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PAPER

A New Hybrid Approach for Privacy Preserving Distributed Data
Mining

Chongjing SUN†a), Member, Hui GAO†b), Junlin ZHOU†c), Yan FU†d), and Li SHE††, Nonmembers

SUMMARY With the distributed data mining technique having been
widely used in a variety of fields, the privacy preserving issue of sensitive
data has attracted more and more attention in recent years. Our major con-
cern over privacy preserving in distributed data mining is the accuracy of
the data mining results while privacy preserving is ensured. Corresponding
to the horizontally partitioned data, this paper presents a new hybrid algo-
rithm for privacy preserving distributed data mining. The main idea of the
algorithm is to combine the method of random orthogonal matrix transfor-
mation with the proposed secure multi-party protocol of matrix product to
achieve zero loss of accuracy in most data mining implementations.
key words: data mining, privacy preserving, secure multi-party computa-
tion, orthogonal transformation, Inner product operation

1. Introduction

With more computer processing power, continuous develop-
ment of storage technology and fast growth of the internet,
vast amounts of data have been accumulated by all walks of
life in recent years. To guide appropriate decision making,
people desperately need some technology to explore poten-
tial knowledge (model or rules) from these data. Data min-
ing [1], [2] is seen as an increasingly important data analysis
tool to meet the requirement. It is currently used in a wide
range of profiling practices, such as marketing, surveillance,
fraud detection, anti-terrorism, and scientific discovery. Due
to the releasing of unprocessed raw data in the traditional
data mining, the privacy of data would be revealed before
the public. In 1996, a survey [3] of net-users’ attitudes to-
wards personal privacy shows that in the United States 17%
of Internet users are not willing to provide information to
web sites regardless of the privacy-preserving policy taken,
56% of investigators are willing to provide their informa-
tion to web sites only if some privacy-preserving measures
are taken. Since then, a number of research works [4] on
how to protect personal privacy while ensuring the accuracy
of data mining results have been studied.

Bertino et al. [5] defined privacy as an entity that can
prevent unauthorized people from getting sensitive informa-
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tion or the characteristics of the data (model, rules, etc.)
from an electronic database. According to this definition,
privacy can be divided into two categories: 1) Personal pri-
vacy: mainly specific individuals’ data items, such as per-
sonal medical records, etc. 2) Public privacy: the knowledge
which underlies the original data, or the high-level model
information which gets from the original data. Such as the
association rules which get from an analysis of shopping
basket data.

When releasing data for research purposes, one needs
to limit disclosure risks to an acceptable level while maxi-
mizing data utility. Research in privacy preserving data min-
ing started after 2000, and it mostly focuses on the following
two issues: 1) How to prevent the leakage of privacy in the
process of data mining; 2) How to retain the accuracy of
the data mining results even if privacy preserving is taken.
Most of the current privacy preserving methods affect more
or less the accuracy of data mining results, and according
to their employed techniques they can be roughly classified
into three groups.

The first group of privacy preserving algorithms is
based on the randomization technique, which uses data
distortion methods. In most cases, the individual records
cannot be recovered, but only aggregate distributions can
be recovered and used for data mining purposes. Typi-
cal algorithms include additive data perturbation [6], matrix
multiplicative data perturbation [7], data swapping [8], data
blocking [9]. The randomization method is a simple tech-
nique which can be easily implemented at data collection
time. The second group of privacy preserving algorithms
is based on data anonymization, which constructs groups
of anonymous records that are transformed in a group-
specific way. Typical techniques are k-Anonymity [10], l-
Diversity [11] and t-Closeness [12]. The third group of pri-
vacy preserving algorithms is based on data encryption,
which uses cryptographic approaches to minimize the infor-
mation shared. This group of algorithms is usually designed
for distributed data mining to prevent any party from know-
ing the actual value of local sensitive items. Basic tech-
niques include Secure Multiparty Computation (SMC), Ho-
momorphic Encryption.

In the three groups of privacy-preserving algorithms
discussed above, only the third one can guarantee the ac-
curacy of the data mining while providing a relatively high
level of privacy preserving at the same time. However,
they may involve more redundant communication and heavy
computation. The first group of algorithms introduces low
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computation and can be implemented easily, but may greatly
lose the accuracy of data mining results, or have to make
a compromise between the accuracy of data mining results
and the level of privacy preserving. As for the second group
of algorithms, there is a certain extent of data defects and
privacy disclosure, and a heavy computation in order to op-
timize the data anonymization. More detailed comparison
between different privacy protection and data mining algo-
rithms can be found in [4].

In the existing solutions of distributed data mining,
there are mainly two types of data partitioning among the
parties [4]: data mining over horizontal partitioned data and
data mining vertical partitioned data. In a vertical parti-
tion approach, the attributes (columns) of the same vectors
(rows) are split across the partitions. Each partition has
unique columns - with the exception of the key column,
which is common to all partitions. In a horizontal partition
approach, different rows are described with the same schema
in all partitions. Each partition has unique rows, while all
unique rows have the same attributes (columns). The idea
behind these distributed solutions is that two or more partic-
ipants want to conduct a computation based on their private
partitions.

Privacy-preserving distributed data mining algorithms
require participants to collaborate with others to compute
the results, while provably preventing the disclosure of any
information except the data mining results. Oliveira [13],
[14] and Liu [15] proposed the privacy preserving algo-
rithms based on the random projection theory. Random pro-
jection has recently emerged as a powerful method for di-
mensionality reduction, and the distances between the ob-
jects (records) can be approximately preserved after random
projection. Oliveira extended this method for preserving
clustering from centralized environment to distributed en-
vironment with data vertically partitioned. Liu [15] found
that the privacy preserving technique based on random pro-
jection can be successfully applied to different kinds of data
mining tasks, including inner product/Euclidean distance es-
timation, correlation matrix computation, clustering, outlier
detection, linear classification, etc. The above mentioned
methods can effectively preserve the privacy through matrix
dimensions reduction. After perturbation by these methods,
the distance-related statistical properties of original data can
be well maintained. For example, the distance between two
perturbed vectors will be very close to the distance between
two original vectors.

Oliveira and Zaı̈ane [16], [17], Chen and Liu [18]
applied the geometric data transformation methods for
privacy-preserving distance-based clustering and classifi-
cation algorithms. Data distortion using random geomet-
ric transformation can maintain the distance between the
records, and achieve the goal of privacy preserving data min-
ing. Scaling, translation, and rotation were proposed in [16]
for preserving the sensitive data information. Oliveira [17]
proposed Pairwise-Attribute rotation method for distorting
the original data, and this method can set different Pairwise-
Security Threshold for each attribute pair. Chen and Liu [18]

presented an algorithm based on random orthogonal ma-
trix transformation for privacy preserving classification, and
gave an approach providing high privacy guarantee while
maintaining zero-loss accuracy. However, this method only
focused on the privacy preserving in local data mining.

In this paper, we focus on the preservation of personal
privacy and present a new hybrid algorithm for privacy pre-
serving distributed data mining. We assume all data is hori-
zontally partitioned and all participants are semi-honest ad-
versaries, which follow the protocol faithfully, but can try
to infer the secret information of other participants from
the data they see during the execution of the protocol. Be-
cause of the low-cost computation of the privacy preserving
technology based on data distortion and the nondestructive
data mining results of the technology based on SMC, we use
tools from data distortion and SMC domains. Since distance
metric gives a numerical value that measures the similarity
between two data objects, it plays an important role in data
mining. The main idea of our algorithm is to combine the
method of random orthogonal matrix transformation with
the proposed secure multi-party protocol of matrix product
to achieve zero lost of accuracy in most data mining imple-
mentations.

This paper is organized as follows. In Sect. 2, we give
a brief description of multi-party distributed data mining
model. In Sect. 3, we propose a new secure multi-party
protocol of matrix product, and prove that the protocol can
maintain the product of matrices after the data distortion. In
Sect. 4, we discuss how to compute all orthogonal matrix
transformations for different parties in the same coordinate
system, and present a new hybrid algorithm for privacy pre-
serving distributed data mining. Finally, Sect. 5 draws our
conclusions.

2. Privacy Sensitive Distributed Data Mining Model

By analyzing the past data, data mining tools usually build
models which can predict outcomes of given situations. For
example, in an e-mail program, data mining firstly builds
a classification model based on the past email data, and
then attempts to classify a new e-mail as “legitimate” or
as “spam”. Therefore, the task of data mining is to build
a model which can have a high accuracy on the prediction
problem. Then the legitimate email will be classified as “le-
gitimate” with a high probability, and so the spam emails
will be. The accuracy of the model can then be measured
from how many e-mails it correctly classify. A number of
statistical methods may be used to evaluate the accuracy on
this kind of data mining models, such as precision, recall,
and ROC curves.

Distributed Data Mining explores techniques of how to
conduct the data mining on the data distributed over several
databases. We focus on the distributed data mining model
for horizontally partitioned data since it is more challeng-
ing than the traditional data mining in a centralized way. In
this model, the different organizations (or participants) own
the same set of attributes for different sets of entities. Dis-
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Fig. 1 The architecture of the distributed data mining model.

tributed Data Mining conducts the data mining on the union
of these different sets of entities. In order to improve the ac-
curacy of data mining, the data owners need to put their data
together and build a shared data mining model. However,
considering the personal privacy, participants do not trust
each other, or even the data miner who developed the data
mining program. Hence, they are reluctant to share their
data with others.

The overall architecture of our distributed data mining
method is depicted in Fig. 1. In our model, we assume there
are k participants (data owner) and one data miner. All the
participants sit counter-clockwise along a circle and are dis-
tinctively numbered as P1, P2, . . . Pk. The data miner seats
in the middle of the circle, and is labeled as DM. Each par-
ticipant Pi owns its original data matrix Xi with ni rows and
m columns, where each row represents a different record and
each column represents an attribute.

Suppose that the original dataset is represented by D,
and the disturbed dataset is represented by D′. Similar to
some previous works [18], [19], the privacy level of the i-
th attribute is defined as the variance of (Di)′ − Di, where
(Di)′ and Di are the i-th column of D′ and D respectively.
Suppose the disturbed dataset is transformed from the the
original dataset by a transformation matrix M, i.e. D′ = D×
M. Then the privacy level can be computed by Formula 1,
where E is an identity matrix, and Ei and Mi are the i-th
column of E and M respectively.

Var((Di)′ − Di)
= Var(D × (Ei − Mi))
= (Ei − Mi)T ×Cov(D) × (Ei − Mi)

(1)

Different participants may have different privacy con-
cerns. Each participant Pi randomly generates a m by m
transformation matrix Ri, which represents different privacy
levels for different attributes as illustrated in Formula 1.
With privacy concerns, each participant Pi makes a trans-
formation of the original data matrix Xi by Yi = Xi × Ri,
and sends the perturbed data matrix Yi to DM instead of the
original data matrix Xi. DM will use the perturbed data to
establish a shared data mining model.

Distance metric gives a numerical value that measures
the similarity between two data objects, and plays an im-
portant role in most data mining algorithms like decision
trees, artificial neural network, clustering and classification.
E.g., in classification, the class of a new data object hav-
ing unknown class label is tagged as the class of its sim-

ilar objects; in clustering, the similar objects are grouped
together. The problem of computing most of these metrics
between two records (vectors) a and b can be represented
as the problem of computing the inner products between
them. E.g., the Euclidean distance can be reduced to the
inner product computation using the following expression,
d2(a, b) = a · a + b · b − 2a · b, where a · b represents the
inner product of a and b. For the other metrics, the core
problem of computation can be reduced to the similar prob-
lem of computing the Manhattan distance between them, i.e.
d1(a, b) =

∑
i |ai − bi|.

To achieve zero loss of accuracy for a number of data
mining implementations, we need to maintain the distance
metrics between any two records before and after the trans-
formation. Specifically, to maintain the inner product of any
two records in the latter data mining process, the transfor-
mation matrix Ri should be orthogonal and unit.

Usually in geometry, a coordinate system is a system
which uses one or more numbers or coordinates, to uniquely
determine the position of a point on a manifold such as Eu-
clidean space. In the m-dimensional Euclidean space, each
record (row vector) in Xi can be viewed as a data point in the
original coordinate system. The value in the j-th attribute
(column) of this record can be seen as the j-th coordinate of
this point in the original coordinate system.

A coordinate transformation converts points from one
coordinate system to another. By using different orthog-
onal transformation matrix Ri, each participant transforms
the original coordinate system into a different coordinate
system. Therefore, DM cannot directly compare row vec-
tors from different participants after the different coordinate
transformations. Specifically, the inner product of the per-
turbed rows is Yi × YT

j = Xi × Ri × RT
j × XT

j , which may not
be equal to Xi × XT

j when i � j.
Therefore, every two adjacent participants Pi and

Pi+1(Pk+1 = P1) are required to collaborate with each other
to compute Pi,i+1 = RT

i × Ri+1, and send Pi,i+1 to DM. In
Sect. 4, we will describe how to use Pi,i+1’s to build a target
coordinate system and integrate all the transformations into
the same coordinate system. Since the leaking of the orthog-
onal transformation matrix Ri would allow DM to identify
the original data matrix Xi, each Pi,i+1 will be computed by a
new secure multi-party computation (SMC) protocol, which
will be presented in Sect. 3.

3. New Secure Multi-Party Computation Protocols

In our model, every two adjacent participants Pi and Pi+1

are required to collaborate with each other to compute the
product of their random orthogonal transformation matrices,
i.e., Pi,i+1 = RT

i × Ri+1, and send Pi,i+1 to DM. Because of
the privacy, we choose to use methods from SMC domain
for the computation of the product matrix Pi,i+1.

The basic unit of computing the matrix product is to
compute the inner product of two vectors. To overcome
some limitations of available alternatives in the literature,
we propose a new secure multi-party computation protocol
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of the inner product between two vectors. Secure compu-
tation (preserving privacy) of inner products is fundamental
for many privacy preserving distributed data mining tasks.
As opposed to available alternatives in the literature, our
new protocol is more efficient and practical. It can be de-
scribed as Protocol 1.

Protocol 1 (New Inner Product Protocol): Suppose two par-
ticipants Alice and Bob have the original vector ra and rb of
size m, respectively.

1. The trusted third-party randomly generates two orthog-
onal vectors εa and εb of size m such that εa · εb = 0,
and sends εa to Alice and εb to Bob.

2. Alice selects a random number ka, calculates r
′
a =

ra + kaεa, and sends r
′
a to Bob; similarly, Bob selects a

random number kb, calculates r
′
b = rb + kbεb, and sends

r
′
b to Alice.

3. Alice calculates s1 = ra ·r′b and s2 = kaεa ·r′b, and sends
the result of s1 − s2 to the third-party; similarly, Bob
does his calculation and sends the result of s3 − s4 =

rb · r′a − kbεb · r′a to the third-party.
4. The third-party computes 0.5(s1 − s2 + s3 − s4) and

gets the inner product of two vectors ra and rb without
knowing any information about them.

Correctness. In Protocol 1, the third-party finally received
s1 − s2 from Alice and s3 − s4 from Bob, and he obtains the
inner product of vectors ra and rb by computing the (s1−s2+

s3 − s4)/2. The correctness of Protocol 1 can be illustrated
by the Formula 2.

s1 − s2 + s3 − s4

= ra · (rb + kbεb) − kaεa · (rb + kbεb)
+ rb · (ra + kaεa) − kbεb · (ra + kaεa)

= ra · rb + kbra · εb − kaεa · rb

+ rb · ra + karb · εa − kbεb · ra

= 2ra · rb

(2)

Security analysis. In the second step of Protocol 1, Alice
does not learn rb because of the randomness from the vector
εb. The random numbers of εb are generated from the real
domain. By the random parameter kb, Bob can adjust the
domain of εb to the domain of rb, indeed strengthen the pri-
vacy protection. Besides, Bob can keep changing the value
of kb to have more privacy if he has more than one vec-
tor need to protect. In the third step, the third-party only
received two numbers from Alice and Bob. Both numbers
cannot help him to find out ra and rb. Finally in the last step,
the third-party calculates out the inner product of ra and rb.
We suppose that the inner product is the public information,
which can be known by the third-party.
Improvement on the security. The semi-honest condition
assures that the third-party should not collude with either
Alice or Bob. Even Alice colludes with the third-party, she
cannot figure out the true values of rb, as she does not know
about the value of kb. In order to improve the security of this
protocol, the third-party can randomly generate four vec-
tors with the condition that all the vectors are orthogonal to

each other. The third-party sends two of them to Alice and
the others two to Bob. Then Alice and Bob can randomly
choose one from the received two vectors to compute r′b.
Therefore, even Alice colludes with the third-party, it’s hard
for her to know the values of rb as the randomness on the
randomly choosing from two random vectors.
Computation and communication evaluation. Suppose
that Alice has n vectors and Bob has p vectors, and the di-
mension of each vector is m. In Step 1, the third party sends
two random vectors wit 2m messages to Alice and Bob. In
Step 2, Alice and Bob send one vector with m messages sep-
arately, and the total number of messages for computing the
p×n inner products is 2m×p×n. In Step 3, two messages are
send by Alice and Bob, and the total number of messages is
2p × n. Therefore, the average the average communication
cost of Protocol 1 is (2m/(p × n) + 2m + 2) × b0. Here b0 is
the bit length of a message.

The computational complexity of Protocol 1 is O(m)
in total. Here, m is the dimension number of vectors. The
computational cost contains the cost on 6m + 3 additions,
6m + 3 multiplications, and 2m + 2 random number genera-
tions. It is analyzed as follows. (1) In Step 1, the third-party
generates two orthogonal vectors having 2m numbers. (2)
In Step 2, Both Alice and Bob generate one random num-
ber, and performs m additions and m multiplications. (3) In
Step 3, Alice performs m additions and m multiplications to
compute s1, and m additions and m + 1 multiplications to
compute s2. Similarly, Bob does the same number of opera-
tions to compute s3 an s4. Beside, both of them perform one
addition to compute s1 − s2 or s3 − s4. (4) In Step 4, The
third party performs one addition and one multiplication to
obtain the inner product.

Suppose Alice has the matrix An×m and Bob has the
matrix Bp×m. Alice and Bob expect that the third party can
calculate the product matrix Pn×p = A × BT without know-
ing their original matrices. However, neither Alice nor Bob
is allowed to get the product matrix; otherwise, it is possible
that one of them breaks down the other’s matrix. Naively,
each element in the matrix P can be securely computed by
Protocol 1 with the input vectors as the row vector of A and
the column vector of B. To improve the efficiency of the
matrix product computation, we design a new secure multi-
party computation protocol for the matrix product, and de-
scribe it in Protocol 2.

Protocol 2 (New Matrix Product Protocol): Suppose that
two participants Alice and Bob have the original matrix
An×m and Bp×m respectively.

1. The trusted third-party randomly generates two orthog-
onal vectors εa and εb of size m such that εa · εb = 0,
and sends εa to Alice and εb to Bob.

2. Alice generate a random vector ra of size n, and com-
pute a matrix Ra with (Ra)i· as (ra)iεa, then sends A′ =
A + Ra to Bob; similarly, Bob generate a random vec-
tor rb of size p, and compute a matrix Rb with (Rb)i· as
(rb)iεb, then sends B′ = B + Rb to Alice.

3. Alice calculates the matrix S 1 = A × (B′)T and S 2 =
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Ra × (B′)T , and sends the matrix S 1 − S 2 to the third
party; Bob calculates the matrix S 3 = A′ × BT and
S 4 = A′ ×RT

b , and sends the matrix S 3 − S 4 to the third
party.

4. The third-party computes 0.5(S 1 − S 2 + S 3 − S 4) and
gets the matrix product P = A × BT without knowing
any information about the matrices.

In Protocol 2, (Ra)i· is the i-th row of the matrix Ra and
(ra)i is the i-th element of the vector ra. Similar to Protocol
1, the correctness of Protocol 2 can be proved by Formula 3.

S 1 − S 2 + S 3 − S 4

= A × (B + Rb)T − Ra × (B + Rb)T+

(A + Ra) × BT − (A + Ra) × RT
b

= A × BT + A × RT
b − Ra × BT − Ra × RT

b+

A × BT + Ra × BT − A × RT
b − Ra × RT

b
= 2A × BT

(3)

In Formula 3, Ra × RT
b equals the zero matrix. The

(i, j)-th element in Ra ×Rb is equal to (ra)iεa · (rb)iεb, indeed
equals 0. Similar to the analysis on Protocol 1, Protocol 2
need to send 2m + (n + p) × m + 2n × p messages, which
is much smaller than the naive solution with n × p × (2m +
2) + 2m = 2m + 2(n × p) × m + 2n × p. The computational
cost of Protocol 2 is similar to the naive solution, and the
complexity is O(npm).

4. New Hybrid Approach for Privacy-Preserving Dis-
tributed Data Mining

In our model, each participant sends out its perturbed data
using different orthogonal transformation matrix Ri. The
DM has to integrate the perturbed data from different partic-
ipants into the same coordinate system before data mining.
For efficiency and privacy concerns, we require every two
adjacent participants Pi and Pi+1(Pk+1 = P1) to collaborate
with each other to compute Pi,i+1 = RT

i ×Ri+1, and send Pi,i+1

to DM. We designate Rk as a target coordinate system, and
define a coordinate matrix Ti as Formula 4.

Ti =

{
Pi,i+1 × Pi+1,i+2 × . . . × Pk−1,k 1 ≤ i < k
E i = k

(4)

It can be calculated by DM since he has received all the
Pi,i+1 for every two adjacent participants Pi and Pi+1(Pk+1 =

P1). Then, the DM can transform the perturbed data matrix
Yi into the target coordinate system by Formula 5.

Y ′i = Yi × Ti

= Xi × Ri × (RT
i × Ri+1) × . . . × (RT

k−1 × Rk)
= Xi × Rk

(5)

Suppose that two arbitrary participants Pi and Pj (i <=
j) have got two original data matrices Xi and Xj respectively.
The two participants first perturb their original data using
different orthogonal transformation matrices Ri and Rj, and
then send the perturbed matrices Yi and Yj to DM. After the
DM transforms the perturbed data into the target coordinate
system by Formula 3, the product of two original matrices
Xi and Xj can be calculated by DM as Formula 6.

(Yi × Ti) × (Yj × T j)T

= (Xi × Rk) × (RT
k × XT

j )

= Xi × (Rk × RT
k ) × XT

j

= Xi × XT
j

(6)

This means that the inner product of any two original
records (vectors) from any two participants Pi and Pj can be
computed by DM without knowing any information about
them. Let Xi,s represent the s-th object(row) in Xi of the par-
ticipant Pi, Xj,t represents the t-th object(row) in Xj of the
participant Pj, Y ′i,s represents the s-th vector(row) in Y ′i that
transformed from Xi, and Y ′j,t represents the t-th vector(row)
in Y ′j that transformed from Xj. From Formula 7, we can see
that the similarity between the s-th object in Xi and the t-th
object in Xj can be obtained by computing the inner product
of s-th vector(row) in Y ′i and the t-th vector(row) in Y ′j.

Y ′i,s × (Y ′j,t)
T = Xi,s × Rk × RT

k × Yj,t = Xi,s × Yj,t

where 1 ≤ i, j ≤ k, 1 ≤ s ≤ ni, 1 ≤ t ≤ n j
(7)

Our final hybrid algorithm for the privacy preserving
distributed data mining can be described in Algorithm 1.

Algorithm 1 The new hybrid algorithm on privacy preserv-
ing distributed data mining.
Input:

Suppose that all participants are distinctively numbered as P1, P2, . . .,
Pk , and own original data matrices X1, X2, . . . , Xk , respectively. Each
matrix has m columns, each of which represents an attribute.

Output:
A shared data mining model built on X1, X2, . . . , Xk .

1: Each participant Pi randomly generates an orthogonal and unit trans-
formation matrix Ri, and sends the perturbed data matrix Yi = Xi × Ri

to DM.
2: Every two adjacent participants Pi and Pi+1(Pk+1 = P1) collaborate

with each other to compute Pi,i+1 = RT
i × Ri+1 using Protocol 2.

3: Upon receiving all Pi,i+1’s, DM starts to compute Ti for 1 ≤ i ≤ k using
formula (2).

4: DM transforms the perturbed data from each participant Pi into the
target coordinate system of Rk . by Y

′
i = Yi × Ti.

5: If the data mining algorithm uses dot product as the main component,
then DM calculates the product of every pair of Y

′
i and Y

′
j , and obtains

the inner product of any two original records from different partici-
pants; then DM does the rest part of the data mining and builds the
data mining model.

For the other data mining algorithms, which have
been implemented using something like Manhattan dis-
tance as the main component, we have to require fur-
thermore that the basis of the target coordinate sys-
tem (i.e., the rows in the orthogonal transformation ma-
trix Rk) should be a random permutation of the basis
(1, 0, ..., 0); (0, 1, 0, ..., 0); ...; (0, ..., 0, 1) in the original data
space. Then the Manhattan distance between any two
records before and after the transformation can be main-
tained obviously. However, the above described require-
ment is a little bit strong, and furthermore, the DM may be
able to peek some private information if the ranges of some
attributes are quite different from each other. If the proposed
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data mining algorithm use Manhattan distance as the main
component, then DM calculates the Manhattan distance of
every pair of row vectors in Y

′
i and Y

′
j, and obtains the Man-

hattan distance of any two original records from different
participants.
An application case in data mining. Classification is a
classic tasks of data mining. It tries to identify the category
of a new object on the basis of a training dataset contain-
ing objects whose category membership is already known.
k-nearest neighbors algorithm (k-NN) [1] is a classic clas-
sification method, which predicts category memberships of
new objects based on the k closest training objects in the fea-
ture space. For example, in the e-mail program, each email
document is represented as a vector by the Vector Space
Model, such as the term frequency-inverse document fre-
quency (TFIDF) [1]. To predict the category (“legitimate”
or “spam”) of a new e-mail, k-NN firstly finds the k near-
est training emails of this email based on their text vectors,
and then assigns this email category as the category most
common amongst its k nearest neighbors.

Under the distributed environment, we suppose there
are k participants and the i-th participate has the data
Xi. The j-th row (Xi) j of Xi represents the j-th object,
and its category is represented by (Ci) j. As the category
of objects is public information, each participate directly
sends the category vector Ci to DM. To get the train-
ing data, DM and all participants apply the Algorithm 1
without knowing the true privacy data. Finally, DM gets
Y ′i = Xi × Rk, where i is from 1 to k. Then DM gets
Y ′ = (Y ′1; Y ′2; . . . ,Y ′k). Besides, we suppose that X =

(X1; X2; . . . ; Xk), D = (X1,C1; X2,C2; . . . , Xk,Ck) and D′ =
(Y ′1,C1; Y ′2,C2; . . . ,Y ′k,Ck).

If the i-th participate wants to predict the category of
a new object x, he firstly preserves the original vector by
y = x × Ri, then sends y to DM. After receive y from the
i-th participate, DM transforms y to y′ = y × Ti, where Ti is
defined in Formula 4, then y′ = x × Rk. For the t-NN algo-
rithm, t nearest neighbors of y′ are selected from Y ′ based
on the distance defined in Formula 8.

||(Y ′)i − y||2 = (Y ′)i · (Y ′)i + y
′ · y′ − 2(Y ′)i · y′

= (X)i · (X)i + x · x − 2(X)i · x
= ||(X)i − x||2

(8)

Where (Y ′)i and (X)i are the i-th rows of Y ′ and X re-
spectively. From Formula 8, we can conclude that the t
nearest neighbors found from transformed space Y ′ are same
with the t nearest neighbors found from original space X. At
the last step, the t-NN algorithm assigns the category to y′ as
the category most common amongst its t nearest neighbors
in D′, i.e. the category for x.

5. Performance Comparison and Experiment Results

In this section, we compare our proposed inner product pro-
tocol with the priori related protocols. The inner product
protocols can be divided into two categories. The first one
contains the protocols based on the encryption techniques,

Fig. 2 Running time of all the inner product protocols.

such as homomorphic encryption. Three priori protocols in
this category are Goethals2004 [20], Amirbekyan2007 [21],
and FenXu2010 [22]. Here we rename the priori inner prod-
uct protocols based on the author’s name. The computa-
tional complexity of the above three protocols is O(n ∗ H),
where n is the dimension of private vectors and O(H) is the
computational complexity of an encryption by homomor-
phic cryptosystem. All the above three protocols applied
the Paillier Cryptosystem.

The protocols in the second category usually de-
signed based on the algebra such as the matrix opera-
tion, and four related protocols are Vaidya2002 [23], Wen-
liangDu2002 [24], Clifton2003 [25] and YouwenZhu2012
[26]. The computational complexity of WenliangDu2002
is O(n3), in which the computation of matrix inverse costs
most of the time. The complexity will be O(n2) if the com-
putation of matrix inverse is not included. The computa-
tional complexity of Vaidya2002 and Clifton2003 is O(n2),
as both of them apply the matrix multiplication. The com-
putational complexity of YouwenZhu2012 and our protocol
is O(n).

We compare our proposed inner product protocol with
the above 7 protocols. We conduct the experiments in Java
on a computer with Intel Core 2 Duo 3.30GHz CPU and
8.0G memory. The encryption based protocols are imple-
mented with Paillier’s Homomorphic Cryptosystem†. In the
experiments, the number of bits of modulus is 1024, and the
time of encrypting a plaintext as Integer is 10.20 millisec-
onds while decrypting a ciphertext is 20.10 milliseconds.

We randomly generate the private vectors with the
given dimension, and get the running time of all the pro-
tocols to compute the inner product. Figure 2 shows
their running time. Three protocols based on the encryp-
tion techniques (i.e. Goethals2004, Amirbekyan2007, and
FenXu2010) cost much more time than the ones based on
algebra. It can be seen that the running time of the three
protocols is linear with the dimension of vectors. As the
Goethals2004 only encrypts n plaintexts and decrypts one
ciphertext, it’s running time is less than the time of other
two protocols. For the Amirbekyan2007, the applied Add

†Java Implementation can be downloaded at http://www.csee.
umbc.edu/˜kunliu1/research/Paillier.html
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Fig. 3 Running time of protocols based on the algebra.

Fig. 4 Running time of the our protocol and YouwenZhu2012.

Vector Protocol needs to encrypts 2n plaintexts and decrypts
n ciphertexts. FenXu2010 applies the Add Vector Protocol
twice, and it needs to encrypts 3n plaintexts and decrypts 2n
ciphertexts. In Figure 2, the running time of protocols based
on algebra cannot be displayed clearly.

In order to compare the performance of protocols based
on algebra, we set the dimension of vectors from 100
to 9600 with step length as 100 and show the results in
Figure 3. It can be seen that the running time of Wen-
liangDu2002 shows the tendency with complexity as O(n3),
meanwhile Vaidya2002 and Clifton2003 with O(n2). Our
proposed protocol is much more efficient than the above
three protocols. To compare our protocol with Youwen-
Zhu2012, we conduct the experiment on the vector with di-
mension from 100 to 500000, and Figure 4 shows the simu-
lated results. Clearly, both of them have linear relationship
with the vector dimension, and YouwenZhu2012 cost less
time than our protocol. But YouwenZhu2012 only can be
used for the even-dimension vectors. Besides for the vec-
tors x = (x1, x2, . . . , x2k) of Alice and y = (y1, y2, . . . , y2k)
of Bob, Alice can learn y2i − y2i−1 and Bob can figure out
x2 j−1 + x2 j. To some extent, this leads to the privacy disclo-
sure of the private vectors.

From the experimental results we can conclude that
our proposed inner product protocol is much more efficient
than the others protocols. Besides, our protocol can provide
more privacy protection than the efficient YouwenZhu2012.
Therefore, we method is suitable to securely compute the
inner product in large scale systems.

6. Conclusions and Future Work

In this paper, we present a new hybrid approach for privacy
preserving distributed data mining. The main idea of the
hybrid approach is to use the orthogonal transformation to
maintain the inner product between records, and a new se-
cure multi-party protocol for the collaboration of required
computation between participants. We prove that all per-
turbed data by the orthogonal matrix transformation from
different participates can be integrated into the same coordi-
nate system, and zero loss of accuracy in most data mining
implementations can be achieved.

Most data mining algorithms employ inner product as
their main component in the implementations. For those
others that are implemented using something like Manhat-
tan distance we have to require furthermore that the basis of
the target coordinate system should be a random permuta-
tion of the basis in the original data space. However, this
further requirement is a little bit strong. In the future work,
we will explore some alternative solutions.
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