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PAPER

Solving the Phoneme Conflict in Grapheme-to-Phoneme
Conversion Using a Two-Stage Neural Network-Based Approach

Seng KHEANG†a), Nonmember, Kouichi KATSURADA†, Yurie IRIBE††, and Tsuneo NITTA†,†††, Members

SUMMARY To achieve high quality output speech synthesis systems,
data-driven grapheme-to-phoneme (G2P) conversion is usually used to gen-
erate the phonetic transcription of out-of-vocabulary (OOV) words. To im-
prove the performance of G2P conversion, this paper deals with the prob-
lem of conflicting phonemes, where an input grapheme can, in the same
context, produce many possible output phonemes at the same time. To this
end, we propose a two-stage neural network-based approach that converts
the input text to phoneme sequences in the first stage and then predicts
each output phoneme in the second stage using the phonemic information
obtained. The first-stage neural network is fundamentally implemented
as a many-to-many mapping model for automatic conversion of word to
phoneme sequences, while the second stage uses a combination of the ob-
tained phoneme sequences to predict the output phoneme corresponding
to each input grapheme in a given word. We evaluate the performance
of this approach using the American English words-based pronunciation
dictionary known as the auto-aligned CMUDict corpus [1]. In terms of
phoneme and word accuracy of the OOV words, on comparison with sev-
eral proposed baseline approaches, the evaluation results show that our pro-
posed approach improves on the previous one-stage neural network-based
approach for G2P conversion. The results of comparison with another ex-
isting approach indicate that it provides higher phoneme accuracy but lower
word accuracy on a general dataset, and slightly higher phoneme and word
accuracy on a selection of words consisting of more than one phoneme
conflicts.
key words: two-stage neural network, grapheme-to-phoneme conver-
sion, many-to-many mapping, prediction through phonemic information,
phoneme conflict

1. Introduction

A speech synthesis system usually creates output speech via
phonemic information rather than direct representation of
textual information. As a result, the quality of the precise
conversion of arbitrary text into its corresponding phoneme
string has a strong impact on the performance of the whole
system. The phonemic transcription of a written word could
possibly be generated by consulting a pronunciation dictio-
nary available inside the system for the in-vocabulary words
or predicted through a data-driven G2P conversion for the
Out-Of-Vocabulary (OOV) words.

Fundamentally, some previous approaches [2], [3], [7]
integrated many-to-one mapping techniques between letters
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and phonemes, in which a phoneme is determined by us-
ing a sequence of letters. This approach proved unsatis-
factory because there is no strict correspondence between
letters and phonemes [8], especially in the case of a less
regular spelling language like English. Various many-to-
many mapping techniques between letters and phonemes
for taking the G2P conversion to the next level have sub-
sequently been proposed. For example, Rama et al. treat
the letter-to-phoneme conversion problem as a phrase-based
statistical machine translation problem [11]. They removed
the one-to-one alignments from one of the most complex
American English words-based dictionary (known as the
auto-aligned CMUDict corpus [1]) and induced again many-
to-many alignments between letters and phonemes using
GIZA++ toolkit. Consequently, they reported 91.4% and
63.81% for the average phoneme accuracy and word accu-
racy, respectively. Based on the same corpus, the letter-to-
phoneme conversion by inference of the rewriting rules pro-
vided a 74.40% word accuracy measured in terms of word
precision averaged on the full dataset (including the train-
ing and testing datasets) [12]. The HMM-based approach
with context-sensitive observations for G2P conversion [13],
proposed in 2010 by Ogbureke et al., showed a strong in-
terest in the use of context information at both graphemic
and phonemic levels. Ogbureke et al. also stated that dif-
ferent corpora always provided different performances be-
cause they obtained as much as 79.79% word accuracy on
the Unilex corpora containing the UK English words, but
only a maximum of 57.85% for the above mentioned CMU-
Dict corpus owing to a large number of loan words and some
remarkable errors. Conversely, the joint sequence model,
proposed in 2008 by Bisani and Ney [14], is one of the
most popular approaches in G2P conversion. Recently, the
Weighted Finite-State Transducer (WFST)-based G2P con-
version [15] achieved a good word accuracy result (∼75.5%)
on the CMUDict dataset by utilizing a standard joint N-gram
model and investigating N-best rescoring with a Recurrent
Neural Network Language Model (RNNLM).

However, it appears that the above-mentioned ap-
proaches –regarded as single-stage model-based ap-
proaches– are not really applicable to the problem of con-
flicting phonemes at the output level of G2P conversion,
where an input grapheme∗ could, in the same context, pro-
duce many possible corresponding output phonemes at the

∗In this paper, a grapheme is strictly equal to a single letter,
rather than a spelling unit.
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same time. For instance, if the model takes a sequence of
seven graphemes as input, the grapheme “A” on sequence
“HEMATIC” can produce the phoneme /AE/ when it be-
longs to the word “SCHEMATIC”, and also /AH/ when it is
within another word “MATHEMATICIAN”. Thus, it is dif-
ficult to identify the correct phoneme corresponding to “A”
since there is more than one choice. This kind of problem
may negatively impact the performance of the G2P conver-
sion model. Consequently, this paper aims to take it into
account in order to help to improve the phoneme predicting
quality in G2P conversion.

Over the years, several different neural network-based
approaches for G2P conversion have been developed; how-
ever, recently they have not been very competitive [17].
Most of these approaches were constructed as one-stage
models [2], [4], [5], so they were not integrated with the
many-to-many mapping technique between graphemes and
phonemes. Considering these facts, in this paper, a two-
stage neural network-based approach for G2P conversion is
reasonably proposed, which enables the use of grapheme
and phoneme contexts in a way that is different from that
of previous approaches for dealing with the problems out-
lined above. The first-stage neural network is implemented
as a many-to-many mapping model between graphemes and
phonemes for the automatic conversion of word to phoneme
sequences. Next, the second stage uses a combination of the
phoneme sequences obtained as an input pattern to predict
the output phoneme corresponding to each input grapheme
in a given word. At this stage, it is particularly capable of
generating different phonemic patterns from the same input
grapheme sequence that appears in different words.

We evaluate our approach against two proposed base-
lines using the reconstructed version of the auto-aligned
CMUDict corpus. The results indicate as much as a 2% im-
provement in word accuracy measured on the OOV words.
Thus, the approach can be regarded as an improvement on
the previous one-stage neural network-based G2P conver-
sion.

The remainder of this paper is organized as follows: In
Sect. 2, we discuss the ability currently lacking in single-
stage neural network-based G2P conversion. We then
describe the two-stage neural network-based approach in
Sect. 3, and present its experimental results in Sect. 4. We
discuss the experimental results by investigating the error
analysis in Sect. 5 and then conclude this paper in Sect. 6.

2. Single-Stage Neural Network-Based G2P Conver-
sion

The G2P conversion model was established for use in pre-
dicting the phonemes corresponding to the input text†, es-
pecially the OOV words. It is usually trained using the
graphemes-phonemes pairs (g-p pairs) extracted from a pro-
nunciation dictionary, a text file containing a large number

†Here, the input text is just a single word because the pronun-
ciation dictionary being used [1] contains isolated words only.

of words together with their phonetic transcriptions. In this
case, each word and its pronunciation in the dictionary must
be aligned before being used. Therefore, for each occur-
rence (i.e., word→phonemes) of the auto-aligned CMUDict
corpus [1], both grapheme and phoneme sequences have the
same length owing to the use of empty grapheme “ ” and
empty phoneme / / notations. For example, the phoneme
sequence of the word “CAPAB LE” is represented by /K
EY P AH B AH L /.

2.1 Mapping Technique between Graphemes and Phonemes

The context-dependent grapheme model considers the as-
sociation between graphemes and phonemes as many-to-
one [2]. Thus, the extracted g-p pairs are obtained by
passing two different slicing windows [6] through each oc-
currence of the dictionary; a window is passed through
the word grapheme-by-grapheme, while another window,
one phoneme in size, is passed through its corresponding
phoneme string phoneme-by-phoneme [4]. In this context,
several graphemes as input and a single phoneme as out-
put are required. For example, if the word G=g1g2 . . . gn

corresponds to the phoneme sequence P=p1p2 . . . pn, then
the extracted pair between the focal grapheme gi at position
i (where i = 1, . . . , n) and its corresponding phoneme pi is
represented as below:

gi−x + · · · + gi−1 + gi + gi+1 + · · · + gi+x
︸������������������������������������������������︷︷������������������������������������������������︸

→ pi

⇔ seq(gi, x) → pi

Where g ∈ {“A’’, “B’’, . . . , “Z’’ , empty grapheme “ ’’}
p ∈ {/AA/, /AE/, . . . , empty phoneme / /}

(1)

Here, + denotes sequence concatenation. The segments
(gi−x+· · ·+gi−1) and (gi+1+· · ·+gi+x) represent left and right
contexts of the focal grapheme gi, respectively, while x indi-
cates the size of each context side. In this equation, an input
sequence seq(gi, x) is constructed by concatenating the fo-
cal grapheme gi with its left and right context information,
so the length of this sequence is equal to (2x + 1).

On the other hand, considering the correspondence
between graphemes and phonemes as many-to-many has
also been stated as a beneficial technique in many recent
studies because it can cover all possible mappings be-
tween graphemes and phonemes (e.g., one-to-one, many-to-
one, one-to-many, and many-to-many) [10], [11], [13], [19].
These techniques inspired us to incorporate the context-
dependent phoneme model into neural network-based G2P
conversion. This results in phoneme pi in Eq. (1) being def-
initely replaced by the phoneme sequence seq(pi, y), where
y indicates the size of each context side of pi. Inversely,
Eq. (2) becomes Eq. (1) once the parameter y is set to zero.

gi−x+· · ·+gi+· · ·+gi+x
︸�����������������������︷︷�����������������������︸

→ pi−y+· · ·+pi+· · ·+pi+y
︸�����������������������︷︷�����������������������︸

⇔ seq(gi, x) → seq(pi, y)
(2)
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Table 1 List of the g-p pairs extracted from two given words
(“SCHEMATIC” and “MATHEMATICIAN”) by using a slicing window
of seven graphemes (x=3) as input and another window of one (y=0) or
five phonemes (y=2) as output.

g-p
pair

Input
+grapheme context

(7 graphemes)

Output
no context

(1 ph.)

Output
+phoneme context

(5 phonemes)
seq(gi, 3) seq(pi, 0) seq(pi, 2)

P1 S C H E S S K
P2 S C H E M K S K AH
P3 S C H E M A S K AH M
P4 S C H E M A T AH K AH M AE
P5 C H E M A T I M AH M AE T
P6 H E M A T I C AE AH M AE T IH
P7 E M A T I C T M AE T IH K
P8 M A T I C IH AE T IH K
P9 A T I C K T IH K

P10 M A T H M IH K M AE TH
P11 M A T H E AE K M AE TH
P12 M A T H E M TH M AE TH AH
P13 M A T H E M A AE TH AH M
P14 A T H E M A T AH TH AH M AH
P15 T H E M A T I M AH M AH T
P16 H E M A T I C AH AH M AH T IH
P17 E M A T I C I T M AH T IH SH
P18 M A T I C I A IH AH T IH SH
P19 A T I C I A N SH T IH SH AH
P20 T I C I A N IH SH AH N
P21 I C I A N AH SH AH N
P22 C I A N N AH N

2.2 Lack of Ability in Phoneme Prediction

When the G2P conversion is treated as a single-stage model,
the output phoneme is always predicted directly through the
input graphemic information [2], [5]. Table 1 clearly shows
that in this case the model lacks the ability to solve the
phoneme conflicts at the output level of G2P conversion.
For example, it is impossible to distinguish between the con-
flicted pairs P6 and P16 because they have the same input
sequence (e.g., “HEMATIC”) but different outputs (e.g.,
/AE/ and /AH/ ). Even when the phoneme context gets in-
volved (y>0) in the model or not (y=0), the problem always
remains because only one phoneme is obviously produced
at the output layer of the model.

In addition, it appears that the grapheme side does
not carry enough information or knowledge relating to
the phonological interaction [9]. Therefore, the grapheme-
based phoneme prediction method implemented in single-
stage model-based approaches does not appear to be very
effective for improving the G2P conversion performance as
long as the conflict at the phonemic level remains unsolved.

3. Two-Stage Neural Network-Based G2P Conversion

In order to deal with the problem discussed in the previous
section without affecting the previous many-to-many map-
ping technique, we employed a two-stage neural network-
based approach for G2P conversion.

In this section, we first propose a new phoneme-based

method for predicting the output phonemes corresponding
to the given words. We then describe the architecture of the
proposed approach.

3.1 Prediction Using Phonemic Information

Even though multiple output phonemes can be mapped to
the same input grapheme sequence, phoneme prediction in
G2P conversion should be done at the phonemic level it-
self rather than the graphemic level because the grapheme
side does not contain enough information relating to the
phoneme interactions. From this point of view, we propose
a new phoneme prediction method in which the phonemic
information is used as input to select the best final output
phoneme. Because the G2P conversion model theoretically
uses text as input, our proposed method has to be divided
into two consecutive steps:

Grapheme sequence⇒ Phoneme sequence⇒ Phoneme

The proposed method first converts the graphemic
information into phonemic information without worrying
about any conflict at the phonemic level. In this step, each
grapheme sequence can produce only one output phoneme
sequence at a time. Next, all the related output phoneme
sequences are combined and used at the second step of exe-
cution to predict the exact output phoneme of the G2P con-
version model.

3.2 Architecture of the G2P Conversion Model

On the basis of the new phoneme prediction method pre-
sented in the previous section, the proposed G2P conversion
model is fundamentally built by putting two different multi-
layer neural networks in sequence as depicted in Fig. 1. The
first neural network is implemented as a many-to-many con-
version model to automatically transform each grapheme se-
quence extracted from a given word into the corresponding
phoneme sequence. This facilitates coverage of all possible
graphemes-phonemes associations. The second neural net-
work then uses each combination of the obtained phoneme
sequences as an input pattern to enable prediction of the fi-
nal output phoneme corresponding to each input grapheme
in the given word. This stage is specially established to take
action on the problem of conflicting phonemes, which is im-
possible to solve in the first stage model.

3.2.1 First-Stage Neural Network

As depicted in Fig. 1, the first-stage neural network is con-
structed based on the same technique described in Sect. 2,
which was implemented to automatically convert a sequence
of graphemes (i.e., seq(gi, x)) into another sequence of
phonemes (i.e., seq(p′i , y)) that is necessary for helping the
second-stage neural network to generate different phonemic
patterns out of the same input grapheme sequence appearing
in two or more different words.

This model is trained with the g-p pairs extracted with
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Fig. 1 Architecture of a Two-Stage Neural Network-based approach for G2P conversion, performed
on the occurrence “SCHEMATIC”→ /S K AH M AH T IH K/ while x = 3 (seven graphemes), y = 2
(five phonemes) and z = 2 (five sequences).

Fig. 2 An example that demonstrates how to solve the phoneme conflicts
in G2P conversion using the two-stage neural network-based approach.

respect to Eq. (2) from all the occurrences of the pronun-
ciation dictionary. For example, according to Table 1, if
x=3 and y=2 are set, then 22 extracted pairs are obtained
from two given words “SCHEMATIC” and “MATHEMATI-
CIAN”. After the training process terminates, according to
the left part of Fig. 2, some output information (e.g., the
phoneme /AH/ or the phoneme sequence /AH M AH T IH/)
is lost because of the phoneme conflicts, so the same output
phoneme sequence /AH M AE T IH/ is generated from the
input of both pairs P6 and P16.

3.2.2 Second-Stage Neural Network

According to Fig. 1, for an input word G=g1g2 . . . gn con-
taining n graphemes, a set of n phoneme sequences (e.g.,
seq(p′1, y), seq(p′2, y), . . . , seq(p′n, y)) are produced after ter-
minating the process at the first-stage neural network. Thus,
the desired output phoneme pi corresponding to the focal
grapheme gi on sequence seq(gi, x) can be predicted by in-
vestigating the information related to pi (i.e., this refers
to p′i) that can be found at different locations within some
of the obtained phoneme sequences; in the case where
the current input grapheme sequence seq(gi, x) outputs the
phoneme sequence seq(p′i , y) at the first-stage neural net-
work, the information concerning p′i can be found as fol-
lows:

• At the central position of the current phoneme se-
quence seq(p′i , y).• Within the right context side of the phoneme sequences
preceding seq(p′i , y). As seen in Fig. 1, those preceding
phoneme sequences include seq(p′i−1, y), seq(p′i−2, y),
. . . , seq(p′i−z+1, y) and seq(p′i−z, y).• Within the left context side of the phoneme sequences
succeeding seq(p′i , y). As can be seen in Fig. 1, those
succeeding phoneme sequences include seq(p′i+1, y),
seq(p′i+2, y), . . . , seq(p′i+z−1, y) and seq(p′i+z, y).

Here, parameter z indicates the number of preceding or suc-
ceeding phoneme sequences. In this paper, the phoneme se-
quences preceding and succeeding seq(p′i , y) are called the
neighborhood phoneme sequences of seq(p′i , y).

Consequent on these facts, we propose the phoneme
context extending technique in which all the related
phoneme sequences (i.e., the sequences containing informa-
tion about p′i , which include the current phoneme sequence
and its neighborhood sequences) are concatenated. This can
generate a phonemic pattern with larger context including
a strong knowledge related to the phonological interaction
between the output phoneme pi and other phonemes in the
conversing word. Since the neural network-based approach
is used at the first-stage, it is then used at the second stage
because of the coding time reduction and its simple imple-
mentation. Therefore, the second-stage neural network de-
termines the final output phoneme via the generated pattern
using the following equation:

preceding sequences succeeding sequences
︷��������������︸︸��������������︷

seq(p′i−z, y)+ · · ·+seq(p′i , y) +
︷��������������︸︸��������������︷

· · · +seq(p′i+z, y)
︸��������������������������������������������������������︷︷��������������������������������������������������������︸

→ pi

⇔ Pattern(p′i , y, z) → pi

(3)

Owing to the problem presented in Table 1, it is difficult
to distinguish the output between the g-p pair P6 and P16
because they have the same input grapheme sequence (e.g.,
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“HEMATIC”). However, the example in Fig. 2 demonstrates
that our two-stage neural network-based approach for G2P
conversion can provide a good solution to the problem by
adding the second-stage neural network model. This facili-
tates the creation of two different phonemic patterns repre-
senting the grapheme “A” in sequence “HEMATIC”, which
belongs to two different words (e.g., “SCHEMATIC” and
“MATHEMATICIAN”). Furthermore, the phonemes along
the diagonal positions and those at the top-left, as well as the
bottom-right of each pattern, are very important for distin-
guishing between the output phonemes in cases where they
have the same input grapheme sequences.

In practice, some unpredicted errors occurred after the
first-stage neural network because it virtually impossible to
obtain a perfectly trained neural network to represent a com-
plex system like G2P conversion. Fortunately, as can be
seen in Fig. 2, these errors could help to produce some extra
patterns for the second-stage sometimes.

4. Evaluation

In this section, we first describe the data preparation process.
We then briefly explain the experimental setup, after which
we report on the experimental results obtained from various
proposed test sets.

4.1 Data Preparation

4.1.1 Auto-Aligned CMUDict Corpus

We chose the American English words-based pronuncia-
tion dictionary (known as the auto-aligned CMUDict cor-
pus [1]) to evaluate the performance of our proposed ap-
proach against two baseline approaches. This corpus,
which contains many acronyms and loan words from differ-
ent languages such as Japanese, French, and German, has
been widely used by researchers [11]–[13]. It was origi-
nally created using 34 graphemic symbols (e.g., “A”. . . “Z”,
“2”. . . “7”, “9” and empty grapheme “ ”) and 40 phonemic
symbols (e.g., /AA/, /AE/, /SH/, empty phoneme / /, etc.).

It comprise a total of 112,102 isolated words, in-
cluding 838,996 graphemes and phonemes, owing to the
aligned corpus. Further, it was originally subdivided into
10 folds (e.g., part0, . . . , part9) each of which contains
almost the same number of words, graphemes as well as
phonemes [22].

4.1.2 Newly Aligned CMUDict Corpus

Various researchers have stated that the auto-aligned CMU-
Dict corpus has a lower consistency than other corpora and
also has errors [10], [13], while others have emphasized that
the quality of the pronunciation dictionary could negatively
affect the G2P conversion performance [18]. As a result, we
reconstructed a version of the auto-aligned CMUDict cor-
pus with higher consistency (i.e., a newly aligned CMUDict
corpus) using the GIZA++ toolkit and then used it in our

Fig. 3 Comparison of the alignment between graphemes and phonemes
in the auto-aligned CMUDict (column 2) and the newly aligned CMUDict
(column 3).

Fig. 4 Consistency measurement based on the number of corresponding
phonemes that could be mapped by each grapheme inside the original and
new datasets.

experiments. Because the number of numeric graphemes
was too low, all of the words containing numeric graphemes
were removed. As a result, it remained only 27 graphemic
symbols remained in the new corpus.

The resulting corpus proved more reliable and consis-
tent than the original. Figure 3 shows that the word lo-
cated in the third column is always shorter and well-aligned
than the one located in the second column. In addition, by
counting the phonemes that could possibly be mapped from
each grapheme, Fig. 4 demonstrates that the grapheme in the
newly aligned CMUDict corresponds to fewer numbers of
phonemes than the one inside the auto-aligned CMUDict.
For example, the number of phonemes that could be mapped
by the grapheme “E” is reduced from 20 to only 12.

4.2 Experimental Setup

4.2.1 Training and Testing Datasets

We conducted experiments on the newly aligned CMU-
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Dict corpus. Nine out of 10 folds (e.g., part0, . . . , part8)
were combined and then used as a training dataset, while
the remainder fold (e.g., part9) was used as a testing
dataset. Thus, the training dataset contained a total of
100,713 words or 750,198 graphemes/phonemes, while the
testing dataset contained 11,188 OOV words or 83,267
graphemes/phonemes.

To achieve accurate phoneme prediction, we used the
Orthogonal Binary Codes (OBC) [4] to encode each symbol,
where the length of a vector corresponding to a single sym-
bol was exactly equal to the total number of symbols in the
group the symbol belongs to, and therefore each grapheme
and phoneme was represented using a vector of 27 elements
(or 27 neurons) and 40 elements (or 40 neurons), respec-
tively. For each vector, only one element at a specific index
was active or set to one, while the others were set to zero.

• “A” = 100000000000000000000000000
• “B” = 010000000000000000000000000
• “H” = 000000010000000000000000000
• /AA/ = 1000000000000000000000000000000000000

000
• /CH/ = 0000000001000000000000000000000000000

000

4.2.2 Four Different Test Sets

In this research, we proposed and separately utilized four
different test sets. First, we created a simple baseline ap-
proach (Baseline1) and implemented it using only a one-
stage neural network. In accordance with Fig. 3, this base-
line was built using Eq. (1) or Eq. (2) with y = 0.

Next, we proposed an extended interesting baseline ap-
proach (Baseline2) to help prove that the performance of
the G2P conversion model can possibly be improved by just
adding the second-stage model. As depicted in Fig. 5, this
baseline was designed with respect to the architecture of our
two-stage model-based approach, with the exception that the
first-stage neural network was replaced by the first baseline
approach. This means that once the phoneme context is not

Fig. 5 Architecture of Baseline1 and Baseline2.

involved in the model (when y = 0), each output phoneme
sequence at the first-stage neural network contained only
one phoneme per sequence (i.e., seq(p′i , 0) = p′i).

We also utilized two other test sets using the same two-
stage neural network-based approach (written as TSNN in
this section to reduce word repetition), but different config-
urations. For the first configuration (TSNN 3ph), we used a
sequence of three phonemes (i.e., y2 = 1) as the output of
the first-stage neural network, and also three phoneme se-
quences (i.e., z2 = 1) as the input of the second-stage neu-
ral network. We then enlarged the size of the phoneme se-
quence from three to five phonemes (i.e., y1 = 2) and also
the number of sequences from three to five sequences (i.e.,
z1 = 2) for another configuration (TSNN 5ph).

As can be seen in Fig. 1, TSNN 5ph uses a pattern of
five joint phoneme sequences obtained from the first-stage
neural network to predict the final output phoneme at the
second-stage neural network. This means that five input
grapheme sequences are involved in the generation of each
pattern. This may appear unfair if we compare the per-
formance of TSNN 5ph with that of Baseline1 and Base-
line2 using the same input grapheme sequence size. There-
fore, the size of the grapheme sequence being used in both
baseline approaches must be longer than that being used
in TSNN 5ph and depend on the value of z; according to
the observation of the five grapheme sequences involved,
the bottom part of Fig. 5 shows that each input grapheme
sequence used in both baseline approaches must contain
four graphemes more than used in TSNN 5ph (i.e., accord-
ing to Table 2, x3 = x1+z1 = x1+2) and two graphemes
more than used in TSNN 3ph (i.e., x3 = x2+z2 = x2+1).
Likewise, at the second-stage of TSNN 5ph, only nine
exact phonemes are found within each generated pattern
of five joint phoneme sequences. Thus, the number of
input phonemes at the second-stage of Baseline2 should
be equal to nine phonemes (i.e., according to Table 2,
z3 = z1+y1 = 4).

According to Eq. (1), for each test set in Table 2,
the size of the input grapheme window must be an odd
number depending on its context size (e.g., x1= 3→7,
x2= x1+1 = 4→8 and x3= x1+2 = 5→9).

Table 2 Configuration of the four proposed test sets.

First-stage
seq(gi, x)→ seq(p′i , y)

Second-stage
Pattern(p′i , y, z)→ pi

x (# gr.) y (# ph.) y (# ph.) z (# seq.)

Baseline 1 x3: 5→9 y3: 0

Baseline 2 x3: 5→9 y3: 0 y3: 0 z3: 4

Two-stage neural
network using 3ph. x2: 4→8 y2: 1 y2: 1 z2: 1

Two-stage neural
network using 5ph. x1: 3→7 y1: 2 y1: 2 z1: 2
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4.2.3 Configuration of FANN Parameters

We implemented each neural network stage of our proposed
model using the functions provided by the FANN (Fast Arti-
ficial Neural Network†) library. We obtained the best results
when each stage was set up as follows:

• Standard neural network with three layers
• Incremental backpropagation algorithm
• Learning rate = 0.8; Momentums = 0.1
• Symmetrical sigmoid activation function††, where the

value of steepness is equal to 0.01
• Number of neurons at the first stage:

– Input layer = (2x + 1) ∗ 27
– Hidden layer = (2x + 1) ∗ 27 ∗ 2
– Output layer = (2y + 1) ∗ 40

• Number of neurons at the second stage:
– Input layer = ((2z + 1) ∗ (2y + 1)) ∗ 40
– Hidden layer = ((2z + 1) ∗ (2y + 1)) ∗ 40/2
– Output layer = 40

• (2x+1), (2y+1) and ((2z+1) ∗ (2y+1)) are the sizes of
seq(gi, x), seq(pi, y) and Pattern(p′i , y, z), respectively.

4.2.4 Accuracy Measurements

To compare with other approaches introduced in Sect. 1,
we evaluated the performance of the model in terms of
phoneme accuracy (PAcc) and word accuracy (WAcc) us-
ing the NIST sclite scoring toolkit†††. Because the goal of
this paper is improvement of the performance of G2P con-
version measured on the OOV words, we only report results
related to this objective. PAcc and WAcc are calculated as
follows:

PAcc = 1 − PER = 1 − ((S p − Dp − Ip)/Np)

WAcc = 1 −WER = 1 − (S w/Nw)

where PER and WER are known as Phoneme Error Rate
and Word Error Rate, respectively; S p, Dp, Ip and Np are
the number of phoneme substitutions, phoneme deletions,
phoneme insertions, and total phonemes in the reference,
respectively. Since only isolated words were used in our ex-
periments, the value of WER was exactly equal to the num-
ber of word substitution (S w) divided by the total number of
words in reference (Nw).

4.3 Experimental Results

Each proposed test set used the newly aligned CMUDict
corpus to evaluate the model performance. Based on
Fig. 6, by investigating various input grapheme sequence
sizes (e.g., when x1=3→7, x2=4→8 and x3=5→9), our

†FANN Library: http://leenissen.dk/fann/wp/
††FANN Datatypes: http://leenissen.dk/fann/html/files/

fann data-h.html#fann activationfunc enum
†††NIST sclite scoring toolkit: http://www.nist.gov/speech/tools/

(a) Phoneme Accuracy (PAcc)

(b) Word Accuracy (WAcc)

Fig. 6 PAcc and WAcc measured on the OOV words.

Table 3 Word Error Rate (WER) of the four proposed test sets, which
were evaluated on the OOV words and grouped by the number of erroneous
phonemes per word. These reported results were obtained with x1 = 7,
x2 = 8 and x3 = 9.

Nb. of errorenous
phonemes
per word

WER
Baseline1
(x3 = 9)

WER
Baseline2
(x3 = 9)

WER
TSNN 3ph

(x2 = 8)

WER
TSNN 5ph

(x1 = 7)
1 21.92% 21.30% 20.25% 19.89%
2 7.55% 7.52% 7.04% 6.99%
3 2.37% 2.33% 1.99% 2.03%
4 0.48% 0.44% 0.40% 0.46%
5 0.10% 0.08% 0.08% 0.11%
6 0.02% 0.04% 0.01% 0.01%

proposed two-stage neural network-based approach usually
provided higher PAcc and WAcc than both baseline ap-
proaches.

Further, it was also proved that the performance
of the G2P conversion given by each test set increased
relative to the size of the input grapheme sequence; a
nice improvement in WAcc occurred once the number
of graphemes started increasing from seven to eleven
graphemes (i.e., x1, x2, x3 = 3→ 5). However, for our pro-
posed approach TSNN 5ph, the best result (PAcc=94.31%
and WAcc=70.52%) was reported when the input sequence
consisted of 15 graphemes (i.e., x1 = 7). In addition,
TSNN 5ph usually outperformed TSNN 3ph when x1 was
greater than four.

In terms of the WER of the OOV words, Table 3 shows
that TSNN usually produces less erroneous words than both
baseline approaches. Further, the values obtained for PAcc
are always higher than 90%, so a small difference in PAcc
has a strong impact on the result of WAcc because we had
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Table 4 Training time of the four proposed test sets. Both the minimum
and maximum durations of each epoch during the training of each neural
network stage are described here.

First-stage Second-stage

Con
text

Best
epoch

Time/epoch
(minutes)
[min, max]

Best
epoch

Time/epoch
(minutes)

[min, max]
Baseline1 x3=5 49 [15, 16] 10 [13, 14]

(1st-stage only) x3=6 41 [20, 22] 13 [13, 14]
& x3=7 46 [26, 27] 10 [13, 14]

Baseline2 x3=8 51 [21, 22] 16 [13, 14]
(both stages) x3=9 48 [38, 42] 8 [13, 14]

x2=4 137 [15, 20] 35 [8, 9]
x2=5 81 [20, 27] 27 [8, 9]

TSNN 3ph x2=6 56 [22, 39] 24 [8, 9]
x2=7 56 [27, 34] 46 [9, 10]
x2=8 57 [45, 60] 24 [9, 10]
x1=3 94 [10, 16] 54 [61, 69]
x1=4 183 [15, 24] 16 [64, 66]

TSNN 5ph x1=5 111 [17, 25] 13 [53, 54]
x1=6 81 [23, 33] 10 [52, 53]
x1=7 76 [19, 40] 10 [52, 54]

surmised that most of the erroneous words (more than 19%)
contains just one erroneous phoneme.

The training time of each stage model is also reported
in Table 4. Because neural networks were used in the exper-
iments, the training time must be calculated and separated
epoch-by-epoch (1 epoch = 1 training iteration). From one
to another epoch, we observed that the training time usually
increases incrementally, so we decided to report two differ-
ent values of time; specifically, the minimum and maximum
training times. The minimum training time is measured
around the first epoch, while the maximum training time
is measured around the best epoch. In this work, the best
epoch refers to a selected epoch where the trained model
has the set of weights that will provide the best general-
ization performance, which is usually found at any epoch
that will provide the smallest value of Mean Squared Error
(MSE) evaluated on the testing data.

Theoretically, the training time of each test set depends
exactly on the size of each staged neural network. For exam-
ple, except for the case of x1=7 and x3=8, when the value
of x is increased, Table 4 shows that the training time per
epoch at the first-stage neural network also increased. Oth-
erwise, it does not affect the second-stage at all because it is
independent of the value of x. Based on the architecture of
the second-stage neural network, both TSNN 3ph and Base-
line2 use the same number of neurons and model configu-
rations, but they provide different training times. Hence,
we can assume that the training time also depends on the
PC performance. Since we trained the model on a shared
server (Windows 7 professional 64 bits, Core i7-3930K 3.20
GHz, 32.0 GB) in our laboratory, the training process was
sometimes slow or fast depending on the number of user
connections and the number of simultaneous training pro-
cesses launched from the same client PC. Furthermore, the
training time per epoch of the second-stage of TSNN 5ph
appears too long compared to others because we could not

Table 5 Example of the words selected consisting of two phoneme con-
flicts (“R”→ {/ER/, /R/} and “A”→ {/EY/, /AH/}), while x = 3 and y = 2.

Word Corresponding phonemes

seq(gi, 3) seq(pi, 2)
COLL ABORATE D K AH L AE B ER EY T

EL ABORATE S AH L AE B ER EY T S
EL ABORATE AH L AE B R AH T
EL ABORATE LY AH L AE B R AH T L IY

Table 6 Accuracy given by TSNN and WFST based on two different
datasets.

TSNN 5ph
(x1 = 7)

WFST

Newly aligned CMUDict.
PAcc 94.31% 93.46%
WAcc 70.52% 73.45%

Words produce the phoneme conflicts
PAcc 93.60% 91.99%
WAcc 57.50% 57.05%

load all the training data at once caused by the memory lim-
itations, so the training dataset had to be decomposed into
two or three parts at this stage. For each epoch, those parts
were randomly selected one-by-one to be loaded, shuffled,
trained, evaluated, and then deleted. As a result, the training
time increased proportionately.

4.4 Comparing with a Previous Approach

In addition to the evaluation results in the previous sec-
tion, we also compared our proposed approach to one of the
most popular approaches in G2P conversion –the Weighted
Finite-Stage Transducer (WFST)-based approach [15] avail-
able in the Phonetisaurus G2P toolkit†.

We compared TSNN and WFST using two different
datasets: a general dataset (i.e., the newly aligned CMU-
Dict corpus) and a special dataset (i.e., a small subset of the
newly aligned CMUDict corpus) in which only the words
consisting of more than one phoneme conflicts, as seen in
Table 5, are selected. For the first dataset, the training
and testing data were the same as in our previous experi-
ments, which have already been described in Sect. 4.2.1. For
the second dataset, we randomly selected 80% and 20% of
the total 7,123 extracted words for the training and testing
datasets, respectively.

The results in Table 6 show that TSNN 5ph always pro-
vides higher phoneme accuracy than WFST, but, unfortu-
nately, lower word accuracy for the first dataset.

5. Discussion

The experimental results depicted in Fig. 6 and Table 3
clearly show that the proposed two-stage neural network-
based approach for G2P conversion usually provides the
best accuracy on OOV words compared to both baseline ap-
proaches, even when it uses a smaller grapheme sequence
size than others (i.e., x1 < x3).

†Phonetisaurus toolkit: http://code.google.com/p/
phonetisaurus/
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As explained in Sect. 4.2.2, at the input layer of the
first-stage of the G2P conversion model, the exact number of
graphemes and phonemes getting involved in Baseline2 and
TSNN 5ph were quite similar to each other, but both ap-
proaches provided different results; Fig. 6 and Table 3 indi-
cate that TSNN 5ph usually provided a higher performance
than Baseline2.

Even when we decreased the value of y from two down
to only one (i.e., reduced the size of phoneme sequence
from five down to only three phonemes per sequence) in
order to have the same size phonemic pattern (e.g., a pat-
tern of nine phonemes) at the input layer of the second-stage
of both approaches mentioned, our proposed approach (i.e.,
TSNN 3ph) still outperformed Baseline2. Therefore, it does
not matter if the same numbers of phonemes are used or
not, the two-stage neural network-based approach for G2P
conversion always outperformed both baseline approaches.
This can result in the assumption that the grapheme and
phoneme contexts are not really effective to fix the prob-
lem of conflicting phonemes at the output layer of the G2P
conversion model, unless the pattern of joint phoneme se-
quences is incorporated at the second-stage.

The comparison between the results given by Base-
line1 and Baseline2 also demonstrates that the second-stage
neural network is very helpful in boosting the accuracy of
the G2P conversion model to the next level. Even if the
phoneme context information is absent in Baseline2, it is
still possible to go beyond the performance attainable by
Baseline1, by assigning the value of z to a positive num-
ber (e.g., z = 4) at the second-stage neural network. Perhaps
this technique may also help to improve the performance of
existing approaches, such as the joint-sequence model, by
creating a hybrid model that integrates the approach into our
two-stage model-based G2P conversion.

Further, following the error analysis of the erroneous
words, some invisible information was discovered. For ex-
ample, some extracted graphemes-phonemes pairs in the
testing dataset (i.e., OOV words) were never seen during
the training process, so the wrong output phonemes were
given during the evaluation. In addition, most of the erro-
neous words containing more than one erroneous phonemes
per word were from foreign words such as “SENZAKI” and
“AICHI” from Japanese, “BOGDANOWICZ” from Polish,
“XIAOGANG” from Chinese, etc.

Conversely, the evaluation results of comparison with
another existing approach, the WFST-based approach, in
Table 6 demonstrate that our approach provides higher
phoneme accuracy but lower word accuracy on the first
dataset. However, when the training data contain only words
with some phoneme conflicts, our approach yields a better
performance than WFST. This shows that the two-stage neu-
ral network-based approach is good at identifying the single
phoneme in a word by using the grapheme and phoneme
contexts differently from previous approaches, especially
when a phoneme conflict has occurred. Otherwise, since it
does not use any language model-based technique, it lacks
knowledge for detecting the whole word compared to the

WFST-based approach. Therefore, for the next step of im-
provement, we have to focus on how to reduce the erroneous
words containing only one erroneous phoneme in order to
increase the word accuracy.

6. Conclusion and Future Work

This paper has shown that using only one neural network is
not enough for solving some complicated problems in G2P
conversion. As a result, the two-stage neural network is con-
sidered a powerful approach for improving the accuracy of
the G2P conversion model. To output the phonemes of the
input text, prediction must be based on phonemic rather than
graphemic information. Because two different neural net-
works and OBC encoding algorithm are used, this approach
is also counted as an expensive and time-consuming ap-
proach, but it can also provide good results while perform-
ing on a large and complex corpus such as the auto-aligned
CMUDict [1]. In terms of phoneme and word accuracy, the
evaluation results show that our proposed approach usually
outperforms the baselines and it also can be regarded as an
improved version of the single-stage neural network-based
approach for G2P conversion.

In the future, we plan to incorporate a pseudo-
phoneme based technique [16] and the graphones based
technique [14] into our approach to reduce the conflicting
problems between phonemes at the first-stage neural net-
work. A syllable-based approach may also help to improve
the performance of the model as well [20], [21]. Moreover,
instead of using the FANN library, we will try to implement
each stage model using other machine learning toolkits such
as the RNNLM toolkit† or OpenANN††. A hybrid model
mentioned in the previous section will be taken into consid-
eration as well, so that we will probably be able to boost the
word accuracy of our proposed approach to another higher
level.
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