cycles for Update.

3. Dead Time Predictor

3.1 Behavior

The dead time predictor is based on access interval time
values. Simulation results show that the average dead time
is much larger than the average access interval time, hence
when a value that is the last access interval time, multiplied
by 2 or 4, elapses, it is predicted that the row has entered its
dead time. To implement the dead time predictor the DRAM
controller needs several things:
1. There has to be one counter for each bank to take care of
the elapsed time since last access. In order to minimize the
counters’ length, they may be triggered with a signal derived
by dividing the DRAM’s clock.
2. A register for each bank is needed for storing the last ac-
cess interval value. Every time there is an open page hit in
any of the banks that means occurrence of a new access in-
terval time. In that case the counter’s value for that bank
should be stored into the proper register and the counter
should be reset. The operation of multiplying by 2 or 4
could be implemented by fixing the least significant bit to
zero (multiply by 2) or the two least significant bits to zeros
(multiply by 4) and then storing into this register from the
next position(s).
3. The DRAM controller also needs one comparator for each
bank. In case the counter’s value is greater or equal to the
register’s value the row is to be closed, so the DRAM con-
troller should issue a precharge command.
4. We also need two queues: QueueA and QueueB. The
first is a queue with orders from the processor or the cache
memory (this queue already resides within standard DRAM
controllers) and the second is a queue with orders for bank
precharges from the dead time predictor. When serving the
queues QueueA is always of higher priority than QueueB.

3.2 Hardware Cost Estimation

Although this predictor seems rather complex, with lots of
different hardware elements, the results show that the imple-
mentation of the best dead time predictor from [1], signed

as sep2, demands only 17,718 equivalent gates. The num-
ber of 4-input LUTs used for this predictor is 1,404. As for
the time parameters of this predictor, they are not important
since it works in parallel with the DRAM controller, mean-
ing that the DRAM controller does not have to wait for the
predictor’s response. The Lookup command does not exist
as a classic command, since it is not the DRAM controller’s
job to check if there is a prediction - the predictor itself, if
it predicts that some row has entered its dead time, executes
the write of the proper bank id into QueueB. The DRAM
controller’s job is to check if there is something written into
QueueB every time it is idle. If there is, the controller per-
forms a read operation and issues a row precharge of the
proper bank. The Update command does exist as a com-
mand that the DRAM controller dictates to the dead time
predictor. Its execution time depends on the moment it ap-
pears and may last from 1 to 16 clock cycles. However, this
is not important since the DRAM controller does not have to
wait for this command to finish. It issues the Update com-
mand whenever it is needed (at each new access to a bank)
and continues its job while the dead time predictor executes
the command (writes the content of the proper counter into
the proper register and resets the counter).

4. Open Page Predictor

4.1 Behavior

The open page predictor consists of two tables: Row History
Table (RHT) and Pattern History Table (PHT). RHT stores
the last k rows that were activated in each of the banks, so
there are k fields in an item for each of the banks. PHT
contains the predictions. It has m ≤ n items, where n is
number of bank rows. Each item contains j two-part fields:
row and next predicted row. PHT access index is obtained
as t least significant bits of the truncated addition of the last
k row indices from the proper item for that bank in RHT, so
m = 2t. If j = 2 and k = 4, for the adopted DDR3 SDRAM
size and structure from [1] we need 832 bits for RHT and
6.5 kB for PHT, for the variant m1k.

Let us show the details of the implementation of the
open page predictor for a DRAM system organized as 2
ranks with 8 DDR3 SDRAM 1Gb chips per rank, 8 banks
per chip and 8 k rows per bank. Each row has 2 k columns.
Figure 1 shows the implementation of the open page predic-
tor. The RHT table with 2 x 8 = 16 items is implemented as
MRHT memory, organized as 4 parallel memories MRHT(0)
to MRHT(3) of the type 16 x 13 bits. Here a single RHT
item with addresses of the 4 last open rows in a proper bank
is stored into 4 locations in these 4 parallel memories with
same relative addresses, which enables simultaneous read of
all 4 rows from the given item of the RHT table. In that way
the addition of the 4 rows can be executed with 2 of them
happening simultaneously, thus shortening the total addition
time. Since this addition is used to form an address for ac-
cessing the PHT table, which has 1 k items, the adders are 10
bits wide (the 10 least significant bits from the 13 bits of the



LETTER
591

Fig. 1 Implementation of the open page predictor.

RHT items are used), with ignoring the carry. ASRHT is a 4b
register which contains the address for accessing the items
in MRHT(0) to MRHT(3) with same relative addresses. BGN
is a 2b circle queue used for updating the RHT table. There
are 16 of them, each for a proper item in RHT. The starting
value for BGN is zero (00) and each time a new row is to be
written into RHT BGN is incremented. If the value of BGN
is 3 (11) its next value after the increment will be zero again.
That way we can remember the last accessed row in a proper
bank without having to shift the values from each MRHT to
the next. PA is a 1b indicator which shows whether the pre-
diction for the proper bank is allowed. At the beginning the
prediction is not allowed. The moment all 4 rows are filled
in a proper RHT item, its PA indicator is set and it remains
set.

The PHT table is organized as 4 parallel memories
MPHT(0) to MPHT(3), each organized as 1 k x 13 bits. Each
PHT item is stored in 4 locations in MPHT with same rela-
tive addresses, which enables simultaneous read operations.
These 4 locations contain the two pairs row - next row. AS-
PHT is a 10 bit register used for addressing the four loca-
tions in MPHT(0) to MPHT(3) with same relative addresses.
When accessing MPHT, 2 additional bits are needed to de-
termine which of the 4 locations with same relative ad-
dresses in MPHT are to be accessed. These 2 bits are de-
termined with the help of FIMPHT and PFIFO. FIMPHT,
organized as 1 k x 2 b has 2 bits for each PHT item. These
2 bits show whether the two pairs in an item are filled (the
1st bit points to the 1st pair and the 2nd bit points to the 2nd

pair). In case both pairs are filled and a new pair is to be
written, PFIFO, organized as 1 k x 1 b, defines which of the
two pairs will be removed. When this happens the proper
PFIFO bit is complemented.

4.2 Hardware Cost Estimation

Implementation of the open page predictor demands
402,536 equivalent gates. This value is more than 40%
greater than the realistic value. Namely, the used FPGA
chip has block RAM elements with fixed sizes of 16 kb, so
these blocks were used for FIMPHT and PFIFO, meaning
there was unused space of 14 kb for FIMPHT and 15 kb for
PFIFO. That gives 29 kb of excess memory space which
corresponds to 118,784 equivalent gates. We may con-
clude that if there were block RAM elements with proper
sizes of 1 kb, the open page predictor would probably de-
mand 283,752 gates. It is important here to emphasize that
the MPHT memory itself demands 262,144 gates, while
140,392 gates were spent on all the other components and
with optimal FIMPHT and PFIFO implementation only
21,608 gates would be spent on all the other components. If
we subtract the number of gates needed for RHT, FIMPHT
and PFIFO from the last two values, we can get that only
5,992 gates are needed for all the components other than
SRAM. The implementation of the MPHT memory of the
type 4 k x 13 b demands 212,992 gates and a greater value
(262,144) was gained since it was actually implemented as
4 k x 16 b, i.e. using 4 block RAM elements. This predictor
used 307 4-input LUTs. As for the time parameters, Lookup
executes for 3 clock cycles, while the execution of Update
may vary, and its maximal value is 7 clock cycles.

5. Synchronization of the Predictors

In order for the predictors to work as a team a sync algorithm
is needed, to activate the proper predictor when needed. We
defined and implemented this algorithm as a finite state ma-
chine and its implementation demands 11,456 equivalent
gates, with 904 used 4-input LUTs. These values include
all the needed registers, indicators, additional logic etc. for
controlling the execution of the predictors.

6. Implementation of the Complete Predictor

Table 1 contains data about the Complete Predictor. This
data, as well as the data shown in the previous sections, was
gained using the software packet Xilinx ISE WebPack v.8.2,
on FPGA chip, Xilinx SpartanII family, model xc2v500-
6fg256. The total number of equivalent gates used for im-
plementation of all the predictors as well as the sync algo-
rithm amounts 497,305 gates. From those almost 500,000
gates, 462,080 gates are needed for the SRAM (for the zero
live time predictor, the RHT and PHT tables of the open
page predictor, as well as the FIMPHT and PFIFO memo-
ries), and 35,225 gates (or 7.1%) are spent for all the rest.



592
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.3 MARCH 2014

Table 1 Equivalent number of gates for the Complete Predictor.

Total SRAM All the rest
497,305 (329,369) 462,080 (294,144) 35,225

With better organization of the FIMPHT and PFIFO mem-
ories, and implementation of the PHT table as 4 k x 13 b,
only 329,369 gates would be needed for the Complete Pre-
dictor - 294,144 gates for the SRAM and 35,225 gates (or
10.7%) for all the rest. This means that, even though it might
seem that the predictors are rather complex, the majority of
the hardware, almost 90%, would be spent on the needed
SRAM memory, whose total capacity is about 9 kB. Since
contemporary processors contain MBs of SRAM (spent on
cache memories) in a single chip [2], we may conclude that
implementing the Complete Predictor into contemporary
processors would not increase their complexity and price.
This is true even for SDRAM memory systems with much
larger capacities than the one we have dealt with in this pa-
per. A few years ago, when we started to study predictors for
SDRAMs, we decided to consider a 2 GB DDR3 SDRAM
memory system, which was, should we say, a top choice
at that time. In a few years from now some newer type of
SDRAM memories (like DDR4 or DDR5) would probably
become a standard for contemporary main memory systems,
with capacities of probably 10 or maybe even 15 or 20 GB.
What would change considering the implementation of our
predictors? It is obvious that the main change would ap-
ply to the capacity of the needed SRAM memory, which, as
we saw, occupies majority of the hardware. Let us be lib-
eral in our evaluations and assume that the total capacity of
the needed SRAM increased 20 times (although a 10 times
increase for a 10 times larger SDRAM capacity of 20 GB
would be logical). Even then we would still need less than
200 kB of SRAM memory, and there are already MBs of
SRAM in a single processor chip. So not only there are no
technological problems for implementation of our predic-
tors in the future, but similar predictors might even become
one of the better solutions considering the cost/performance
pay off.

It is also important to emphasize that we proved that
using the predictors would not increase at all the DRAM
latency for executing the Lookup and Update operations.
Namely, each of these two operations runs simultaneously
with one of the 3 basic DRAM operations: row precharge,
row activation or column access, and each of these 3 opera-
tions lasts more than 10 ns [3], [4]. This value is not smaller
even for DDR4 SDRAM [4]. These 10 ns correspond to
10 clock cycles for SDRAMs that operate on 1 GHz. For
higher frequency SDRAMs this value is even greater, and
we saw that the longest Lookup/Update operation for whose
execution the DRAM controller has to wait to finish lasts
maximum 7 cycles. The value of 10 ns will probably not
change much in the following years even for newer types
of memories. Namely, DDR, DDR2, DDR3, etc. all have
practically the same DRAM core, with very little differ-
ence in the latency parameters. What changes is the band-

width - DDR2 has twice the bandwidth of DDR, DDR3 has
twice the bandwidth of DDR2 [3] etc. On the other hand
the latency changes much slower, the statistics show that the
SDRAM latency improves only about 5% per year [2]. And
even if, hypothetically speaking, the latency parameters be-
came several times smaller in the future (which is very un-
likely), the use of the predictors would still be justified and
payable. This stands both from the fact that the other pre-
dictors’ Lookup/Update operations last only 1-3 cycles, as
well as from the significant latency decrease gained in [1]
when using predictors.

7. Conclusion

In this paper we have shown the results of FPGA imple-
mentation of the Complete Predictor. The results show that
about 90% of the number of equivalent gates would be spent
on the needed SRAM memory for implementing the RHT
and PHT tables and FIMPHT and PFIFO memories of the
open page predictor as well as the memory of the zero live
time predictor. All the rest is spent on the needed additional
logic for the zero live time and open page predictors, the
counters, registers and comparators plus additional logic for
the dead time predictor, as well as the needed registers, in-
dicators and additional logic for implementing the sync al-
gorithm. If we wanted to roughly express the total hardware
requirements only in amount of SRAM memory we could
say that approximately the total hardware requirements for
the Complete Predictor is only about 10 kB of SRAM mem-
ory for a 2 GB SDRAM memory system. This small amount
of needed SRAM memory will remain relatively small even
for much higher capacities of SDRAM in the memory sys-
tem.

We have also shown that using the predictors will not
increase the SDRAM latency for executing the predictors’
basic operations Lookup and Update. Considering the trend
of rather slow change in the SDRAM latency, it is expected
that this will stand true even for newer types of SDRAM
memories. The main conclusion we may derive is that the
predictors like the Complete Predictor could be easily im-
plemented in the near future and might become a successful
weapon in the battle of decreasing the processor-memory
speed gap.

References

[1] V. Stankovic and N. Milenkovic, “DDR3 SDRAM with a complete
predictor,” IEICE Trans. Inf. & Syst., vol.E93-D, no.9, pp.2635–2638,
Sept. 2010.

[2] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 5th ed., Morgan Kaufman, 2011.

[3] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM,
Disk, Morgan Kaufman, 2007.

[4] Micron, “DDR4 SDRAM UDIMM,” www.micron.com, Document
name: atf16c1gx64az.pdf

[5] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field-Programmable
Gate Arrays, Springer/Kluwer Academic Publishers, 1992.


