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Discovery of the Optimal Trust Inference Path for Online Social
Networks
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SUMMARY Analysis of the trust network proves beneficial to the users
in Online Social Networks (OSNs) for decision-making. Since the con-
struction of trust propagation paths connecting unfamiliar users is the pre-
ceding work of trust inference, it is vital to find appropriate trust propaga-
tion paths. Most of existing trust network discovery algorithms apply the
classical exhausted searching approaches with low efficiency and/or just
take into account the factors relating to trust without regard to the role of
distrust relationships. To solve the issues, we first analyze the trust dis-
counting operators with structure balance theory and validate the distribu-
tion characteristics of balanced transitive triads. Then, Maximum Indirect
Referral Belief Search (MIRBS) and Minimum Indirect Functional Uncer-
tainty Search (MIFUS) strategies are proposed and followed by the Optimal
Trust Inference Path Search (OTIPS) algorithms accordingly on the basis
of the bidirectional versions of Dijkstra’s algorithm. The comparative ex-
periments of path search, trust inference and edge sign prediction are per-
formed on the Epinions data set. The experimental results show that the
proposed algorithm can find the trust inference path with better efficiency
and the found paths have better applicability to trust inference.
key words: structural balance, subjective logic, trust inference, pathfind-
ing algorithm, edge sign prediction, online social network

1. Introduction

The popularity of “Web 2.0” vastly boosts the information
sharing and collaboration among users and leads to the de-
velopment of online communities. Billions of people par-
ticipate in the web-based Online Social Networks (OSNs),
such as Facebook, Google Plus and Linked In, for variety
of activities. Trust plays an important role in some OSNs,
for example Epinions (epinions.com). The Web of Trust in
Epinions makes the consumer able to seek out people who
share similar interests and deserve his/her trust so as to de-
liver reliable and useful recommendations. In these appli-
cations, trust is the key factor during the users’ decision-
making process and how to evaluate the trustworthiness of
the unfamiliar target user or item emerges as a question.

Trust inference based on trust transitivity is widely
used to build trust among unfamiliar users. Following
Jøsang’s description of trust networks [1], trust inference is
based on the trust transitivity for the specific consistent trust
scope in the trust propagation path. The expectation of the
ability to recommend a competent service provider and the
ability to be a competent service provider are distinguished
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Fig. 1 Trust network connecting the source and target participants.

and denoted as referral trust RT and functional trust FT .
When constructing the trust network connecting for a spe-
cific trust scope (Fig. 1), all participants are represented as
vertices (e.g. A, B, . . . , J) and the direct trust relationships
(e.g. RTA,B, RTB,I , FTI,J) are represented as edges. A trust
propagation path is a path connecting the source participant
A to the target participant J in the graph, which is composed
of edges on referral trust except for the last edge on func-
tional trust. By applying the propagation paths with trust
discounting and fusion operations, trust inference can derive
the source participant’s indirect functional trust about the
target participant. In the large-scale online social networks,
the amount of such paths would be huge, which obviously
burdens the computation cost of the pathfinding, and only
part of trust propagation paths are used for trust inference.

As the preceding work of the trust inference, it is very
important to find appropriate trust inference paths. Intu-
itively, the paths with less hops are preferable and people
also prefer to get advices from the ones they trust more. Ac-
cording to the principles such as “the enemy of my enemy
is my friend”, we can even get valuable information from
distrusted people. These factors are all important for trust
propagation path discovering. Without regard to the fusion
of paths in this paper, we focus on the subjective logic based
trust inference [1] with the single optimal trust inference
path to figure out: 1) how to find the trust inference path effi-
ciently in large-scale network; 2) what is the optimal search
strategy for trust inference path search. However, most of
the existing trust network discovery algorithms [1]–[4] ap-
ply classical exhausted brute-force path search algorithms
(such as Breadth First Search and Depth First Search), ig-
noring the characteristics of trust networks. Many factors
relating to trust relationships (such as belief [5], similari-
ties [6] and intimacy [7]) are considered in some latest work,
but the role of distrust relationships is still neglected. In
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fact, based on the structure balance theory, we can also uti-
lize distrust relationships in the optimal trust inference path
search.

Our contributions include 1) the distribution character-
istics of balanced transitive triads are validated by statistical
analysis, which can be used to better apply the structure bal-
ance theory; 2) optimal trust inference path search strategies
MIRBS and MIFUS are proposed and the optimal trust in-
ference path search boils down to a optimization problem;
3) the OTIPS algorithms for the two search strategies are
proposed and followed by the proof of optimality; 4) trust
inference based edge sign prediction experiment is carried
out on real data set, which not only validates the proposed
algorithms but also the edge sign prediction method.

The remainder of the paper proceeds as follows. The
related work on trust network discovery are illustrated in
Sect. 2. Then, the background about trust network are de-
tailed in Sect. 3. We propose the OTIPS algorithms for the
MIRBS and MIFUS strategies in Sect. 4. Comparative ex-
periments on the Epinions data set are carried out to demon-
strate the superiority of the proposed algorithms in Sect. 5.
Section 6 gives the conclusions and future work.

2. Related Work

The research focusing on the trust network discovery and
path search strategies attracts much attention. Jøsang
et al. [1] determined the possible directed paths between
source and target participants by the Depth First path dis-
covering algorithm and provided a method that simplifies
complex trust networks to Directed Series-Parallel Graphs.
While in [2], the Breadth First Search method is applied to
find all the trust paths within the minimum depth for trust
evaluation and the maximum search depth is set to 7 ac-
cording to the small world theory. TidalTrust [3] first per-
forms a modified Breadth First Search to find the trust in-
ference paths with the minimum depth and record the trust
strength of these paths to the sink’s predecessors. Then,
the trust threshold is determined and the paths whose trust
strength are equal or greater than it will be used for trust in-
ference calculation. Hang et al. [4] proposed the CertProp
trust propagation model with three path search strategies for
the evaluation of trust propagation, including the shortest
strategy which finds the shortest paths, fixed strategy which
searches all paths within a specified depth and selection
strategy which yields the most trusted paths to each witness
found by fixed strategy. However, the selection strategy can
not guarantee that the selected witness is the most trustwor-
thy globally. TidalTrust and CertProp(sel.) are representa-
tive classical exhausted searching approaches and selected
as comparison partners in our experiments.

TrustWalker [5] is a random walk model which com-
bines the trust-based and the collaborative filtering ap-
proaches for recommendation. Repeated random walks
which take into account the item similarities and path
lengths are performed to explore the social network and
evaluate the recommendations. Liu et al. [6], [7] focused on

the optimal social trust path selection with multiple end-to-
end QoT constraints (trust, social intimacy and role impact)
and modeled it as the classical Multi-Constrained Optimal
Path (MCOP) selection problem. They proposed a Monte
Carlo method based approximation algorithm (MONTE K)
in [6] and a Heuristic Social Context-Aware trust Network
discovery algorithm (H-SCAN) in [7] based on the K-Best-
First Search (KBFS) method [8]. The experimental results
in their latest work [7] show that the proposed algorithm
outperforms the Time-to-Live Breadth First Search [9], Ran-
dom Walk Search [10] and High Degree Search [11]. Thus,
H-SCAN is also selected as our comparison partner.

However, most existing trust path search algorithms
just apply classical exhausted brute-force search approaches
and take into account basic topological characteristics such
as out degrees or path length. Although the factors relating
to trust, social intimacy and role impact are considered in
some trust path search methods, the effect of distrust rela-
tionships, especially the valuable information deduced by
distrust relationships, is still neglected in these methods,
which may lead to smaller solution spaces.

3. Background

3.1 Notions and Notations for Trust Network

Trust networks are networks in which users express their
trust opinions about other users. Given a specific trust scope,
we denote this network by a directed graph G = (V, E) and
follow the notions and notations in subjective logic [12]. V
is the set of vertices that represent participants and directed
edges E represent the trust relationships among them. One
participant’s (e.g. vA ∈ V) subjective opinion about another
(e.g. vB ∈ V) can be noted as ωA

B = (bA
B, d

A
B, u

A
B, a

A
B) which

associates with one trust type σ ∈ {re f erral, f unctional},
where b (belief ) represents the belief mass in support of vB
being competent, d (disbelief ) represents the belief mass in
support of vB being incompetent and u (uncertainty) rep-
resents the amount of uncommitted belief mass. They can
be obtained by bijections bA

B = rA
B/(2 + rA

B + sA
B), dA

B =

sA
B/(2 + rA

B + sA
B) and uA

B = 2/(2 + rA
B + sA

B), where rA
B and

sA
B are the numbers of vA’s positive and negative observa-

tions about vB. The total number of observations can be
noted as tA

B = rA
B + sA

B and the certainty can be noted as
cA

B = bA
B + dA

B. Obviously, b, d, u ∈ [0, 1] and b + d + u = 1.
The base rate parameter a is the priori probability in the
absence of committed belief mass and used for computing
an opinion’s expectation when there is no evidence. The
probability expectation of the opinion can be represented by
E(ωA

B) = bA
B + aA

B · uA
B.

Furthermore, each directed edge has a sign sign ∈
{1,−1}, where edges with 1 mean positive relations and
edges with −1 mean negative ones. So, E can be denoted
as {eσvA→vB = (ωA

B, σ, sign)|σ ∈ {re f erral, f unctional}, sign ∈
{1,−1}, vA, vB ∈ V}. Moreover, vA is called a predecessor
of vB and the predecessors of vB is denoted as pre(vB) =
{vX |eσvX→vB ∈ E}. vB is called a successor of vA and the suc-
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Fig. 2 Undirected signed triads.

Fig. 3 Edge sign prediction cases in transitive triads.

cessors of vA is denoted as suc(vA) = {vX |eσvA→vX ∈ E}.

3.2 Structure Balance in Online Social Network

The structure balance theory [13], [14] inspires novel per-
spectives on the social network analysis. For the four pos-
sibilities on three individuals shown in Fig. 2, the triangles
with one or three pluses are denoted as balanced triads (T3

and T1) and the ones with zero or two pluses are denoted
as unbalanced triads (T2 and T0). This theory considers
that balanced triads are more plausible and prevalent than
the unbalanced triads. Leskovec et al. [15] investigated the
balanced and unbalanced triads in three widely-used social
sites: Epinions, Slashdot and Wikipedia. The statistics show
that the balanced triads dominate in the social networks and
it is feasible to apply the structure balance theory to on-
line social networks. He further extended the triangles to 16
cases (t1 − t16) in directed graphs. For ease of description,
the triad in which there is a vertex that has two predeces-
sors is denoted as transitive triad. In the transitive triad, the
node that has one predecessor is the transitive vertex. In this
paper, we only focus on the transitive triads t1, t2, t5 and t6
(see Fig. 3), in which the recommender can be regarded as
the transitive vertex. Because they are more consistent with
the trust transitivity characteristics than the rest cases.

As shown in Fig. 3, we can derive A’s relationship with
X by the recommender B. According to the structure bal-
ance theory, the dashed relation in t1 can be derived as a
positive relation, corresponding with the principle 1) “the
friend of my friend is also my friend”. The rest cases corre-
spond with the principles 2) “the enemy of my friend is my
enemy”, 3) “the friend of my enemy is my enemy” and 4)
“the enemy of my enemy is my friend” respectively.

3.3 Trust Inference and Trust Discounting Operators

Trust inference based on trust transitivity is a common
method for trust evaluation. Given an unfamiliar user pair
(e.g. v1 and vn), we can infer v1’s subjective opinion about
vn by applying trust discounting operations to the selected
trust propagation path (e.g. v1 → v2 → . . . → vn) by
ω1:...:n−1

n = ω1
2 ⊗ ω2

3 ⊗ . . . ⊗ ωn−1
n , where ⊗ denotes the trust

discounting operator. Different definitions of such operators

such as the Uncertainty Favoring Discounting operator and
Opposite Belief Favoring Discounting operator in [12] and
the Concatenation operator in [4] are introduced. We will
analyze these operators with structure balance principles.

Definition 1. Uncertainty favoring discounting
Let A, B and X be three participants, the opinions of A and
B about the competence of B and X be expressed as ωA

B =

(bA
B, d

A
B, u

A
B, a

A
B) and ωB

X = (bB
X , d

B
X , u

B
X , a

B
X) respectively, the

uncertainty favoring discounted opinion of A on X can be
denoted as ωA:B

X = ωA
B ⊗1 ω

B
X = (bA:B

X , d
A:B
X , u

A:B
X , a

A:B
X ) that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

bA:B
X = bA

BbB
X

dA:B
X = bA

BdB
X

uA:B
X = dA

B + uA
B + bA

BuB
X

aA:B
X = aB

X

In this trust discounting, A accepts what B believes (bB
X)

and disbelieves (dB
X) to the extent that A believes B (bA

B).
The rest are all taken as uncertainty. This common situation
corresponds to the structure balance principles 1) and 2).

Definition 2. Opposite belief favoring discounting
Given three participants A, B and X as previously described,
the opposite belief favoring discounted opinion can be de-
noted as ωA:B

X = ωA
B ⊗2 ω

B
X = (bA:B

X , d
A:B
X , u

A:B
X , a

A:B
X ) that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

bA:B
X = bA

BbB
X + dA

BdB
X

dA:B
X = bA

BdB
X + dA

BbB
X

uA:B
X = uA

B + (bA
B + dA

B)uB
X

aA:B
X = aB

X

The operator ⊗2 takes into account that B may recom-
mend the opposite of his real opinion about the truth value
of the third participant. Besides discounting B’s belief (bB

X)
and disbelief (dB

X) by the extent A believes B (bA
B), we can

further deduce A’s belief and disbelief about X as the op-
posite of B’s belief and disbelief about X to the extent A
disbelieves B (dA

B). This situation comprehensively covers
all the four structure balance principles.

Definition 3. Concatenation
Given three participants A, B and X as previously described,
the concatenation operator discounted opinion can be de-
noted as ωA:B

X = ωA
B ⊗3 ω

B
X = (bA:B

X , d
A:B
X , u

A:B
X , a

A:B
X ) that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

bA:B
X = bA

BrB
X/(b

A
BrB

X + bA
BsB

X + 2)

dA:B
X = bA

BsB
X/(b

A
BrB

X + bA
BsB

X + 2)

uA:B
X = 2/(bA

BrB
X + bA

BsB
X + 2)

aA:B
X = aB

X

The operator ⊗3 is similar to operator ⊗1, which also
corresponds to the structure balance principles 1) and 2).
The difference is that it discounts B’s observations on X (rB

X
and sB

X) other than B’s belief and disbelief on X (bB
X and dB

X)
by A’s belief on B (bA

B).
Suppose that A has 18 observations about B (rA

B = 9
and sA

B = 9) and B also has 18 observations about X (rB
X = 2
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and sB
X = 16), we can get ωA

B = (0.45, 0.45, 0.1, 0.5) and
ωB

X = (0.1, 0.8, 0.1, 0.5). The deduced opinion ωA:B
X by

the previous three operators will be (0.045, 0.36, 0.595, 0.5),
(0.405, 0.405, 0.19, 0.5) and (0.089, 0.713, 0.198, 0.5) re-
spectively. In this example, A’s observations about B have
high conflicts, while B’s observations about X are over-
whelmingly negative. The deduced opinions by ⊗1 and ⊗3

show that A tends to distrust X as B distrusts X (bA:B
X < dA:B

X ,
bB

X < dB
X). While, the deduced opinion by ⊗2 shows that A

also has conflict belief and disbelief about X as A has con-
flict belief and disbelief about B (bA:B

X = dA:B
X , bA

B = dA
B).

Unlike operators ⊗1 and ⊗3 which just use A’s belief about
B for discounting, ⊗2 additionally takes into account A’s
disbelief about B, which has a comprehensive utilization of
structure balance principles. Thus, we will further study the
characteristics of ⊗2 and appropriately apply it to the trust
inference path search.

4. Optimal Trust Inference Path Search

In this section, we firstly analyze the characteristics of bal-
anced trust discounting operator and validate of the relation-
ship between balanced transitive triad distribution and edge
uncertainties. The purpose is to help find the trust infer-
ence path that goes through balanced triads and appropri-
ately apply the balanced trust discounting operator to the
path. Then, the optimal trust inference path search strategies
MIRBS and MIFUS are detailed and followed by formal
problem descriptions. Finally, we propose two OTIPS al-
gorithm variants for the two strategies and analyze the com-
putation complexity.

4.1 Preliminary Work

In order to predict the signed trust relationship with inferred
indirect subjective opinion, we define the signum function
that maps subjective opinion to edge sign:

Definition 4. Signum function for subjective opinion

sgn(ω) =

{
1 E(ω) > sthresh

−1 E(ω) < sthresh

where the sign threshold sthresh is set by experience to adjust
the mapping. When E(ω) = sthresh, the sign is randomly
picked from {1,-1}.

The expectation E(ωA
B) ranges from [0, 1] and it is in-

tuitive to set the sthresh to 0.5. If E(ωA
B) approaches to 1, it

means that A tends to expect B to behave positively and this
edge sign is deduced as positive, and vice versa.

Definition 5. Balanced trust discounting operator
Given ωA:B

X = ωA
B ⊗ωB

X, E(ωA
B) � sthresh and E(ωB

X) � sthresh.
If sgn(ωA:B

X )= sgn(ωA
B)·sgn(ωB

X), then ⊗ is called a balanced
trust discounting operator for sign(ω).

This definition defines the trust discounting operators
which follow the edge sign prediction cases t1, t2, t5 and t6

of balanced triads (Sect. 3.2), where the predicted edge sign
equals to the product of the other two edge signs. ⊗2 is a
balanced trust discounting operator under specific premises.

Theorem 1. Given ωA:B
X = ωA

B ⊗2 ω
B
X, if the sign threshold

sthresh and the base rates aA
B,aB

X are set to 0.5, then ⊗2 is a
balanced trust discounting operator for sgn(ω).

Proof. See the Appendix �

Given a trust inference path connecting the unfamil-
iar source participant v1 and target participant vn and sup-
pose that all triads along this path are balanced, we have
two methods to predict the sign of the trust relationship be-
tween them. The first method is to infer it by the signs
of the triangles with structure balance theory according to
Fig. 3. The second one is to compute sgn(ω1:...:n−1

n ) where
ω1:...:n−1

n = ω1
2 ⊗2 ω

2
3 . . . ⊗2 ω

n−1
n under the premise that the

sign threshold and the base rates are set to 0.5. According
to Definition 5 and Theorem 1, the results obtained by the
two methods are the same. We will use the latter method to
predict the sign of the trust relations in this paper.

Definition 6. Opposite opinion operator
Given the opinion ωA

B = (bA
B, d

A
B, u

A
B, a

A
B), the opposite opin-

ion ω̄A
B is defined as:

ω̄A
B = (dA

B, b
A
B, u

A
B, 1 − aA

B)

where − is the opposite opinion operator.

Theorem 2. GivenωA:B
X = ωA

B⊗2ω
B
X, sign threshold sthresh =

0.5 and base rates aA
B = aB

X = 0.5, then ωA:B
X = ω̄A

B ⊗2 ω̄
B
X.

The proof is obvious and not detailed. Given that two
recommenders B and B′ have opposite opinions of the tar-
get participant X on direct functional trust and the source
participant A’s direct opinions of B and B′ on referral trust
are also opposite, we can choose either path because the in-
ferred opinions on the target participant by the two paths are
the same according to Theorem 2, without having to con-
sider A’s beliefs about B or B′ as common sense.

4.2 Distribution Characters of Balanced Transitive Triads

The directed triads in real social networks are not all bal-
anced as previously assumed. Thus, it is important to study
the distribution characters of balanced transitive triads to ap-
propriately apply balanced trust discounting operator.

We argue that the existence of unbalanced triads is due
to the lack of acquaintance between the participants. The
certainty of subjective opinion (i.e. 1 − u) corresponds to
this acquaintance. So, we investigate the relationship be-
tween the distributions of the balanced transitive triads and
the uncertainties of the triad edges. 20000 vertices are ran-
domly picked from the Epinions data set in [16]. By taking
each picked vertex as a transitive vertex, we record the un-
certainties of the edges pointing to and from the transitive
vertex, and count the numbers of the corresponding transi-
tive triads and balanced transitive triads. Finally, the distri-
bution of the number of transitive triads and the distribution
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Fig. 4 Distribution of the number of transitive triads versus edge uncer-
tainties for t1, t2, t5 and t6.

Fig. 5 Distribution of BTTP versus edge uncertainties for t1, t2, t5 and
t6.

of Balanced Transitive Triad Percentage (BTTP, proportion
of balanced transitive triads in total transitive triads) versus
edge uncertainties are illustrated in Figs. 4, 5 and Table 1.

Figure 4 shows that, for all the four cases, there are less
transitive triads when the edges linking the transitive vertex
have less uncertainties. While in Fig. 5, the t1 case shows
that the occurrence probabilities of balanced triads are al-
most high, ignoring the uncertainties of the edges. For the
rest three cases, the occurrence probability of balanced tri-
ads increases as the uncertainties of the edges decreases in
general, especially obvious for t6. For the t2 and t5, the un-
certainties of negative edges have a more obvious influence
on the occurrence probability of balanced triads than posi-
tive edges. In conclusion, uncertainties of edges linking the
transitive vertex apparently affect the distribution of BTTP
for t1, t2, t5 and t6.

The triads statistics in Table 1 show that the number
of balanced triads are close to the number of unbalanced
triads for t2, t5 and t6 case triads. Without any priori knowl-
edge, the trust discounting operators previously mentioned

are facing the misusage of structure balance principles when
dealing with t2, t5 and t6 case triads, because the triad may
be unbalanced at the probability nearly 50%. So, if we can
find the trust inference path along which the uncertainties of
the edges are as low as possible, the path will go through as
many balanced triads as possible and the trust inference by
trust discounting operations will be more accurate.

4.3 Trust Inference Path Search Strategies

There may be many trust propagation paths connecting the
source participant and the target participant in the trust net-
work. In order to find the optimal one for trust inference, we
first need to consider what the optimal trust inference path
should be and determine the search strategy.

4.3.1 Maximum Indirect Referral Belief Search

Trustworthy recommenders can provide reliable first-hand
information about the target participant or reliable recom-
mendation about other recommenders. In this strategy, from
all the recommenders who have direct experience with the
target participant, we find out the path which connects to the
one whose inferred indirect opinion on referral trust has the
maximum belief. Considering about the computation of be-
lief, the operators ⊗1 and ⊗3 corresponding with t1 and t2 are
applicable for path search and ⊗1 is applied in this paper. It
is worth mentioning that the picked recommender with the
maximum referral belief may lack observations about the
target. TidalTrust and CertProp(Sel.) share the similar strat-
egy but perform different computation criteria.

4.3.2 Minimum Indirect Functional Uncertainty Search

Based on the structure balance theory, we can also get valu-
able information from the recommenders with high disbe-
lief. Furthermore, the inferred functional trust with least un-
certainty can provide as much knowledge about the target as
possible. In this strategy, we try to find the path connecting
to the target participant with the minimum indirect uncer-
tainty on functional trust. Given the example at the end of
Sect. 4.1, we would choose the path connecting to the one
with greater belief on referral trust for MIRBS strategy. But
the two paths are equally important for this strategy because
the two paths are with the same uncertainty on functional
trust. This strategy tries to minimize the indirect uncertainty
along the trust inference path. In consideration of the rela-
tionship between balanced transitive triads and edge uncer-
tainties, it will go through as many balanced transitive triads
as possible. So, the balanced trust discounting operator ⊗2

is applicable for path search with this strategy.

4.4 Problem Descriptions

Considering the directed graph G = (V, E) described in
Sect. 3, the source participant vS and target participant vT ,
we need to find the optimal trust inference path connecting
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Table 1 Transitive triads statistics.

Triad Type Number of Transitive Triads Proportion of Transitive Triads Number of Balanced Transitive Triads Total BTTP

t1 371,755 90.73% 367,537 98.87%
t2 10,441 2.55% 5,085 48.7%
t5 24,220 5.91% 14,179 58.54%
t6 3,323 0.81% 1,471 44.27%
Total 409,739 100% 388,272

them. Given a connecting path pathi which can be noted
as [v(i,1), v(i,2), . . . , v(i,ni)], where ni is the number of vertices
along pathi, v(i,1) = vS , v(i,ni) = vT and 1 ≤ i ≤ |pathi|, the
inferred vS ’s opinion about vT on functional trust would be
ω(i,1):...:(i,ni−1)

(i,ni)
. The first element in the round bracket denotes

the index of path and the second element denotes the index
of vertex along this path.

For the MIRBS strategy, the optimal trust inference
path among all the connecting paths is the path pathk with
the maximum indirect referral belief b(k,1):...:(k,nk−2)

(k,nk−1) . The
problem can be formally described as to find the pathk that

b(k,1):...:(k,nk−2)
(k,nk−1) = maxpathi {b(i,1):...:(i,ni−2)

(i,ni−1) }
where 1 ≤ k ≤ |pathi| and b(i,1):...:(i,ni−2)

(i,ni−1) can be obtained by

ω(i,1):...:(i,ni−2)
(i,ni−1) =ω(i,1)

(i,2) ⊗1 ω
(i,2)
(i,3)⊗1. . .⊗1ω

(i,ni−2)
(i,ni−1) with all hops on

referral trust.
For MIFUS, the optimal path is the path pathk with the

minimum indirect functional uncertainty u(k,1):...:(k,nk−1)
(k,nk) . The

problem can be formally described as to find the pathk that

u(k,1):...:(k,nk−1)
(k,nk) = minpathi {u(i,1):...:(i,ni−1)

(i,ni)
}

where 1 ≤ k ≤ |pathi| and u(i,1):...:(i,ni−1)
(i,ni)

can be obtained by

ω(i,1):...:(i,ni−1)
(i,ni)

= ω(i,1)
(i,2) ⊗2 ω

(i,2)
(i,3) ⊗2 . . . ⊗2 ω

(i,ni−1)
(i,ni)

with the last

hop ω(i,ni−1)
(i,ni)

on functional trust and former hops on referral
trust.

4.5 Optimal Trust Inference Path Search Algorithm

An intuitional approach to solve the above optimization
problem is graph search. Unlike to the fundamental point-
to-point shortest path problem (the P2P problem) [17], the
arcs in trust networks are represented as subjective opinions
with belief, disbelief and uncertainty and the trust transitiv-
ity is reflected by trust discounting operators. We will trans-
fer the optimal trust inference path search problem to a P2P
problem by appropriate modifications. Since bidirectional
shortest path algorithms tend to scan fewer vertices than uni-
directional ones [17], the idea of bidirectional search is ap-
plied to face the challenge of large-scaleness of online social
network.

Suppose that the path in the forward search from vS to
arbitrary vi is [vS , . . . , vi] and, for ease of description, noted
as [v1, v2, . . . , vm], v1 = vS and vm = vi. Similarly, the path in
the reverse search is [vi, . . . , vT ], noted as [v1, v2, . . . , vn], v1=
vi and vn=vT . m and n are the numbers of the vertices along
the paths. The distance functions for forward search and
reverse search according to MIRBS strategy can be defined

as:

d f (vi) = d f (vm) =

{
1 m = 1

b1:...:m−1
m else

dr(vi) = dr(v1) =

{
1 n ≤ 2

b1:...:n−2
n−1 else

Obviously, d f (vm) = d f (vm−1) · bm−1
m when m > 1.

The distance functions of forward search and reverse
search for MIFUS strategy can be defined as:

d f (vi) = d f (vm) =

{
0 m = 1

u1:...:m−1
m else

dr(vi) = dr(v1) =

{
0 n = 1

u1:...:n−1
n else

Here, d f (vm) = d f (vm−1)+um−1
m −d f (vm−1) ·um−1

m when m > 1.
Based on the bidirectional versions of Dijkstra’s algo-

rithm in [18], we transfer the path discovery problem to P2P
problem by applying the operators ⊗1 and ⊗2 with focuses
on the distance defined with referral belief and functional
uncertainty and propose the OTIPS algorithms for the two
strategies respectively. The proposed algorithms alternate
between the forward and reverse scanning which start from
vS and vT respectively, each maintaining its own set of dis-
tance labels. The algorithm for MIRBS maintains the opti-
mal path found so far and the corresponding deduced refer-
ral belief μ (initialized as μ = 0) and updates them once a
better path is found. Here, a better path is a path with higher
deduced referral belief. When an arc evk→vm being relaxed
by the forward search and vm has been labeled by the re-
verse search, if μ < d f (vm) · dr(vm), the algorithm updates
μ and set the middle vertex to vm. Similar updates are also
performed in the reverse search. When the possible deduced
referral belief d f (v f ) · dr(vr) is no greater than μ, the algo-
rithm terminates and returns the optimal path accordingly,
where v f and vr are the vertices with the maximum distance
label in the forward and reverse search.

Similarly, the algorithm for MIFUS maintains func-
tional uncertainty of the optimal path found so far as μ,
which is initialized as μ = ∞. When the arc evk→vm being
relaxed, if μ > d f (vm)+dr(vm)−d f (vm) ·dr(vm), the algorithm
updates μ and sets the middle vertex to vm. When the possi-
ble deduced functional uncertainty df (v f ) + dr(vr) − d f (v f ) ·
dr(vr) is no less than μ, the algorithm terminates and returns
the optimal path accordingly, where v f and vr are with the
minimum distance labels in the forward and reverse search.

Given space limitations, only the OTIPS algorithm for
the MIFUS strategy is detailed in Fig. 6. Furthermore, the
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Fig. 6 The OTIPS algorithm for MIFUS strategy.

restrictions on trust types are omitted to simplify the algo-
rithm description. There may be multiple optimal paths with
the same deduced referral belief or functional uncertainty,
only the optimal path found first is returned.

In the worst case, the bidirectional Dijkstra’s search al-
gorithm degrades into the conventional unidirectional Dijk-
stra’s search algorithm. If we note the branching factor as
θ, the deduced referral belief as b and the minimum belief
in edges as m, the hops of the found path would be logmb.
Thus, the worst-case time complexity of the OTIPS algo-
rithm for the MIRBS strategy with operator ⊗1 is O(θlogmb).
If we note the deduced functional uncertainty as u and the
minimum uncertainty in edges as m, the hops of the found
path would be log(1−m)(1 − u). Thus, the worst-case time
complexity of the OTIPS algorithm for MIFUS with the op-
erator ⊗2 is O(θlog(1−m)(1−u)).

5. Theoretical and Empirical Validation

In this section, we theoretically prove the optimality of the

path found by the proposed algorithms. Comparative experi-
ments on trust inference path search, trust inference and trust
inference based edge sign prediction are carried out with a
large-scale OSN data set to demonstrate the superiority of
OTIPS(MIRBS) and OTIPS(MIFUS) over TidalTrust, Cert-
Prop(Sel.) and H-SCAN on the efficiency of trust inference
path search and applicability for trust inference.

5.1 Correctness Proof

The correctness of the proposed OTIPS algorithms for the
two strategies is proofed in this subsection.

Lemma 1. For each vX ∈ scanned f (or vX ∈ scannedr), the
distance d f (vX) (or dr(vX)) is the maximum indirect referral
belief or minimum indirect functional uncertainty for all S-X
(or X-T) paths.

Proof. See the Appendix �

By Lemma 1, we can further get the following theorem.

Theorem 3. The nonempty path returned by the proposed
algorithm is with the maximum indirect referral belief for
MIRBS strategy or minimum indirect functional uncertainty
for MIFUS strategy among all S-T paths.

Proof. See the Appendix �

5.2 Data Set Description

The Epinions data set (obtained from trustlet.org) describes
the trust and distrust relationships (1 and −1 respectively)
among users and their ratings (rating ∈ {1, 2, 3, 4, 5}) on
other peoples’ review articles about products. The data set
contains about 132000 users who issued 841372 trust and
distrust statements. The small-worldness of the Epinions
trust network has been verified in [19], which has large clus-
tering coefficient and short average path length. In order to
testify the performance of each path search algorithm in the
large-scale network, the data set is not further scaled down.

As the statistics shown in [14], the edge signs in Epin-
ions are overwhelmingly positive. For edge sign prediction,
a naive method that always predicts “trust” will incur a suc-
cess rate of about 85% on randomly-picked samples. To
avoid this situation, 1200 samples are randomly-picked with
equal numbers of positive sign edges and negative ones.

5.3 Methodology, Metrics and Settings

First of all, we need to obtain peoples’ subjective opinions
on other people. Given the trustor vA and trustee vB, we in-
vestigate the vA’s ratings on all the articles written by the
vB, record the number of rating times as the sum of posi-
tive and negative observations (i.e. t = r + s ≥ 0) and the
mean rating (noted as rmean ∈ [1, 5]). Intuitively, r and s
can be obtained by dividing the rating times according to
the ratio (rmean − 1) : (5 − rmean). For example, given t = 2
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and rmean = 3, we get r = s = 1 and b = d = 0.25. In
fact, rmean = 3 may be not the appropriate watershed. So,
we introduce the rating threshold rthresh and map the inter-
vals [1, rthresh] and [rthresh, 5] to [1, 3] and [3, 5] respectively.
For arbitrary pair of people, trustor vA and trustee vB, the
normalized subjective opinion ωA

B = (bA
B, d

A
B, u

A
B, a

A
B) can be

obtained by rthresh,rmean and t:

Case 1: rmean = rthresh⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

bA
B = (1 − uA

B)/2

dA
B = (1 − uA

B)/2

uA
B = 2/(2 + t)

aA
B = 0.5

Case 2: rmean > rthresh⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bA
B = (1 − uA

B) ·
(
1 + rmean−rthresh

5−rthresh

)
/2

dA
B = (1 − uA

B) ·
(

5−rmean

5−rthresh

)
/2

uA
B = 2/(2 + t)

aA
B = 0.5

Case 3: rmean < rthresh⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bA
B = (1 − uA

B) ·
(

rmean−1
rthresh−1

)
/2

dA
B = (1 − uA

B) ·
(
1 + rthresh−rmean

rthresh−1

)
/2

uA
B = 2/(2 + t)

aA
B = 0.5

where aA
B is set to 0.5 to accord with intuition and ex-

ploit Theorem 1 and 2. When rthresh = 3, this method is
the same as the intuitive one. Considering the previous
example with rthresh = 4, the normalized opinion will be
ω = (0.1875, 0.3125, 0.5, 0.5) and b < d.

In order to determine an appropriate rthresh for normal-
ized opinion mapping, we obtain users’ opinions with dif-
ferent rthresh and get the edge signs by the signum function.
Then, the edge signs are compared with the original ones
and the coincidence rates in terms of accuracy (ACC), true
positive rate (T PR) and true negative rate (T NR) with the
1200 samples are illustrated in Fig. 7 by Eq. (1). T P, T N,
P and N are the numbers of true positives, true negatives,
actual positives and actual negatives respectively.

ACC =
T P + T N

P + N
, T PR =

T P
P
, T NR =

T N
N

(1)

Obviously, Fig. 7 is not symmetric and the watershed of
positive and negative observations by rthresh is much greater
than 3. When rthresh = 4.04, ACC reaches the maximum
value 0.8675 and T PR = 0.9417, T NR = 0.7933. Thus, we
set rthresh = 4.04 in the comparative experiments to get the
edge sign prediction as accurate as possible.

The standard evaluation technique Leave-one-out is
used in trust inference path search. For an original trust
statement that vA puts on vB, we first remove the edge link-
ing vA to vB from the trust network and then try to find the

Fig. 7 Coincidence rates for different rthresh.

optimal trust inference path connecting them with different
trust path searching approaches. For all these approaches,
only one eligible path is returned for comparison in this ex-
periment. Referral trust and functional trust are not distin-
guishable in this data set. We set the maximum scanned
vertices to 20000 and maximum hops to 7 (according to the
small-world properties) for each path search to give a com-
putation bound. In TidalTrust path search, rmean is regarded
as user-to-user rating for routing. In CertProp(Sel.), the
Depth-First Search is applied to find all the possible paths
for further path selection. In H-Scan, the number of expan-
sion nodes K is set to 
20000/7� to reach the highest per-
formance. For all the path searches with above approaches,
the number of paths found, hops and scanned vertices for
each path search are recorded for comparison. Since fetch-
ing data from database takes over most time consumption in
the experiments, the number of scanned vertices instead of
consumed time is used to show the computation complexity.

For trust inference, the deduced opinion ω′ is obtained
by trust discounting operations along the trust inference path
and compared with the original opinion ω obtained by the
normalized opinion mapping with ground truth. P-errors
and B-errors introduced in [4] are used to validate the ac-
curacy of trust inference with different trust discounting op-
erators. Let ω = (b, d, u, a), ω′ = (b′, d′, u′, a′) and the cor-
responding observations be (r, s) and (r′, s′), the P-error and
the B-error between ω and ω′ are defined as:

Perror(ω,ω
′)= | r

r + s
− r′

r′ + s′
|, Berror(ω,ω

′)= |b − b′|

Finally, the predicted edge sign of the trust relation-
ship can be obtained by the deduced opinion ω′ and signum
function. Thus, the predicted edge sign can be compared
with the original trust statement in terms of Receiver Oper-
ating Characteristics (ROCs) such as the proportions of T P,
FN, T N and FP to validate the applicabilities of the paths
for trust inference based edge sign prediction. FN and FP
are the numbers of false negatives and false positives.
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5.4 Results and Analysis

The experimental results on trust inference path search, trust
inference and trust inference based sign prediction with the
five trust inference path search approaches are detailed and
analyzed as follows:

• Figure 8 shows that the proposed OTIPS(MIRBS) and
OTIPS(MIFUS) can find the paths with the highest
coverage rate (1185 out of 1200, 7.6% higher than
TidalTrust’s 1101) and much less mean scanned ver-
tices per path (1016.51 and 1302.34, 67.5% and 58.4%
less than TidalTrust’s 3127.65) compared with other
path search algorithms. CertProp(Sel.) exhaustively
tries to find all the connecting paths within 7 depth and
yields the lowest coverage rate and most mean scanned
vertices per path, which demonstrates its deficiency for
path search in the large-scale network.
• P-errors (P-errors1,2,3) and B-errors (B-errors1,2,3) of

the trust inference corresponding with trust discounting
operators ⊗1,⊗2 and ⊗3 are shown in Fig. 9 and Fig. 10.
TidalTrust, OTIPS(MIRBS) and OTIPS(MIFUS) show
much less P-errors than CertProp(Sel.) and H-Scan.
The lowest P-errors of TidalTrust, OTIPS(MIRBS) and
OTIPS(MIFUS) (0.1885, 0.1912 and 0.1883) are very
close (difference less than 1.4%). ⊗3 generally yields
more B-error than the rest operators for its own defect.
TidalTrust, OTIPS(MIRBS) and OTIPS(MIFUS) show
much less B-errors than the rest approaches. The low-
est B-errors of OTIPS(MIRBS) and OTIPS(MIFUS)
reach 0.1915 and 0.1883, which are both less than
TidalTrust’s 0.2067 by 7.4% and 8.9% respectively.
• The experimental results of sign predictions with dif-

ferent trust discounting operators are given in Fig. 11.
The T PR is higher than T NR for each algorithm. The
main reason is that positive edges and t1 type balanced
triads dominate in the trust network and the path search
tends to find trusting recommenders. Edge sign predic-
tion with CerProp(Sel.) shows much lower T PR than
other algorithms. H-Scan tends to find much more pos-
itive samples (T P+FN) than negative ones (T N +FP)
and the T PR is also lower than that of other algo-
rithms. These two approaches have obvious shortages.
TidalTrust, OTIPS(MIRBS) and OTIPS(MIFUS) show
similar ROCs, better than CertProp(Sel.) and H-Scan.
The highest ACCs of the three approaches reach 71%,
70% and 70%. Moreover, referring to the numbers of
found paths (i.e. sum of T P, FP, T N and FN) in Fig. 8,
OTIPS(MIRBS) and OTIPS(MIFUS) can obtain more
determinate predictions than TidalTrust by 7.6%.

In summary, CertProp(Sel.) and H-Scan show obvious
deficiencies for the three aspects, compared with the rest ap-
proaches. Comparing OTIPS(MIRBS) and OTIPS(MIFUS)
with TidalTrust, we find that the proposed approaches have
better performance in trust inference search (higher cover-
age rate by 7.6% and much lower computation complex-

Fig. 8 Experimental results of path searches.

Fig. 9 Mean P-errors of trust inferences.

Fig. 10 Mean B-errors of trust inferences.

ity by 67.5% and 58.4%). Because bidirectional search ap-
proaches tend to perform better than unidirectional search
approaches. For trust inference, the lowest P-errors of the
proposed approaches are close to that of TidalTrust, while
the B-errors are lower by 7.4% and 8.9%. In the trust
inference based sign predictions, the proposed approaches
have close ROCs to TidalTrust but higher cardinal number
by 7.6%. The superiority of the proposed approaches de-
rives from the global optimality among all possible connect-
ing paths, while TidalTrust just finds the local optimal path
among the connecting paths with the least hops.

6. Conclusions and Future Work

In this paper, we first investigate the characteristics of trust
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Fig. 11 Experimental results of edge sign predictions.

discounting operators and balanced transitive triads distri-
bution, then formally boil down the trust inference path
searches with the proposed MIRBS and MIFUS strategies
to optimization problem. The corresponding OTIPS algo-
rithms are finally proposed and followed by theoretical and
empirical validations. The proposed OTIPS algorithms for
MIRBS and MIFUS strategies can efficiently find the op-
timal trust inference path with better applicability to trust
inference.

Although the paths found by OTIPS(MIRBS) and
OTIPS(MIFUS) are with greater mean hops per path in
Fig. 6 than those found by TidalTrust (which are with the
minimum hops), they can also even reach more accurate re-
sults, which breaks the common sense that the shorter the
trust inference path is and the more accurate the trust infer-
ence will be. The experiments with OTIPS(MIFUS) vali-
date the effectiveness of minimizing the uncertainty of the
inferred opinion. Since t2, t5 and t6 case triads only hold
less than 10% of the total triads in this data set, the superi-
ority of MIFUS on this data set is limited. Moreover, only
single path is selected in this paper to figure out what is the
optimal search strategy for trust inference path search. For
future work, we are going to focus on the k-optimal trust in-
ference path search problem and fuse the indirect opinions
along theses paths to further reduce the uncertainty in trust
inference and improve the accuracy.
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Appendix: Proofs for lemmas and theorems

Proof for Theorem1

Proof. ∵ sthresh = aA
B = aB

X = 0.5 ∴ we can derive:

E(ωA
B) − sthresh = 0.5(bA

B − dA
B) (A· 1)

E(ωB
X) − sthresh = 0.5(bB

X − dB
X) (A· 2)

∵ ωA:B
X = ωA

B⊗2ω
B
X ∴ by the definition of ⊗2 we can get:

E(ωA:B
X ) − sthresh = 0.5(bA

B − dA
B)(bB

X − dB
X) (A· 3)

When sgn(ωA
B) = 1 and sgn(ωB

X) = 1, we can get
bA

B − dA
B > 0 and bA

B − dA
B > 0 by Eqs. (A· 1) and (A· 2),

sgn(ωA:B
X ) = 1 by Eq. (A· 3). It is similar for the rest cases.

In conclusion, sgn(ωA:B
X ) = sgn(ωA

B) · sgn(ωB
X) �

Proof for Lemma1

Proof. The forward search is similar to the reverse search.
The difference is that only the last hop in the reverse search
is on functional trust and b(i,ni−2)

(i,ni−1) is set to be 1 for MIRBS
strategy to mask the effect of functional trust. Thus, we only
discuss the forward search to save space.
Base case: |scanned f | = 1 is trivial.
Inductive hypothesis: Assume true for |scanned f | ≥ 1.
Given the source vertex vS and the vertex to be scanned
vY , where vY is the labeled vertex with the maximum
distance for MIRBS or minimum distance for MIFUS in
labeled f (the path composed of predecessors can be noted
as [vS , . . . , vX , vY ]). There is another path connecting to vY
and vB′1 is the first vertex that leaves scanned f , which can be
noted as [vS , vA′1 , . . . , vA′m , vB′1 , . . . , vB′n , vY ].

Since b ∈ [0, 1) and u ∈ (0, 1], for MIRBS with ⊗1:
b

S :A′1:...:A′m:B′1:...:B′n
Y = b

S :A′1:...:A′m
B′1

b
B′1:...:B′n
Y ≤ b

S :A′1:...:A′m
B′1

∵ b
S :A′1:...:A′m−1

A′m
≤ d f (vA′m ) according to the assumption;

∴ b
S :A′1:...:A′m
B′1

= b
S :A′1:...:A′m−1

A′m
bA′m

B′1
≤ d f (vA′m ) · bA′m

B′1
= d f (vB′1 ).

∵ vY is the labeled vertex with the maximum distance,
d f (vB′1 ) ≤ d f (vY ); ∴ b

S :A′1:...:A′m:B′1:...:B′n
Y ≤ d f (vY ).

For the strategy MIFUS with ⊗2, we get:

u
S :A′1:...:A′m:B′1:...:B′n
Y

=u
S :A′1:...:A′m
B′1

+ (b
S :A′1:...:A′m
B′1

+ d
S :A′1:...:A′m
B′1

)u
B′1:...:B′n
Y ≥u

S :A′1:...:A′m
B′1

∵ u
S :A′1:...:A′m−1

A′m
≥ d f (A′m) according to the assumption.

∴ u
S :A′1:...:A′m
B′1

= u
S :A′1:...:A′m−1

A′m
+ uA′m

B′1
− u

S :A′1:...:A′m−1

A′m
uA′m

B′1

≥ d f (vA′m ) + uA′m
B′1
− d f (vA′m )uA′m

B′1
= d f (vB′1 )

∵ vY is the labeled vertex with the minimum distance,
d f (vB′1 ) ≥ d f (vY ); ∴ u

S :A′1:...:A′m:B′1:...:B′n
Y ≥ d f (vY ). �

Proof for Theorem3

Proof. When the algorithm is to terminate, the best ver-
tices with the maximum distance for MIRBS or minimum

distance for MIFUS in the forward and reverse searches
are noted as vF and vR, and the optimal path found is
with length μ. If there is a path [vS , vA′1 , . . . , vA′m , vB′1 , . . . ,
vB′n , vC′1 , . . . , vC

′
l
, vT ] which has better length μ′ than μ, where

vB′1 is the first vertex leaves the forward scanned vertices and
vB′n is the first vertex leaves the reverse scanned vertices. m,
n, l are the numbers of the vertices along the corresponding
subpaths.

For MIRBS with ⊗1: According to Lemma 1, we get

b
S :A′1:...:A′m
B′1

≤ d f (vB′1 ) and b
B′n:C′1:...:C′l
T ≤ dr(vB′n ). Since vF

and vR are the labeled vertices with maximum distances,
d f (vB′1 ) ≤ d f (vF) and dr(vB′n ) ≤ dr(vR). Thus, b

S :A′1:...:A′m
B′1

≤
d f (vF) and b

B′n:C′1:...:C′l
T ≤ dr(vR).

∵ μ′= b
S :A′1:...:A′m:B′1:...:B′n:C′1:...:C′l
T

= b
S :A′1:...:A′m
B′1

b
B′1:...:B′n−1

B′n
b

B′n:C′1...:C
′
l

T ≤b
S :A′1:...:A′m
B′1

b
B′n:C′1...:C

′
l

T

and d f (vF) · dr(vR) ≤ μ.
∴ b

S :A′1:...:A′m
B′1

b
B′n:C′1...:C

′
l

T ≤ d f (vF) · dr(vR) ≤ μ
Thus, μ′ ≤ μ and it leads to contradiction.
For MIFUS with ⊗2: According to Lemma 1, we get

u
S :A′1:...:A′m
B′1

≥ d f (vB′1 ) and u
B′n:C′1:...:C′l
T ≥ dr(vB′n ). Since vF

and vR are the labeled vertices with minimum distances,
d f (vB′1 ) ≥ d f (vF) and dr(vB′n ) ≥ dr(vR). Thus, u

S :A′1:...:A′m
B′1

≥
d f (vF) and u

B′n:C′1:...:C′l
T ≥ dr(vR).

∵ μ′ = u
S :A′1:...:A′m:B′1:...:B′n:C′1:...:C′l
T

= u
S :A′1:...:A′m:B′1:...:B′n−1

B′n
+ u

B′n:C′1...:C
′
l

T

−u
S :A′1:...:A′m:B′1:...:B′n−1

B′n
u

B′n:C′1...:C
′
l

T (A· 4)

u
S :A′1:...:A′m:B′1:...:B′n−1

B′n

=u
S :A′1:...:A′m−1

A′m
+ (b

S :A′1:...:A′m−1

A′m
+ d

S :A′1:...:A′m−1

A′m
) · uA′m:B′1:...:B′n−1

B′n

≥u
S :A′1:...:A′m−1

A′m
(A· 5)

∴ By Eqs. (A· 4) and (A· 5) and u ∈ (0, 1], we get:

μ′ ≥ u
S :A′1:...:A′m
B′1

+ u
B′n:C′1...:C

′
l

T − u
S :A′1:...:A′m
B′1

u
B′n:C′1...:C

′
l

T

∵ u
S :A′1:...:A′m
B′1

≥ d f (vF), u
B′n:C′1:...:C′l
T ≥ dr(vR) and

d f (vF) + dr(vR) − d f (vF) · dr(vR) ≥ μ

∴ u
S :A′1:...:A′m
B′1

+ u
B′n:C′1...:C

′
l

T − u
S :A′1:...:A′m
B′1

u
B′n:C′1...:C

′
l

T

≥ d f (vF) + dr(vR) − d f (vF) · dr(vR) ≥ μ
Thus, μ′ ≥ μ and it leads to contradiction.
In conclusion, the path returned by the proposed al-

gorithm is with the maximum indirect referral belief for
MIRBS strategy or minimum indirect functional uncertainty
for MIFUS strategy among all S-T paths. �
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