
654
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

PAPER Special Section on Data Engineering and Information Management

Visualization System for Monitoring Bug Update Information

Yasufumi TAKAMA†a), Member and Takeshi KUROSAWA†∗, Nonmember

SUMMARY This paper proposes a visualization system for supporting
the task of monitoring bug update information. Recent growth of the Web
has brought us various kinds of text stream data, such as bulletin board
systems (BBS), blogs, and social networking services (SNS). Bug update
information managed by bug tracking systems (BTS) is also a kind of text
stream data. As such text stream data continuously generates new data, it
is difficult for users to watch it all the time. Therefore, the task of monitor-
ing text stream data inevitably involves breaks of monitoring, which would
cause users to lose the context of monitoring. In order to support such
a monitoring task involving breaks, the proposed system employs several
visualization techniques. The dynamic relationship between bugs is visu-
alized with animation, and a function of highlighting updated bugs as well
as that of replaying a part of the last monitoring time is also proposed in
order to help a user grasping the context of monitoring. The result of ex-
periment with test participants shows that highlighting and replay functions
can reduce frequency of checking data and monitoring time.
key words: information visualization, Web mining, monitoring support,
bug tracking system

1. Introduction

Recent growth of the Web has brought us various kinds
of text stream data, which includes bulletin board systems
(BBS), blogs, and social networking services (SNS), etc.
Such text stream data become important Web resources,
from which we can obtain valuable information. Because
of dynamic nature of text stream data, how to treat continu-
ously arriving data is key issue for utilizing it.

It is often observed in our daily life including work,
study, and private time that we have to check text stream
data. For example, we often check Twitter and Facebook
periodically in order to examine whether new / interesting
information arrive or not. This paper calls the task of check-
ing text stream data as monitoring task. As it is difficult for
users to always check continually generated data, a monitor-
ing task inevitably involves breaks, which makes monitoring
a difficult task. That is, when users want to check online
news, BBS, or Twitter while having a coffee break at office,
they have to check data received during their primary jobs
in a relatively short time. Furthermore, monitoring new data
usually requires context information, e.g., which items were
of interest in previous monitoring time, and the reason why
those items attracted the users’ attention. Therefore, way

Manuscript received July 4, 2013.
Manuscript revised October 23, 2013.
†The authors are with the Graduate School of System Design,

Tokyo Metropolitan University, Hino-shi, 191–0065 Japan.
∗Presently, with Mitsue-Links, Co., Ltd.

a) E-mail: ytakama@sd.tmu.ac.jp
DOI: 10.1587/transinf.E97.D.654

of presenting data with context information is important in
order to support monitoring task.

Information visualization technologies are known to be
effective for supporting human to access data. Various kinds
of information visualization systems have been developed,
and those main targets have been exploratory data analy-
sis (EDA) [1], [2] and information retrieval [3]. On the other
hand, to the best of our knowledge, less effort has been made
for supporting monitoring task with information visualiza-
tion technologies. Although peripheral displays [4]–[7] re-
late with monitoring task as will be noted in Sect. 2.1, those
studies have not paid attention to the existence of breaks
during monitoring task.

This paper proposes a concept of monitoring support
for utilizing text stream data. Among various kinds of text
stream data available on the Web, this paper focuses on bug
update information, and proposes an information visualiza-
tion system for supporting the task of monitoring it. Bug
update information is managed by a bug tracking system
(BTS), which continuously sends emails reporting bug up-
date information to developers. Therefore, it is typical text
stream data. Furthermore, in the case of open source soft-
ware (OSS) such as Linux distributions, it includes a large
collection of software applications, which are managed by
different BTSs. Therefore, a developer of a certain software
applications has to access multiple BTS for collecting bug
update information relating with his/her work.

From the viewpoint of monitoring support, users of
BTS, i.e., developers of OSS in this paper, have an important
characteristic: various developers from all over the world,
including employees in companies, researchers in universi-
ties / research institutions, and volunteers, take part in the
development. Therefore, the development goes ahead while
one is away from the development. Such a characteristic
of OSS development make monitoring task more difficult.
Therefore, bug update information of OSS is suitable as the
target data for studying the concept of text stream monitor-
ing support.

To support monitoring task of bug update information
in OSS development, this paper proposes a visualization
system that displays bug update information obtained from
multiple BTSs. The proposed system visualizes the dynamic
relationship between bugs with animation. To help a user
grasping the context of monitoring, the system is equipped
with a function for highlighting updated bugs as well as that
of replaying a part of the last monitoring time. The effec-
tiveness of the system is evaluated through an experiment

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



TAKAMA and KUROSAWA: VISUALIZATION SYSTEM FOR MONITORING BUG UPDATE INFORMATION
655

with test participants. The experiment supposes the situa-
tion where they have to take a break during monitoring. The
result shows most of participants could find interesting bugs
after a break. In particular, it is shown that the highlight
function has statistically significant effect on the efficiency
of achieving the task.

This paper is an extended version of the paper pub-
lished in the proceedings of an international conference [8],
by adding detailed discussion on the concept of monitoring
support for text stream data, analysis of user behaviors us-
ing the proposed system, etc. This paper has two contribu-
tions. First, monitoring task is proposed as a new task to be
supported by information visualization. It is expected that
new task will motivate many researchers to study new infor-
mation visualization techniques and systems. Second, the
system proposed in this paper can support OSS developers.

The organization of the paper is as follows. Section 2
introduces related work including topic detection and track-
ing from text stream data, peripheral displays, and bug
tracking systems. Section 3 describes the proposed system,
which is followed by Sect. 4 that shows experimental results.

2. Related Work

2.1 Peripheral Displays and Monitoring Support Systems

As monitoring of text stream data is a difficult task, visual-
ization is expected to be useful for supporting it. However,
most of information visualization systems aim to support
EDA, which is an approach for analyzing data space from
various viewpoints without having predetermined hypothe-
sis. Whereas EDA is supposed to be a primary job for a user,
monitoring task is supposed to be done between intervals of
such primary jobs.

Peripheral displays (ambient displays) have been stud-
ied for providing important but non-emergent information
without disturbing user’s primary jobs [4]–[7]. Although
this concept is expected to be useful for monitoring task,
main target of existing systems is data with simple struc-
ture, such as stock price [6], weather information [6], [7],
and electricity consumption [4].

Monitoring support for software development progress
has been studied [9]–[11]. Jazz [9] visualizes information
about other developers, such as online /offline and their
progress, in an integrated development environment. Au-
gur [10] visualizes the record of file modification for moni-
toring the progress of collaborative works. Ripley et al. [11]
have employed 3D views for visualizing progress of devel-
opment from the viewpoints of developers and files. How-
ever, these systems do not consider breaks during monitor-
ing task.

The code swarm [12] visualizes software project his-
tories as non-interactive video. Although its non-interactive
nature would be suitable for monitoring support, it is not de-
signed for monitoring current progress of the development
of software.

2.2 Bug Tracking Systems for Open Source Software

A BTS is a software application that helps programmers
keep track of reported software bugs. It is used by devel-
opers and users of software to report bugs and to discuss its
cause and how to fix it. When an update is occurred for a
bug, the update information is sent to those involved in it via
e-mail.

A BTS assigns a unique ID to each bug, and manages
various kinds of information about bugs such as importance,
involved persons, and status. A status of a bug indicates
its progress toward fix. Although different set of statuses
is used by different BTSs, this paper treats the following 5
statuses.

• Unconfirmed: Reported but not confirmed yet.
• New: Confirmed to be present.
• In Progress: Developer is working on it.
• Fixed
• Rejected: Unfixable, already reported, out of support,

etc.

When a bug is reported for the first time, its status is
regarded as “Unconfirmed.” After the existence of the re-
ported bug is confirmed, its status becomes “New.” When a
developer to fix the bug is assigned, its status becomes “In
Progress.” The “Fixed” is assigned to the bug when it is
fixed. In the case of a minor bug, its status can be directly
changed from “New” to “Fixed.” If the bug cannot or will
not be fixed for some reasons, it is rejected.

The importance of a bug is determined based on its
impact and priority in fixing works. As will be noted in
Sect. 3.2, this paper considers three levels of importance:
high, medium, and low.

As a bug is updated dynamically, affects other bugs
in complex manner, and involves many developers, track-
ing bug update information is not a trivial task. On the
other hand, visualization techniques are known to be help-
ful for users to grasp large-scale, complex data space. From
this viewpoint, several studies have applied visualization
techniques to data managed by BTS [1], [13]. The Bug’s
Life [13] employs two kinds of visualizations, one of which
is for providing overview and another is for detailed in-
formation about each bug. The metaphor of a watch is
employed for visualizing detailed information about a bug.
Tesseract [1] visualizes data from version management sys-
tem and BTS in integrated manner. It consists of several
panels, which include the panel for showing the activity
change of a project, that for file information, and for infor-
mation about developers and bugs. When a user operates on
one of those panels, views of other panels are automatically
updated based on the relationship among objects (bugs, de-
velopers, files, etc.).

Bug Maps [14] provides time series of defects in the
classes of object-oriented systems with a set of interactive
visualization techniques. Target data is collected from ver-
sion control platforms such as CVS and SVN in addition



656
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

to BTSs. Knab et al. [2] have proposed interactive visu-
alization approach for supporting analysis of data in issue
tracking repository, which contains problems reports from
a multi-year, multi-site software development project in the
consumer electronics domain. It integrates multiple views
such as pie chart for process step length and polymetric
views for effort measures.

However, these systems do not suppose a monitoring
task, in the sense that breaks inevitably occurred in the task
are not considered explicitly.

3. Visualization for Monitoring Bug Update Informa-
tion

3.1 Outline of Monitoring System

As noted in Sect. 1, this paper proposes a concept of mon-
itoring support for utilizing text stream data. As one of its
applications, an information visualization system targeting
bug update information is also proposed. One of important
characteristics of the monitoring task is that it inevitably in-
volves breaks. That is, a user has to check text stream data
within a short time and go back to their primary jobs. Fur-
thermore, context information tends to be lost during breaks,
which makes it difficult to interpret target data.

Two types of visualization techniques are mainly em-
ployed in the paper: animation for visualizing dynamic
change of bug status and highlight for providing context in-
formation.

Animation is employed for visualizing the status of
bugs and relationship with others. Using animation can help
a user grasp target data within a short time. Another reason
why we employ animation is because it would be suitable
for secondary jobs like monitoring. By using animation, the
initiative of interaction is given to a system. As a user can
start monitoring by just watching a screen with less opera-
tions, it is expected to be suitable for a secondary job that
should be done while taking work break. Details are de-
scribed in Sect. 3.2.

Highlighting technique is employed for visualizing
context information. By combining the replay of part of the
last monitoring period, a user can recognize how the state
of bugs changed during a break. Details are described in
Sect. 3.3.

The proposed system consists of a data collection mod-
ule, a data management module, and a monitoring inter-
face. The data collection module continuously receives
emails about bug update information from multiple BTSs,
and extracts required information from contents of received
emails. Extracted data are sent to the data management
module, which organizes and stores bug update information.
The monitoring interface receives the data to be visualized
from the data management module. The data collection and
management modules are implemented with Python. The
interface is implemented as a Web application using Pro-
cessing, HTML, CSS, and JavaScript.

Figure 1 shows a screenshot of the monitoring inter-

Fig. 1 Screenshot of the proposed system.

face. The largest panel in the screenshot is a visualization
panel, in which relationship among bugs are visualized. The
detail of this panel is described in Sect. 3.2. The right-hand
panel shows the detailed information about the bug selected
in the visualization panel. The lower panel of the left-hand
is a control panel, which is used for various operations, such
as start / pause of monitoring, selection of dataset to be mon-
itored, and setting of filtering conditions. The visualization
panel is implemented as a Java applet with Processing, and
other parts are implemented with JavaScript.

3.2 Visualization of Bug Status

The status of a bug changes as noted in Sect. 2.2, which
leads to dynamic change of relationship among bugs. When
monitoring bug update information, it is important to grasp
such dynamic changes. The visualization panel visualizes
the status of bugs and those relationships with animation.

Let the time period for monitoring (called monitoring
period hereinafter) be [tstart, tend], i.e., bug update informa-
tion reported between this time period is visualized. Usu-
ally, tstart is set to the ending time of the last monitoring task,
and tend is set to the current time. Let tmonitor (∈ [tstart, tend])
be the time at which the status of bugs and those relation-
ships are visualized. When monitoring is started, the visu-
alization panel visualizes the relationship among bugs with
animation, by changing tmonitor from tstart toward tend. When
visualizing bug status at tmonitor, bugs newly reported at that
time are appeared on the left edge of the visualization panel.
The statuses of existing bugs are also updated. Details are
described below.

According to the discussion in Sect. 2.2, this paper fo-
cuses on the following three factors, which are important for
monitoring bug update information.

1. Status of a bug including update frequency and
progress toward fix.

2. Persons involved in a bug.
3. Relationship among bugs.

Regarding (1), each bug is represented as a node in the
visualization panel. The color of a node indicates the status
of the corresponding bug. Figure 2 shows the color assign-
ment, which is determined based on existing study [13] and



TAKAMA and KUROSAWA: VISUALIZATION SYSTEM FOR MONITORING BUG UPDATE INFORMATION
657

Fig. 2 Color assignment to bug status.

Fig. 3 Bi-cylindrical representation of nodes.

the color assignment commonly used for describing OSS
development information. The importance of a bug is repre-
sented by its node’s brightness: more important bug is rep-
resented as a brighter node.

A node is bi-cylindrical as shown in Fig. 3. It consists
of 3 layers: core, an inner circle, and an outer circle. The
layer between outer and inner circle is colored with faint red,
and that between inner circle and core is colored with red.
Although core is also colored with red, a blank is inserted
between core and inner circle. The difference between ra-
dius of inner circle and core represents the progress toward
fix, and the difference between radius of outer and inner cir-
cles represents its update frequency. Figure 3 shows nodes
of different status. The difference between radius of inner
circle and core is almost zero in Fig. 3 (a) and (b), while it is
relatively large in (c). Regarding difference between outer
and inner circle, the difference in Fig. 3 (a) is small, while
it is large in Fig. 3 (b) and (c). Therefore, a node shown in
Fig. 3 (a) indicates the corresponding bug is not updated fre-
quently, and thus little progress. A bug corresponding to
the node of Fig. 3 (b) is being updated frequently but little
progress. On the other hand, the node of Fig. 3 (c) indicates
the bug is also being updated frequently and going smoothly
toward fix.

Figure 4 shows an example of the status change of a
bug (ID:658741). Starting from “New” status (Fig. 4 (a)),
its status transits to “In Progress” (Fig. 4 (b)) and “Fixed”
(Fig. 4 (c)). However, its status is back to “New” as the bug
fix was incomplete (Fig. 4 (d)).

To visualize the persons involved in a bug, this paper
employs a swarm-like animation. According to the Gestalt
principle of common fate, objects moved in a synchronized
fashion are perceived as related by a human. The proposed
method lets nodes move toward similar directions if those
involved persons are similar.

When visualizing at tmonitor, a node newly appeared at
that time is assigned to left edge of the visualization panel,

Fig. 4 Status change of a bug.

and move to the right as time progresses. The position on
vertical axis are determined so that nodes appeared at the
same time cannot be overlapped each other. The angle θbi , a
bug bi’s moving direction, is determined as Eq. (1), where fi j

is the frequency of the person u j being involved in bi. The θuj
is the moving direction assigned to u j, which is determined
by applying SHA-256 (Secure Hash Algorithm 256-bit) to
some unique ID of u j, such as email address.

The velocity of bi (vi) is determined as Eq. (2).

θbi =

∑
j fi jθ

u
j

∑
j fi j

(1)

vi =
vx(si)

cos θbi
(2)

In Eq. (2), vx(si) is horizontal velocity, which is deter-
mined by si (status of bi). A bug with status of “Uncon-
firmed,” “New,” or “In progress” moves slow, and rejected
bug moves fast. A fixed bug has medium speed. This setting
allows unimportant bugs go outside the visualization panel
quickly.

Figure 5 illustrates how nodes form a swarm. When
the same persons are involved in several bugs, those bugs
have the same directions (Fig. 5 (a)). As time progresses,
when another person, of which direction is indicated as an
arrow pointing to upper right in Fig. 5 (b), is involved in 2
of those bugs, the direction becomes different from that of
the remaining bugs (Fig. 5 (c)). Relationship between bugs
is represented as an edge between those in the visualization
panel. In this paper, an edge is drawn between nodes having
some relationship, such as dependence and block relation-
ship. The information about related bugs is obtained from
BTS. However, it is difficult to find several groups of re-
lated bugs if related bugs are distributed over the panel, even
though those are connected by edges. In order to make re-
lated bugs form a cluster, the direction and velocity of a node



658
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

Fig. 5 Moving direction of nodes.

is modified as follows. From a set of bugs connected with
edges (denoted as S ), the following two bugs are selected.

• bp· · · A bug, of which the corresponding node is lo-
cated at the rightmost on the visualization panel in S .
• bv· · · A bug having the most serious status in S .

The order of serious status is “In Progress” (the most
serious), “New,” “Unconfirmed,” “Rejected,” and “Fixed,”
which is determined from developer’s viewpoint. If more
than one bug have the most serious status, the bug (node)
having the biggest inner circle among those is selected as
bv.

Let the position of a bug bi on the visualization panel
be xi. If the distance between nodes of bp and bi is equal
to or greater than the predefined threshold, the direction and
velocity of bi are modified by Eq. (3) and Eq. (4), respec-
tively. If the distance is less than the threshold, bi has the
same direction and velocity as bv. In Eq. (4), β > 1 is the
coefficient (it is set to 2.0 in the experiment in Sect. 4).

θbi = arctan(xp − xi) (3)

vi = βvv (4)

Figure 6 shows the formation of connected nodes. Five
nodes are connected in the figure, among them blue node
corresponds to bp, and red node corresponds to bv. While
connected nodes were initially distributed over visualization
panel (Fig. 6 (a)) because those appeared at different times,
those are gradually forming a cluster on the panel (Fig. 6 (b),
(c)). Showing related nodes forming a cluster can attract
user’s attention, which is expected to help users recognize
the group of related bugs and its evolution.

3.3 Visualization for Context Information

As most of OSS developers are supposed to check BTSs be-
tween intervals (work breaks) of their primary jobs, a mon-
itoring task inevitably involves breaks. It is supposed that
developers are interested in bugs, of which status has been

Fig. 6 Formation of connected nodes.

changed after the last monitoring period (i.e. while doing
primary jobs). For example, bugs reopened several times
are assumed to be serious [13]. In order to find such inter-
esting bugs efficiently, it is important to know the difference
between current situation and that of last monitoring period.
In other words, keeping context beyond breaks is important
for monitoring task.

From this viewpoint, this paper proposes the following
functions for providing context information.

• Highlighting interesting bugs.
• Replaying animation of part of the last monitoring pe-

riod.

The role of highlight function is to make interesting
bugs stand out. As mentioned above, this paper defines an
interesting bug as that of which status have been changed
after the last monitoring period. In order to highlight such
interesting bugs, this paper combines filtering function and
onion skin visualization.

For highlighting interesting bugs, those without any
updates after the last monitoring period are filtered out. In
the visualization panel, nodes of filtered out bugs are rep-
resented with minimal size. In Fig. 7 (a), all nodes except
lower-right one corresponds to filtered out bugs.

Figure 7 (b) shows onion-skin visualization, which is



TAKAMA and KUROSAWA: VISUALIZATION SYSTEM FOR MONITORING BUG UPDATE INFORMATION
659

Fig. 7 Visualization of context.

used for visualizing a trajectory indicating past positions
and status (color) of a bug. Nodes in trajectory part are
displayed with minimal size. This is applied to bugs with
one or more updates after last monitoring period. For ex-
ample, it is seen from Fig. 7 (b) that moving direction has
been changed twice, which means the change of involved
persons. The change of color from green to red means its
recent change of status from “Fixed” to “New.”

As noted in Sect. 3.2, tstart of monitoring period is usu-
ally set to ending timestamp of the last monitoring period.
Instead of that, when replaying part of the last monitoring
period ([t′start, t′end]), tstart is set to within it. Replaying part
of the last monitoring period is expected to be helpful for
users to recall the situation of the last monitoring period,
which would clarify the changes occurred after that. How-
ever, it would lead a user to misreading if a user confuses
last and current monitoring periods. In order to avoid such
confusion, border color of the visualization panel is changed
between last and current monitoring periods.

4. Experiment

4.1 Experimental Settings

An experiment is conducted to evaluate the effectiveness of
the proposed system for user’s monitoring task. Although
the proposed method employs several visualization tech-
niques, the experiment focuses on the effects of highlight-
ing function and replay on participants’ performance. Test
participants are asked to identify target bugs under a circum-
stance that simulates monitoring with breaks. In the exper-
iment, target bugs to be identified by test participants are
defined as those of which status are changed both in previ-
ous and target time periods. Focusing bugs, of which status
changed in previous time period, means that test participants
have to remind the monitoring context of the previous pe-
riod.

Twelve graduate / undergraduate students in Engineer-
ing took part in the experiment with the following proce-
dures.

1. Monitoring: Checks previous time period using the
proposed system.

2. Break: Types English sentences (note that all partici-
pants are Japanese).

3. Monitoring: Checks target time period and find one of
target bugs using the proposed system.

Table 1 Summary of datasets.

ID BTS Period # of nodes (target)
A Mozilla 2011.7.23-8.23 232(4)
B Mozilla 2011.4.28-5.28 201(1)

GNOME,
C Freedesktop, 2011.6.26-7.26 379(5)

Fedora, Ubuntu
D Freedesktop 2011.8.22-9.22 161(1)

Table 1 shows the used datasets, which are collected
from actual BTSs. A dataset A collects bug information
about Mozilla Gecko’s Core (components: Canvas:2D, Can-
vas:WebGL, SVG, Video/Audio), B collects those about
Plugins of the Core, C is about Evince, Poppler, and cairo. A
dataset D collects bug information about LibreOffice (Draw-
ing and Spreadsheet). The number of target bugs in each
dataset is also shown in Table 1.

Every dataset is divided into two time periods, such as
follows. In step 1, a participant can check the previous time
period only once.

• Target time period: The latest 24 hours.
• Previous time period: Other than target time period.

During a break (i.e. step 2), a participant engages in En-
glish type for 5 minutes, of which purpose is to simulate the
situation where a participant loses the context of monitoring
because of his/her primary job.

A test participant can finish step 3 when s/he can find
one of target bugs. In this step, following two settings are
considered regarding functions proposed in Sect. 3.3.

• Replay of part of previous time period: with or without
• Highlight (filtering and onion skin visualization): with

or without

In the condition with replay, tstart is set to 48 hours be-
fore target time period. Therefore, total time period to be
checked when using replay is 72 hours. With the combi-
nation of those two settings, 4 conditions are used in the
experiment. The combination of datasets and conditions as
well as its execution order are different from participant to
participant, which satisfies the following conditions.

• Each participant is asked to conduct the experiment
with all of 4 datasets by different conditions.
• Each dataset is analyzed 3 times by each condition.
• Each condition is executed 3 times in each execution

order (from the first to the 4th).

Table 2 shows combination of conditions and datasets
({A,B,C,D}) and the order for each participant. In the table,
‘R’ and ‘H’ indicate the replay and highlight function are
applied, respectively. Although there is the possibility that
the results of the experiment contains order effects, the re-
sult of the paper is preliminary, and further analysis is still
necessary in future.

In step 3, a participant is allowed to check (replay) tar-
get time period (and part of previous time period in case of
replay condition) any number of times until s/he can identify



660
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

Table 2 Combination / order of conditions and datasets.

Participants 1st 2nd 3rd 4th
1 A-R B C-RH D-H
2 A-RH B-H C D-R
3 A-H B-RH C-R D
4 A B-R C-H D-RH
5 D C-R B-H A-RH
6 D-R C B-RH A-H
7 D-RH C-H B A-R
8 D-H C-RH B-R A
9 D B-R C-H A-RH
10 D-R B C-RH A-H
11 D-RH B-H C A-R
12 D-H B-RH C-R A

Table 3 Frequency of checking data in step 3.

Without Highlight With Highlight
Participants No-replay Replay No-replay Replay

1 4 48* 2 1
2 3 1 5 2
3 3 5 5 2
4 9 5 2 2
5 32* 6 5 1
6 4 2 1 1
7 3 2 2 4
8 4 4 3 3
9 12 7 5 1

10 5 5 9 1
11 2 10 2 1
12 8 1 2 1

Mean 5.30 4.20 3.60 1.80
S.D. 3.10 2.71 2.29 0.98

a target bug.

4.2 Experimental Results

Table 3 shows the number of times participants checked data
in step 3. In every condition expect dataset A with replay,
all participants could identify a target bug. The participant
1 gave up before he could find any target bug from dataset
A with replay condition. It is also observed that one partici-
pant (participant 5) had difficulty in achieving task in dataset
D with no effect (i.e. without replay and highlight). In Ta-
ble 3, the cases where a participant failed or had difficulty
in achieving task are marked as *, which shows they checks
the data too many times compared with others. Regarding
these two cases as outliers, we analyze the result by exclud-
ing participants 1 and 5 in the rest of this subsection.

It is seen from Table 3 that frequency of checking data
tends to be small when replay and highlight function are
used. Table 4 is the result of two-way ANOVA for evaluat-
ing the effect of replay and highlight function, which shows
that the highlight function has a statistically-significant pos-
itive effect on reducing the frequency of checking data.

Table 5 shows time (seconds) spent on monitoring task
in step 3. The cases where a participant failed or had diffi-
culty in achieving task are marked as *. Table 6 shows the
result of two-way ANOVA for evaluating the effect of replay
and highlight function on monitoring time. Although no
statistically-significant effect is observed, monitoring time

Table 4 Effect of replay and highlight on frequency of checking data.
SS: sum of squares, df: degrees of freedom, MS: mean square.

SS df MS F-value P-value
Subject 56.23 9 6.25

A:Replay 21.03 1 21.03 3.426 0.0972
Error[AS] 55.23 9 6.14

B:Highlight 42.03 1 42.03 6.078 0.0358*
Error[BS] 62.23 9 6.91

AB 1.23 1 1.23 0.190 0.6732
Error[ABS] 58.03 9 6.45

Total 295.98 39

Table 5 Monitoring time (seconds) in step 3.

Without Highlight With Highlight
Participants No-replay Replay No-replay Replay

1 17 544* 6 21
2 12 6 43 40
3 13 37 34 26
4 130 100 10 16
5 212* 58 20 9
6 24 25 6 17
7 12 23 9 49
8 18 42 17 31
9 45 88 17 9
10 58 20 6 39
11 11 133 12 7
12 35 6 5 4

Mean 32.3 51.8 19.2 20.5
S.D. 34.3 40.4 13.4 14.7

Table 6 Effect of replay and highlight on monitoring time (seconds). SS:
sum of squares, df: degrees of freedom, MS: mean square.

SS df MS F-value P-value
Subject 7572.63 9 841.40

A:Replay 1113.03 1 1113.03 2.430 0.1535
Error[AS] 4122.23 9 458.03

B:Highlight 4862.03 1 4862.03 3.069 0.1137
Error[BS] 14257.23 9 1584.14

AB 855.63 1 855.63 1.257 0.6732
Error[ABS] 6125.63 9 680.63

Total 38908.38 39

tends to be short with highlight function. On the other hand,
monitoring time with using replay tends to be long, of which
the reason is that time period to be checked is 72 hours when
using replay, whereas that without replay is 24 hours only.
From the viewpoint of time required for viewing the data, it
takes about 3.6 seconds with using replay, and about 1.2 sec-
onds without it. However, Table 5 also shows that increase
of monitoring time can be suppressed by combining replay
with highlight function.

4.3 Analysis of Participants’ Behaviors

After the experiment, we asked the participants to answer
questionnaires regarding their impression about the func-
tions of filtering, onion skin visualization, and replay. This
subsection analyzes participants’ behaviors using the sys-
tem based on the results of questionnaires and log data of
the system.

Regarding filtering function, positive opinions were



TAKAMA and KUROSAWA: VISUALIZATION SYSTEM FOR MONITORING BUG UPDATE INFORMATION
661

obtained from 8 participants, such as follows.

• It makes it easy to see changes of node’s status.
• It is convenient when I want to check dense zone of

nodes.

On the other hand, one participant had a negative com-
ment that it is not necessary for performing this task.

Eleven participants had positive opinions for the onion
skin visualization, such as follows.

• Trajectory of a node makes it easy to watch the change
of its color.
• Showing both color and direction changes is attractive,

and useful for finding a node of which status is updated.

It is noted that the participant who had negative opinion
on filtering function had positive opinion on the onion skin
visualization. He said the onion skin visualization is use-
ful for examining status change of bugs during target time
period.

On the other hand, two participants had negative opin-
ions that it makes the visualization panel difficult to see
when onion skin visualization is applied to many nodes at
the same time.

Regarding the replay, 4 participants had positive opin-
ions, whereas 8 participants had negative opinions. An ex-
ample of positive opinion is that it is useful to find a node
frequently updated within previous monitoring period. Typ-
ical negative opinion, which is obtained from 5 participants,
is that it is not clear when entering into target time period
from previous time period. This opinion corresponds to the
fact that 4 participants regarded a bug of which status has
changed only in previous time period as a target bug under
replay setting. This problem could be solved with minor
modification, such as changing background color when en-
tering into target time period.

It was observed that participants’ behaviors during
monitoring task are modeled as the following process.

1. Find candidate nodes that might be target bugs.
2. Examine candidate nodes in detail.

When participants tried to find candidate nodes in
step1, they had to focus on small number of nodes from vast
amount of nodes displayed on the visualization panel, by
using some viewing strategies. As for the viewing strategy,
some participants divided their focused area on visualization
panel into several regions. For example, the participant 5 di-
vided the visualization panel into 4 regions, and focused on
one of those regions one by one. The participant 12 firstly
focused on the left edge of the visualization panel, and then
gradually moved his attention to the right part.

Both of filtering and onion skin visualization could also
help participants’ task in step1. When the status of a bug is
changed, the size of the corresponding node is drastically
changed by the filtering functions. Therefore participants
could easily notice such nodes. Trajectory of a node visual-
ized by onion skin visualization also makes it easy for par-
ticipants to find candidate nodes. Most of participants used

both or either of these functions. When they could utilize a
function, they had positive opinions to it.

Interestingly, the participants seldom moved mouse
cursor over nodes. The average number of unique nodes
they pointed until finding a target node is less than 9 for
every condition. This indicates the system has initiative of
interaction, which is one of our design policy as noted in
Sect. 3.1.

In step 2, the onion skin visualization was utilized by
most of the participants, which corresponds to the fact that
11 participants had positive opinions on it. When the onion
skin visualization could not be used, the participants had to
use replay for confirming the status change of a candidate
nodes, which increased both the frequency of checking data
and monitoring time. Although it required additional mon-
itoring time, replay function was useful especially when it
was used together with the highlight function, which is con-
firmed by the fact that 10 participants could find target bugs
by checking target data only once or twice as shown in Ta-
ble 3.

4.4 Discussion

As noted in Sect. 3.2, the proposed system aims to support
developers examining bug update information in terms of
bug status, involved persons, and relationship among bugs
within a short time period. Among them, the task of the
experiment in this section focuses on status change of bugs.
This subsection discusses other two factors. When we devel-
oped the system, we asked an OSS professional developer
and an evangelist in a company to use the system and to give
us comments. It was observed that when monitoring bug up-
date information, they checked involved persons. In order
to make it easy to focus on specific person, they suggested
that the function for filtering nodes with specified person.
Considering this comment, the filtering function of the pro-
posed system, which is described in Sect. 3.3, can specify a
person as one of filtering conditions. Conditions which can
be specified as filtering condition are involved person, sta-
tus, importance, dataset, keyword, and with/without update
during specified period. The last condition is also used for
highlighting function as noted in Sect. 3.3. Once bugs relat-
ing with specific person are found with filtering function, it
is easy to track those bugs based on moving direction.

Regarding relationship among bugs, edges were found
to be informative to them. Furthermore, they also suggested
the possibility of providing more information with an edge.
For example, the type of relationship between bugs such as
dependent and block relationship could be represented as
the color or width of an edge. Although the current version
of the system does not consider the type of relationship, it
would be possible to extend the system to represent more
information with edges. However, as providing more in-
formation could increase the cognitive load of a user [15],
feasibility study should be conducted in terms of trade-off
between information richness and cognitive load.



662
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

5. Conclusions

This paper proposed the concept of monitoring support for
utilizing text stream data, and an information visualization
system targeting OSS bug tracking systems. As the task
of monitoring text stream data inevitably involves breaks,
the proposed system employs the replay of part of the last
monitoring period and the function of highlighting interest-
ing bugs for providing users with context information. The
experiment with test participants was conducted using data
collected from actual BTSs, and the result shows the effec-
tiveness of the proposed system. Although the system is
designed for monitoring bug update information, the pro-
posed concept of visualization for supporting monitoring
tasks could be applied to various kinds of text stream data in-
cluding online news, BBS, and microblogs. Our future work
therefore includes development of monitoring support sys-
tems for such kinds of text stream data, by introducing ad-
ditional processing such as topic extraction and other kinds
of visualization techniques such as tag cloud.

Acknowledgments

This work was supported in part by a grant from National
Institute of Informatics.

References

[1] A. Sarma, L. Maccherone, P. Wagstorm, and J. Herbsleb, “Tesser-
act: Interactive visual exploration of socio-technical relationships in
software development,” 31st International Conference on Software
Engineering (ICSE’09), pp.22–33, 2009.

[2] P. Knab, B. Fluri, H.C. Gall, and M. Pinzger, “Interactive views for
analyzing problem reports,” ICSM2009, pp.527–530, 2009.

[3] M.A. Hearst and J.O. Pedersen, “Reexamining the cluster hypoth-
esis: Scatter/gather on retrieval results,” Proc. SIGIR96, pp.76–84,
1996.

[4] L. Bartram, J. Rodgers, and K. Muise, “Chasing the megawatt:
Visualization for sustainable living,” IEEE Comput. Graph. Appl.,
vol.30, no.3, pp.8–14, 2010.

[5] C. Parnin and C. Gorg, “Design guidelines for ambient software
visualization in the workspace,” 4th IEEE International Workshop
on Visualizing Software for Understanding and Analysis, pp.18–25,
2007.

[6] C. Plaue, T. Miller, and J. Stasko, “Is a picture worth a thousand
words? An evaluation of information awareness displays,” Proc.
Graphics Interface, pp.117–126, 2004.

[7] T. Skog, S. Ljungblad, and L.E. Holmquist, “Between aesthetics
and utility: Designing ambient information visualizations,” INFO-
VIS’03, pp.233–240, 2003.

[8] Y. Takama and T. Kurosawa, “Visualization for monitoring sup-
port and its application to bug tracking system,” ISCIIA2012, no.18,
2012.

[9] S. Hupfer, L. -T. Cheng, S. Ross, and J. Patterson, “Introduc-
ing collaboration into an application development environment,”
CSCW’04, pp.21–24, 2004.

[10] J. Froehlich and P. Dourish, “Unifying artifacts and activities in a
visual tool for distributed software development teams,” ICSE’04,
pp.387–396, 2004.

[11] R.M. Ripley, A. Sarma, and A. van der Hoek, “A visualization for

software project awareness and evolution,” VISSOFT’07, pp.137–
144, 2007.

[12] M. Ogawa and K.L. Ma, “Code swarm: A design study in organic
software visualization,” IEEE Trans. Vis. Comput. Graphics, vol.15,
no.6, pp.1097–1104, 2009.

[13] M. D’Ambros, M. Lanza, and M. Pinzger, “ “A Bug’s Life” visual-
izing a bug database,” VISSOFT’07, pp.113–120, 2007.

[14] A. Hora, N. Anquetil, S. Ducasse, M. Bhatti, C. Couto, M.T. Valente,
and J. Martins, “Bug maps: A tool for the visual exploration and
analysis of bugs,” CSMR2012, pp.523–526, 2012.

[15] R. Mazza, “31. Memory,” in Introduction to Information Visualiza-
tion, pp.33–35, Springer-Verlag, 2009.

Yasufumi Takama received the B. S. De-
gree, M.S. Degree, and Dr. Eng. Degree from
University of Tokyo, Japan in 1994, 1996, and
1999, respectively. From 1999 to 2002 he was
a Research Associate at Interdisciplinary Grad-
uate School of Science and Engineering, Tokyo
Institute of Technology in Japan. Since 2005,
he has been an Associate Professor at Faculty of
System Design, Tokyo Metropolitan University,
Japan. His current research interest includes in-
formation visualization, data mining, and Web

intelligence. He is a member of IEEE, JSAI (Japanese Society of Artificial
Intelligence), IPSJ (Information Processing Society of Japan).

Takeshi Kurosawa received B. S. Degree
and M. S. Degree from Tokyo Metropolitan Uni-
versity, Japan in 2009 and 2011, respectively.
Since 2011, he has been working at Mitsue-
Links Co., Ltd., Tokyo, Japan. His research
interest includes information visualization and
software development support systems.


