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PAPER

A Sparse Modeling Method Based on Reduction of Cost Function in
Regularized Forward Selection

Katsuyuki HAGIWARA†a), Member

SUMMARY Regularized forward selection is viewed as a method for
obtaining a sparse representation in a nonparametric regression problem.
In regularized forward selection, regression output is represented by a
weighted sum of several significant basis functions that are selected from
among a large number of candidates by using a greedy training procedure
in terms of a regularized cost function and applying an appropriate model
selection method. In this paper, we propose a model selection method in
regularized forward selection. For the purpose, we focus on the reduction
of a cost function, which is brought by appending a new basis function in
a greedy training procedure. We first clarify a bias and variance decom-
position of the cost reduction and then derive a probabilistic upper bound
for the variance of the cost reduction under some conditions. The derived
upper bound reflects an essential feature of the greedy training procedure;
i.e., it selects a basis function which maximally reduces the cost function.
We then propose a thresholding method for determining significant basis
functions by applying the derived upper bound as a threshold level and
effectively combining it with the leave-one-out cross validation method.
Several numerical experiments show that generalization performance of the
proposed method is comparable to that of the other methods while the num-
ber of basis functions selected by the proposed method is greatly smaller
than by the other methods. We can therefore say that the proposed method
is able to yield a sparse representation while keeping a relatively good gen-
eralization performance. Moreover, our method has an advantage that it is
free from a selection of a regularization parameter.
key words: regularized forward selection, nonparametric regression,
sparse representation, thresholding method, cross validation

1. Introduction

This paper considers a regression method using a linear
combination of a large number of basis functions. This
can be viewed as a nonparametric regression problem. In
this setting, we need to suppress model complexity in or-
der to achieve good generalization performance. There are
two approaches for this purpose: smoothing by regulariza-
tion and keeping a sparse representation. Of course, both
are combined in some methods. In this paper, we focus
on methods for obtaining a sparse representation. There
are three different types of such methods: introduction of
a specific cost function with parameters, backward elimi-
nation and forward selection. The support vector machine
(SVM) obtains a sparse representation through an optimiza-
tion procedure under a cost function that consists of a hinge
loss function and an �2-type regularizer (see, e.g., [7]). For
this purpose, LASSO [23] employs a cost function that con-
sists of squared error loss and an �1-type regularizer. Unlike
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SVM, least squares SVM (LS-SVM) [22] or, equivalently,
regularized least squares (RLS) [20] employ squared error as
a loss and an �2-type regularizer as a penalty in the cost func-
tion. The relevance vector machine (RVM) [24] is similar to
those but is formulated in a Bayesian framework. In these
methods, the regularizer controls the smoothness of output
and sparseness is determined by a pruning method under an
appropriate heuristic criterion (see, e.g., [22], [24]). These
are backward elimination methods. Backward elimination
generally features a large computational cost since a large
model should be handled in training with the elimination
procedure. On the other hand, forward selection employs
a greedy training procedure and a model selection strategy.
This procedure necessarily obtains a sparse representation
without handling a large model; i.e. in the greedy training
procedure, it starts from a simple model and adds a new ba-
sis function at each step.

Regularized forward selection (RFS) [18] is a forward
selection method that employs a greedy training procedure
under a regularized cost function. The greedy procedure in
RFS is formulated to be suitable for an iterative calculation.
The cost function in RFS consists of the squared error loss
and an �2 regularizer. This includes the least squares type of
greedy procedure as a special case. The greedy procedure
considered here selects a new basis function at each step in
terms of the reduction of the regularized cost function. Or-
thogonal least squares (OLS) [5], [6] is a special version of
RFS, in which candidates of an appended basis function are
orthogonalized at each greedy step. This orthogonalization
process makes the iterative calculation easy. As a model se-
lection method for OLS, [5], [6] applied the prediction sum
of squares (PRESS) statistics [3], [21], which is also called
the leave-one-out cross validation (LOOCV) error. On the
other hand, for training multi-layer perceptron, some exten-
sions of the extreme learning machine (ELM) [28] also em-
ploy greedy procedures [9], [16], [17]. In [17], a new hidden
node is chosen from a set of randomly generated candidates
and the choice is based on the degree of correlation of the
basis function output to the residual. As the model selection
method in [17], Cp [15] has been applied. In [16], several
new hidden nodes are chosen from a set of randomly gen-
erated candidates and the choice is based on the degree of
reduction of the residual sum of squares; i.e., this method
is based on the least squares method. As the model selec-
tion method in [16], the final prediction error (FPE) [1] is
applied in forward selection and PRESS is used in the back-
ward elimination for candidates selected by FPE; i.e., this is
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a hybrid method.
In this paper, we consider a model selection method in

RFS. We first clarify the structure of the problem of model
selection for the greedy training procedure in RFS. We then
give a model selection strategy that is a thresholding method
and yields a sparse representation as a result. The model se-
lection strategy is practically implemented by incorporating
with the LOOCV method. The greedy procedure consid-
ered in this paper and in [18] is essentially the same as the
algorithm in [16] except in terms of the introduction of a
regularizer and the number of basis functions added in each
step. [27] analyzed a condition for the consistency of feature
selection for the greedy algorithm that is slightly different
from the procedure considered here. A practical model se-
lection method may not be directly obtained by the result of
[27], especially in the context of a nonparametric regression
problem. In a similar work to this paper, [26], boosting for
ridge regression methods is considered including practical
model selection, but does not give a sparse representation.

This paper is organized as follows. In Sect. 2, we for-
mulate a greedy procedure with some basic notations. In
Sect. 3, we present a model selection method for the greedy
procedure defined in Sect. 2. In Sect. 4, we present some
numerical examples including real benchmark datasets in
which we compare our method with other methods in terms
of generalization performances and degrees of sparseness.
Finally, in Sect. 5, we discuss the conclusions and future
works.

2. Formulation and Algorithms

2.1 Problem Formulation

Let {(xi, yi) : i = 1, . . . , n, xi = (xi1, . . . , xid) ∈ Rd, yi ∈ R}
be a set of pairs of d-dimensional input and one dimensional
output training observations. We assume that y1, . . . , yn are
generated by a rule:

yi = h(xi) + ei, i = 1, . . . , n, (1)

where h is a target function on Rd and e1, . . . , en are i.i.d.
observations from a probability distribution with mean 0
and variance σ2. To use matrix notations, we define y =
(y1, . . . , yn)′, e = (e1, . . . , en)′, and h = (h(x1), . . . , h(xn))′,
where ′ stands for the matrix transpose.

We consider a regression method based on a linear sum
of an m-subset of a set of n functions on Rd. The n functions
are denoted by g1, . . . , gn, which we call basis functions. We
define g j = (g j(x1), . . . , g j(xn))′. Throughout this paper, we
assume that g1, . . . , gn are linearly independent. We define
N = {1, . . . , n}. Let s = (l1, . . . , ls) be an s-dimensional
index vector whose elements are in N. We then define Gs =

(gl1 , . . . , gls
), which is n × s matrix.

When m is small relative to n, we attempt to obtain a
sparse representation of a target function in a nonparametric
regression problem. Throughout this paper, we assume that
m < n. For a fixed m, we define αm = (α1, . . . , αm), where
α j ∈ N for j = 1, . . . ,m and α1 � · · · � αm. We also use

αk as a subset of N if there are no confusions; i.e., αk =

{α1, . . . , αk}. We then define the above-mentioned function
by

fαm,wm (x) =
m∑

j=1

w jgα j (x), x ∈ Rd, (2)

where wm = (w1, . . . , wm)′ is a coefficient vector. We define
a cost function by

C(αm,wm, λ) = ‖y −Gαmwm‖2 + λ‖wm‖2, (3)

where λ ≥ 0 is a regularization parameter introduced to
smooth outputs and to stabilize the training process. Un-
der a fixed m and λ, we estimate αm and wm by minimiz-
ing C(αm,wm, λ). Note that this reduces the least squares
estimation when λ = 0. To do this, we first minimize
C(αm,wm, λ) in terms of wm at each fixed αm. We define
Fαm = G′αm

Gαm + λIm, where Im is the m×m identity matrix.
We also define Hαm = Gαm F−1

αm
G′αm

and Pαm = In − Hαm . If
λ = 0, then Hαm and Pαm are usually called the hat matrix
and the residual matrix, respectively, and these are known
to be symmetric and idempotent (see, e.g., [19]). As is well
known, we then have

ŵm(αm) = F−1
αm

G′αm
y (4)

as the minimizing weight vector of (3) at a fixed αm.
Since ŵm(αm) depends on αm, we need to calculate
C(αm, ŵ(αm), λ) for all choices of αm in which the number
of choices is

(
n
m

)
. We then minimize C(αm, ŵ(αm), λ) with

respect to αm. However, this procedure is computationally
expensive. To alleviate this problem, a greedy strategy is
usually employed.

2.2 A Greedy Algorithm

A greedy algorithm for reducing C(αm,wm, λ) is as follows
(see also [17], [18]). Set α̂0 = {}, N0 = {1, . . . , n}, and P0 =

In. Repeat the following procedure for k = 1, . . . , k, where k
is chosen by users.

(1) Calculate

c2
k,l = y

′Hk,ly (5)

for l ∈ Nk−1, where

Hk,l =
Pk−1glg

′
l Pk−1

λ + g′l Pk−1gl
. (6)

(2) Find α̂k = arg maxl∈Nk−1 c2
k,l.

(3) Set α̂k = α̂k−1
⋃{α̂k}, Nk = Nk−1\{α̂k}, and

Pk = Pk−1 − Hk,̂αk , (7)

where \ indicates the subtraction of sets.

We define α̂k,l = (α̂1, . . . , α̂k−1, l). The weight vector
w = w(α̂k,l) that minimizes C(α,w, λ) at α = α̂k,l is given by
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ŵ(α̂k,l) = F−1
α̂k,l

G′α̂k,l
y. (8)

As shown in Appendix A,

C(α̂k−1, ŵ(α̂k−1), λ) = C(α̂k,l, ŵ(α̂k,l), λ) − c2
k,l (9)

holds (see also [17], [18]). Thus, the above procedure min-
imizes the entire cost function for k basis functions under a
fixed α̂k−1 selected up to the previous step. Note that c2

k,l is
calculated for a newly appended basis function and repre-
sents a reduction of the cost function due to the appended
basis function. If λ = 0, then it is a reduction of a residual
sum of squares. It is easy to see that Pk = Pα̂k

by (A· 2). By
using Pk, we can calculate residuals at the k-th step by

rk = Pky. (10)

A greedy algorithm considered here does not need a
calculation of inverse of matrix in each step. However, the
number of multiplications increases in proportion to at most
n2. The number of comparisons to find a best fit basis func-
tion also increases as n increases basically. These calcula-
tions are repeated k times that is the number of greedy steps,
or equivalently, the number of basis functions that are se-
lected as candidates for model selection. Therefore, it takes
much time when k is large while k should be sufficiently
large for a better fitting.

2.3 Relation to OLS

We consider the following step (1’) instead of (1) in the
above procedure.

(1’) If k = 1, we set q1,l = gl for l ∈ N0. If k ≥ 2, we
calculate

qk,l = qk−1,l − βl,k qk−1,̂αk−1
(11)

for l ∈ Nk−1, where

βl,k =
q′k−1,lqk−1,̂αk−1

‖qk−1,̂αk−1
‖2 . (12)

For l ∈ Nk−1, we then calculate c2
k,l with

Hk,l =
Pk−1qk,lq

′
k,lPk−1

λ + q′k,lPk−1qk,l
. (13)

We simply write qα̂k
instead of qk,̂αk

. By induction, us-
ing (11), we can see that {qα̂1

, . . . , qα̂k−1
, qk,l} is a set of or-

thogonal vectors for any l ∈ Nk−1. Note that qk,l, l ∈ Nk−1 are
not necessarily orthogonal. By applying (11) recursively, we
also obtain

qk,l = gl −
k−1∑
j=1

βl, jq j,̂α j
. (14)

We define α̂k,l = (α̂1, . . . , α̂k−1, l) and Qα̂k,l
= (qα̂1

, . . . , qα̂k−1
,

qk,l) which becomes an n × k orthogonal matrix. We define
a cost function given by

C(αk, uk, λ) = ‖y − Qαkuk‖2 + λu′kuk, (15)

where uk ∈ Rk is a coefficient vector of the orthogonalized
vectors. The minimizing coefficient vector of the cost func-
tion at α̂k,l is given by

ûk(α̂k,l) = (Q′α̂k,l
Qα̂k,l
+ λIn)−1Qα̂k,l

y. (16)

By replacing (Gα̂k,l
,w(α̂k,l)) with (Qα̂k,l

, u(α̂k,l)) in Appendix
A, we obtain

C(α̂k,l, uk(α̂k,l), λ) = C(α̂k−1, uk(α̂k−1), λ) − c2
k,l, (17)

where ck,l is defined in step (1’). The algorithm using (1’)
instead of (1) is OLS under the regularized cost function.
Since qα̂1

, . . . , qα̂k−1
, ql are orthogonal, it is easy to see that

Pk−1qk,l = qk,l and c2
k,l = (qk,ly)

2/(λ + ‖qk,l‖2) hold. This
implies that we only need vector calculations to obtain c2

k,l.
Note that the basis function selected at each step can be dif-
ferent for the naive greedy algorithm and OLS since OLS
selects an orthogonalized basis function at each step.

3. Model Selection for the Greedy Procedure

We here assume that e ∼ N(0, σ2In); i.e., e1, . . . , en are
i.i.d. observations from a normal distribution with mean 0
and variance σ2. We also assume that x1, . . . , xn are non-
stochastic for a while.

3.1 Properties of c2
k,̂αk

We define ak,l = λ + g
′
l Pk−1gl. If we define

Zk,l = g
′
l Pk−1y/

√
ak,l, (18)

we then have c2
k,l = Z2

k,l. Zk,l exists for λ ≥ 0 since
g′l Pk−1gl > 0 by (A· 8) in Appendix B. Note that in a prac-
tical computation, this may not hold when λ = 0 because a
numerical instability problem arises. By the definition of y,
we further have

Zk,l = δk,l + ξk,l (19)

for l ∈ Nk−1, where

δk,l = (h′Pα̂k−1
gl)/
√

ak,l, (20)

ξk,l = (e′Pα̂k−1
gl)/
√

ak,l. (21)

In (19), δk,l relates to a target function and ξk,l relates to
additive noise. Thus, (19) represents the bias and vari-
ance decomposition of a reduction of the cost function. Let
l = (l1, . . . , lnk ) be an index vector constructed by enumer-
ating all the elements of Nk−1 in ascending order, where
nk = n − (k − 1). We define Zk,l = (Zk,l1 , . . . ,Zk,lnk

)′,
δk,l = (δk,l1 , . . . , δk,lnk

)′, ξk,l = (ξk,l1 , . . . , ξk,lnk
)′, and Ak,l =

diag(ak,l1 , . . . , ak,lnk
).

Since ξ′k,l = e′Pk−1G lA
−1/2
k,l holds, it is easy to see that

the conditional expectation and covariance matrix of ξk,l
given α̂k−1 = αk−1 are
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E{ξk,l |̂αk−1 = αk−1} = 0nk , (22)

E{ξk,lξ
′
k,l |̂αk−1 = αk−1} = σ2A−1/2

k,l G′lP
2
α̂k−1

G lA
−1/2
k,l (23)

by the property of e, where 0nk is the nk-dimensional zero
vector. ξk,l is a linear transformation of e. Thus, by p.31, [4],
the joint probability distribution of ξk,l given α̂k−1 = αk−1

is the normal distribution that is not possibly degenerate.
Therefore, for l ∈ Nk−1, the conditional probability distri-
bution of ξk,l given α̂k−1 = αk−1 is a normal distribution with
zero mean and variance:

σ2
l = σ

2(g′l P
2
α̂k−1
gl)/ak,l. (24)

We have σ2
l > 0 for λ ≥ 0 by (A· 8) and (A· 9) in Appendix

B. By the definition of ak,l and (A· 11) in Appendix B, we
also have

σ2
l ≤ σ2 (25)

for any l ∈ Nk−1 and λ ≥ 0.
We define δk = maxl∈Nk−1 |δk,l| and θk,n(ε) =√

(2 + ε) log nk, where nk = n − (k − 1) and ε > 0 in which
n is the number of data and k − 1 is the number of selected
basis functions up to the kth step. By using the well-known
upper-tail inequality for a normal distribution and (25), we
have

P

{
|Zk,̂αk | > δk,l + σθk,n(ε)|̂αk−1 = αk−1

}
= P

{
max
l∈Nk−1

|Zk,l| > δk,l + σθk,n(ε)|̂αk−1 = αk−1

}

= P

⎧⎪⎪⎨⎪⎪⎩
⋃

l∈Nk−1

{
|Zk,l| > δk,l + σθk,n(ε)

}
|̂αk−1 = αk−1

⎫⎪⎪⎬⎪⎪⎭
≤ P

⎧⎪⎪⎨⎪⎪⎩
⋃

l∈Nk−1

{|ξk,l| > σθk,n(ε)
} |̂αk−1 = αk−1

⎫⎪⎪⎬⎪⎪⎭
≤

∑
l∈Nk−1

P

{
|ξk,l/σl| > σ

σl
θk,n(ε)|̂αk−1 = αk−1

}

≤ n − (k − 1)

θk,n(ε)
√

2π
exp{−θk,n(ε)2/2}

=
Cε

nε/2k

√
log nk

, (26)

where Cε is a positive constant. We thus have

P

{
|ck,̂αk | > δk + σθk,n(ε)

}
=

∑
αk−1

P

{
|ck,̂αk | > δk + σθk,n(ε)|̂αk−1 = αk−1

}
P
{
α̂k−1 = αk−1

}
≤ Cε

nε/2k

√
log nk

, (27)

where
∑
αk−1

denotes the sum for
(

n
k−1

)
choices of αk−1. When

x1, . . . , xn are stochastic, this bound is also valid if g1, . . . , gn
are linearly independent with probability one. In this case,
δk should be a bound under any choice of x1, . . . , xn.

If n is sufficiently larger than k, (27) can be very small.
Therefore, δk + σθk,n(ε) is an upper bound for the cost re-
duction obtained by adding a new basis function in which
the first and second terms correspond to the bias and vari-
ance bounds, respectively. When λ = 0, it is an upper bound
for the residual reduction. If a target function has a truly
sparse representation in terms of the assumed basis func-
tions and all of the true basis functions have already been
selected at the (k − 1)-th step, then δk,l = 0 for all l ∈ Nk−1.
Unfortunately, this may not be feasible in practical applica-
tions of nonparametric regression methods. Even when this
is not exactly satisfied, we can expect δk,l to be sufficiently
small at an appropriate k since the greedy procedure may be
able to effectively reduce a bias. This is a significant point
for applying a greedy procedure. In other words, at the k, a
variance in a cost reduction may be dominated. However, it
is bounded by σθk,n(ε). We therefore consider the k-th basis
function as irrelevant to a target function and only relevant
to noise when

|̂ck,̂αk | ≤ σθk,n(ε) (28)

holds.

3.2 Greedy Algorithm for a Special Case

In the previous subsection, the important point is the struc-
ture of the problem for deriving the bound; i.e., we need
to evaluate the maximum value among certain random vari-
ables. This comes from an intrinsic property of the greedy
procedure. In this subsection, we will see that this structure
is important in considering the model selection problem of
the greedy procedure.

For the greedy algorithm, we bound ξ2k,̂αk
=

maxl∈Nk−1 ξ
2
k,l to evaluate the variance in cost reduction. This

is required because it selects a basis function that maximally
reduces the defined cost. If we fix or randomly select a new
basis function, it is easy to see that the expectation of ξ2k,l is
less than σ2, and equal to σ2 when λ = 0. Indeed, this holds
even when an additive noise does not have a normal distri-
bution. This fact plays an essential role in deriving FPE and
Cp. This is true even in AIC; i.e., it is based on the fact that
ξ2k,l has a χ2 distribution with one degree of freedom as the
asymptotic distribution when λ = 0. The penalty terms of
these criteria play the role of correcting the residual reduc-
tion for noise in estimating a generalization error based on a
training error. In other words, these model selection criteria
estimate residual or cost reduction as a constant that does
not depend on n. In the greedy algorithm, if the size of Nk−1

increases, ξ2k,̂αk
may increase basically since the number of

candidates increases. This implies that ξ2k,̂αk
may be an in-

creasing sequence of n if k is fixed because the number of
basis functions increases as n increases in our setting of a
nonparametric regression problem. Indeed, if g1, . . . , gn are
orthogonal, we can show that for a fixed k, the probability
of the event {|ξk,̂αk | > σθk,n(−ε)} with ε > 0 goes to zero as n
goes to∞.
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To see this, we assume that g1, . . . , gn are orthogonal.
For simplicity, we assume that λ = 0 holds here. By recall-
ing that Pα̂k−1

= In − Hα̂k−1
and Hα̂k−1

= Gα̂k−1
F−1
α̂k−1

G′
α̂k−1

, we
have Pα̂k−1

gl = gl for l ∈ Nk−1 since l � α̂k−1. We thus have
E{ξk,lξ

′
k,l |̂αk−1 = αk−1} = σ2In by (23) and the definition of

Ak,l. This implies that ξ2k,l, l ∈ Nk−1 are i.i.d. samples from
a χ2 distribution with one degree of freedom. By Appendix
C, for ε > 0, we therefore have

1 − P
{

max
l∈Nk−1

|ξk,l| > σθk,n(−ε)|̂αk−1 = αk−1

}
≤

√
n−ε log n

2Cε
,

(29)

where Cε is a positive constant. This implies that the prob-
ability that a variance in a residual reduction is bounded be-
low by C log n for a positive constant C can be high when n
is large. In other words, ξ2k,̂αk

is really an increasing function
of n when g1, . . . , gn are orthogonal. Therefore, FPE, Cp,
and AIC may underestimate a residual reduction and tend
to select a larger number of basis functions than needed to
represent a target function. If g1, . . . , gn are not orthogo-
nal, then ξ2k,̂αk

can be small depending on the correlations
among ξk,l [14]. This correlation structure is determined by
the degree of linear dependency among g1, . . . , gn. In an
extreme case, if all of the basis functions are linearly de-
pendent, then we prepare only one basis function and fit the
given data by that basis function. In an alternative extreme
case, as seen here, a residual reduction is lower bounded
by C log n if all basis functions are orthogonal. It is natural
that |ξk,α̂k

| is an increasing function of n with a high prob-
ability when the number of linear independent basis func-
tions increases with n. Actually, in a greedy version of the
extreme learning machine, [16] first chooses candidates of
basis functions by FPE in the forward selection while using
PRESS for backward elimination. The requirement of the
backward elimination may constitute empirical evidence for
the above discussion. Although the exact evaluation is left
to future study, the upper bound (27) is valid in any case and
is expected to be useful in practical applications.

3.3 Implementation Issue

We discuss here the implementation of a model selection
method based on (28), in which we attempt to incorporate
the above result with the LOOCV method.

We first summarize a model selection method based
on the LOOCV error. In implementing the model selec-
tion method, we set k, the number of candidates for a model
selection. k should be sufficiently large, but small enough
to keep computational time reasonable. Let LCVE(k) be a
LOOCV error at k in {1, . . . , k} given by

LCVE(k) =
n∑

i=1

(
ri

1 − hii

)2

, (30)

where ri is a residual for the i-th observations and hii is the
i-th diagonal element of Hα̂k

. At each k, these are calculated

by using Pk, in which we can use (10) and Hα̂k
= In − Pk.

We find k̂LCV = arg min1≤k≤k LCVE(k), which is the selected
number of basis functions according to the LOOCV error.
We refer to this method as LOOCV. Note that if k̂LCV = k,
we may need to set a larger k.

We define K = {k | 1 ≤ k ≤ k̂LCV, |ck,̂αk | ≥ σθk,n(ε)};
i.e., a set of indices of basis functions for which the cost
reduction is larger than σθk,n(ε). We consider to select K
as indices of significant basis functions, which is a thresh-
olding on the cost reduction. In this thresholding method,
if we happen to remove the basis functions that represent a
target function, a large bias arises. There is a possibility of
this elimination because ck,l, l ∈ Nk−1 have a stochastic na-
ture and the obtained threshold level is an upper bound for
the variance. To reduce the accidental elimination and for a
safety purpose in the implementation, we find k̂ = max j∈K j
and select {1, . . . , k̂} as indices of significant basis functions.
In other words, |ck,̂αk | < σθk,n(ε) holds for any k that satisfy
k̂ < k ≤ k̂LCV if k̂ < k̂LCV. Since we choose basis functions
for the candidates chosen by LOOCV, this method yields a
more sparse representation than the representation given by
LOOCV; i.e., k̂ ≤ k̂LCV. We refer to this method as thresh-
olding for a cost reduction (TCR) and denote k̂ by k̂TCR. In
implementing TCR, we need to choose ε and σ2. Since ε is
an arbitrary small value, we set ε = 0. Note that (27) goes
to zero as n goes to ∞ even when ε = 0. As an estimate
of σ2, we consider employing LCVE(̂kLCV). This scheme is
effectively combined with a hyperparameter selection based
on the LOOCV error.

The remainder of the implementation of TCR is the
choice of a regularization parameter. Generally, the regular-
ization parameter is introduced to smooth the output and/or
to stabilizing the training process. The former purpose is
needed for better generalization performance of the esti-
mated model. However, estimation using TCR is expected
to provide a model with better generalization performance
by restricting the complexity of the model; i.e., the num-
ber of basis functions. On the other hand, the calculation of
Hk,l in the greedy procedure can be numerically unstable if
λ = 0; e.g., Pk−1gl can be very small if gl is nearly linearly
dependent with gα̂ j

, j = 1, . . . , k − 1. Therefore, we may
need the regularization parameter to avoid this instability,
but we may not need it to maintain a better generalization
performance. We thus set an appropriate small value for
the regularization parameter in the implementation of TCR.
Note that TCR can be useful even when we can choose a
value for the regularization parameter that realizes appro-
priate smoothing. However, choosing an optimal value for
the regularization parameter in addition to the hyperparame-
ter may take much time. We can avoid this problem by using
TCR to obtain good generalization performance.

Lastly, we should note that TCR can be also applied
to OLS since (28) holds when gl is replaced with qk,l. In
this meaning, (28) is a universal bound in terms of basis
functions.
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4. Numerical Experiments

4.1 Some Benchmark Examples

In this section, we compare the degree of sparseness
and generalization performance of TCR to those of other
methods through numerical experiments on real bench-
mark datasets from [25]. The alternative methods in-
clude LOOCV in Sect. 3.3, FPE [1], LASSO [23] and one-
standard error rule (OSER) (p.216, [13]) for LOOCV error.
For LASSO, we directly use the “glmnet” package of R that
is a popular free software for statistical data analysis.

We employ a Gaussian basis function with a single
width parameter that is common across all basis functions;
i.e. gk(x) = exp(−‖x − xk‖2/τ) with the width parameter
τ > 0. Samples of each dataset are divided into a training
set and a test set. A model is trained for a training set by
using each method; i.e. we obtain a set of basis functions
and their coefficients by each method. The trained model
is tested on a test set. The test error is defined as the mean
squared error on the test set. We repeat this procedure for 20
different randomly chosen pairs of sample sets and calculate
the averaged test error and averaged number of selected ba-
sis functions for 20 trials. The names of the datasets are
shown in Table 1, with the numbers of training data, test
data, and inputs. For each dataset, values for all variables
are normalized to zero mean and unit variance.

The set of candidate values for the hyperparameter is
shown in the last column of Table 1. These are chosen based
on the results of pre-simulations. For all methods, the hyper-
parameter value is chosen from each candidate set based on
LOOCV error (30). Except TCR, we choose a regulariza-
tion parameter value in {10−6, 10−4, 10−3, 10−2, 10−1, 1}. In
TCR, we set λ = 10−6 for all datasets. For the choice of
a regularization parameter, the LOOCV error is employed
in LOOCV, FPE and OSER methods while 10-fold cross
validation error is employed in LASSO to save time. We
set k = 200 (the number of candidates of basis functions
for model selection) for “ailerons”, “delta ailerons”, “eleva-
tors” and “delta elevators” datasets and k = 50 for “hous-
ing” and “auto” datasets. Note that LOOCV and FPE meth-
ods select basis functions from k candidates according to
LOOCV error and FPE criterion respectively. The k candi-
dates are selected by the greedy algorithm employed in this
paper. OSER applied to LOOCV errors for the k candidates
under the hyperparameter and regularization parameter that

Table 1 Names of datasets, the number of training data (ntrain), test data (ntest), inputs (d) and the
candidate values for a hyperparameter τ.

names of datasets ntrain ntest d candidates for τ

ailerons 1000 2000 41 {120, 140, 160, 180, 200}
delta ailerons 1000 2000 6 {2, 5, 10, 15, 20}
elevators 1000 2000 19 {25, 50, 75, 100, 125}
delta elevators 1000 2000 7 {2, 5, 10, 30, 50}
housing 150 356 14 {20, 30, 40, 50, 60}
auto 150 248 8 {2, 5, 10, 15, 20}

are chosen according to LOOCV error.
In Tables 2 and 3, we show the test errors and the se-

lected numbers of the basis functions respectively. In Ta-
bles 2 and 3, we can see that the generalization performance
and sparseness of LOOCV are comparable to those of FPE.
The selected number of basis functions in OSER is neces-
sarily smaller than that in LOOCV. And, the average test
error of OSER is less than that of LOOCV while their differ-
ence is within the standard deviations. However, this result
may say that the models selected by LOOCV and FPE tend
to over-fit to training data. TCR shows a better generaliza-
tion performance compared to LOOCV, OSER and FPE in
average while it may not be notable when we take account
of the standard deviations. LASSO shows a better gener-
alization performance compared to TCR except “ailerons”
dataset while the difference in test errors may not be notable
in some datasets when we take account of the standard devi-
ations. On the other hand, the sparseness of TCR is notable
compared to LOOCV, OSER, FPE and LASSO as found in
Table 3. Since [16] employs LOOCV for the backward elim-
ination, we can say that TCR can provide a sparser represen-
tation than in [16]. In Table 3, we can see that LASSO is not
stable in terms of the degree of sparseness while it shows a
relatively stable generalization performance; e.g. it is seen
typically in “elevators” dataset. In LASSO, the degree of
sparseness is controlled by a regularization parameter under
a fixed hyperparameter. Therefore, the result tells us that
the sparseness may be sensitive to a regularization parame-
ter around an optimal value while the test error may not be
so sensitive. In LASSO, to find a reasonable sparse repre-
sentation, we may need a set of the large number of can-
didate values for a regularization parameter while it takes
much time in estimation.

From this experiment, we can say that TCR provides a
model which shows a relatively better generalization perfor-
mance and has a strong sparseness property. TCR is there-
fore preferable in terms of the law of parsimony. Note that
these facts are true even for the relatively small size datasets;
i.e., “housing” and “auto”. Moreover, it is important that the
preferable property of TCR is realized under a fixed regular-
ization parameter value, by which we are free from a choice
of value for a regularization parameter. This is further ex-
amined in the next section.

4.2 Dependence of Regularization Parameter on TCR

In Fig. 1, we show a relationship between regularization pa-



104
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.1 JANUARY 2014

Table 2 Averaged test errors with the standard deviation in the bracket.

Data Set LOOCV OSER FPE TCR LASSO

ailerons 0.215(0.021) 0.2(0.019) 0.213(0.033) 0.187(0.012) 0.19(0.01)
delta ailerons 0.396(0.041) 0.381(0.04) 0.376(0.046) 0.359(0.04) 0.331(0.016)
elevators 0.156(0.025) 0.154(0.025) 0.149(0.018) 0.144(0.018) 0.135 (0.011)
delta elevators 0.457(0.033) 0.441(0.031) 0.445(0.032) 0.39(0.024) 0.373(0.016)
housing 0.213(0.036) 0.205(0.025) 0.214(0.034) 0.214(0.041) 0.213(0.036)
auto 0.175(0.031) 0.164(0.025) 0.175(0.027) 0.163(0.024) 0.143(0.018)

Table 3 Average number of selected basis functions with the standard deviation in the bracket.

Data Set LOOCV OSER FPE TCR LASSO

ailerons 126.8(32.3) 79.2(34.8) 141.1(49.5) 25.8(8.5) 110.8(135.8)
delta ailerons 106.1(36.8) 61.9(26.4) 96.2(46.5) 21.9(8.5) 122.2(220.7)
elevators 182.2(14.2) 141.2(24.8) 191.4(16.5) 46.2(12.7) 809.2(297.3)
delta elevators 113.3(34.3) 66(33.3) 126.7(44.1) 11.2(6.9) 49.6(100.5)
housing 39(7.2) 29.9(6.5) 43.4(7.5) 18.4(4.2) 59.4(46.6)
auto 41.3(7.7) 27.6(8.8) 43.6(8.1) 15.1(7.3) 33.8(17.6)

Fig. 1 Test error of TCR at different values of a regularization parameter.
The dataset is “ailerons”. The error bar denotes the standard deviation.

rameter, λ, and test error of TCR for “ailerons” dataset. The
number of training and test data are 1000 and 2000 respec-
tively. We set k = 200. For each fixed regularization pa-
rameter, we estimate a model by TCR for a training set and
then calculate the test error for a test set. We repeat this pro-
cedure 20 times for different choices of data and calculate
the mean and standard deviation of the test error. The result
is depicted in Fig. 1. The mean test error was minimized at
λ = 10−4 while the minimum test error is almost equal to the
test errors at λ = 10−8 and λ = 10−6. Therefore, we can say
that the generalization performance of a model estimated by
TCR is not so sensitive to a pre-determined regularization
parameter when it is set to be a small value. This is because
a better generalization capability is brought by thresholding;
i.e. restricting the number of basis functions. This avoids an
increase of test error for a small value of a regularization pa-
rameter. On the other hand, the test error is large when the
regularization parameter is set to be a large value. Therefore,
the choice of a small value for the regularization parameter
is sufficient for stability of estimator and a better generaliza-
tion performance. This makes us free from a choice of value
for a regularization parameter.

5. Conclusions

In this paper, we proposed a model selection method in reg-
ularized forward selection [18]. For the purpose, we focused
on the reduction of a cost function, which is brought by ap-
pending a new basis function in a greedy training proce-
dure. We first clarified a bias and variance decomposition
of the cost reduction and then derived a probabilistic up-
per bound for the variance of the cost reduction under some
conditions. The derived upper bound reflects an essential
feature of the greedy training procedure; i.e., it selects a ba-
sis function which maximally reduces the cost function. We
then proposed a thresholding method for determining signif-
icant basis functions by applying the derived upper bound as
a threshold level and effectively combining with the leave-
one-out cross validation method. The thresholding method
with this level identifies whether the appended basis func-
tion contributes to overfitting or approximation of a target
function. With numerical examples, we verified that we
can obtain a sparser representation by using the proposed
method than by using a naive LOOCV approach; never-
theless, the generalization performances of both methods
were comparable. In the next stage, we need to consider
the thresholding method that acts as a stopping criterion
in the greedy procedure, which may effectively reduce the
overall computational complexity. On the other hand, the
well-known forward stagewise and least angle regression [8]
are closely related to the forward selection procedure con-
sidered here. Those are variations of greedy procedure in
which the algorithm basically selects a basis function that
maximally reduces residual, or equivalently, maximizes cor-
relation with residual. Therefore, our idea of thresholding
here may be applicable to the forward stagewise and least
angle regression. This attempt is also a part of our future
works. Also, backward elimination is an alternative strategy
for building a model. The application of our thresholding
method may be effective and possible to reduce a computa-
tional cost for model selection in backward elimination. It
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is also a part of our future works.
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Appendix A: Derivation of (9)

Since we have Gα̂k,l
ŵ(α̂k,l) = Hα̂k,l

y,

C(α̂k,l, ŵ(α̂k,l), λ)

= ‖y − Hα̂k,l
y‖2 + λ‖ŵα̂k,l

‖2
= ‖y‖2 − 2y′Hα̂k,l

y + y′H2
α̂k,l
y + λy′Gα̂k,l

F−1
α̂k,l

F−1
α̂k,l

G′α̂k,l
y

= ‖y‖2 − 2y′Hα̂k,l
y + y′

(
H2
α̂k,l
+ λGα̂k,l

F−1
α̂k,l

F−1
α̂k,l

G′α̂k,l

)
y

= ‖y‖2 − 2y′Hα̂k,l
y + y′Gα̂k,l

F−1
α̂k,l

G′α̂k,l
y

= ‖y‖2 − y′Hα̂k,l
y, (A· 1)

where we use the definition of Hα̂k,l
in the last two lines. As

in [16], [18], we can show that

Hα̂k,l
= Hα̂k−1

+ Hk,l (A· 2)

where Hk,l is defined by (6). This proves (9) since we have

C(α̂k−1, ŵ(α̂k−1), λ) = ‖y‖2 − y′Hα̂k−1
y (A· 3)

by replacing α̂k,l with α̂k−1 in (A· 1).

Appendix B: Some Properties of Hα̂k−1 and Pα̂k−1

We write Hα̂k−1
= Hk−1(λ), Pk−1(λ) = Pα̂k−1

and Fα̂k−1
=

Fk−1(λ). We here recall that Pk−1(λ) = In − Hk−1(λ) by
the definition of Pα̂k−1

. We define qk−1(u, λ) = u′Hk−1(λ)u,
where u is an n-dimensional vector. Let γ1 ≥ · · · ≥ γn be
eigenvalues of Hk−1(λ). Since Hk−1(λ) is symmetric, there
exists an orthogonal matrix Q such that Q′Hk−1(λ)Q = Γ or
QΓQ′ = Hk−1(λ), where Γ = diag(γ1, . . . , γn).

We here define F(ρ) = (G′
α̂k−1

Gα̂k−1
+ ρIn) and H(ρ) =

Gα̂k−1
F(ρ)−1G′

α̂k−1
for ρ ≥ 0. We also define q(u, ρ) =

u′H(ρ)u, where u is an n-dimensional vector. As shown
in [18], ∂F(ρ)−1/∂ρ = −F(ρ)−2 holds. Therefore, we have

∂q(u, ρ)
∂ρ

= −u′Gα̂k−1
F(ρ)−2G′α̂k−1

u ≤ 0 (A· 4)

for any fixed u. This implies that q(u, ρ) is a non-increasing
function of ρ for any fixed u. Therefore, we have

q(u, ρ) ≤ q(u, 0) (A· 5)

for any fixed u and ρ ≥ 0. On the other hand, H(0) is sym-
metric and idempotent for any α̂k−1 since g1, . . . , gn are lin-
early independent. This implies that the rank of H(0) is k−1,
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and thus k − 1 of its eigenvalues are equal to 1 and the re-
maining n−(k−1) eigenvalues are equal to 0; e.g., pp.50–51,
[19]. We thus have q(u, 0)/‖u‖2 ≤ 1 for any u � 0n by p.533,
[12].

By this fact and (A· 5), we have

max
u�0n

qk−1(u, λ)/‖u‖2 ≤ max
u�0n

q(u, 0)/‖u‖2 ≤ 1 (A· 6)

for a fixed λ ≥ 0. Since qk−1(u, λ)/‖u‖2 attains γ1 for the
eigenvector corresponding to γ1, we have γ1 ≤ 1. Here, it is
easy to see that γ j < 1 holds for some j.

We define bl = Q′gl. We then have

g′l Hk−1(λ)gl = b′lΓbl < ‖bl‖2 = ‖gl‖2 (A· 7)

since Q is an orthogonal matrix and 0 ≤ γ j ≤ 1 for any j
and γ j < 1 for some j. We thus have

g′l Pk−1(λ)gl > 0 (A· 8)

by the definition of Pk−1(λ). On the other hand,
g′l Pk−1(λ)2gl ≥ 0 holds. g′l Pk−1(λ)2gl = 0 holds if and only
if Pk−1(λ)gl = 0n holds. The latter equation is equivalent to
Hk−1(λ)gl = gl by the definition of Pk−1(λ). This contradicts
(A· 7). Thus, we have

g′l Pk−1(λ)2gl > 0. (A· 9)

By the above Q, we also have Q′Hk−1(λ)2Q = Γ2 since
Q is an orthogonal matrix. We then have

g′l Hk−1(λ)2gl = b′lΓ
2bl ≤ b′lΓbl = g

′
l Hk−1(λ)gl (A· 10)

since 0 ≤ γ j ≤ 1. By the definition of Pα̂k−1
, we have

g′l Pα̂k−1
gl − g′l P2

α̂k−1
gl = g

′
l Hk−1(λ)gl − g′l Hk−1(λ)2gl ≥ 0.

(A· 11)

Appendix C: Properties of χ2 Random Variables

Let Z1, . . . ,Zn be independent random variables from a com-
mon N(0, 1). Then, Z2

1 , . . . ,Z
2
n are independent random vari-

ables from a common χ2 distribution with one degree of
freedom. We define f (t) = ((

√
2Γ(1/2))−1t−1/2 exp(−t/2)

which is the probability density function of a χ2 distribution
with one degree of freedom. We define p(z) = P {Z1 > z}. It
is easy to see that

lim
z→∞

p(z)
2 f (z)

= 1 (A· 12)

by using p(z) =
∫ ∞

z
f (t)dt,

∫ ∞
0

f (t) = 1 and L’Hospital’s

rule. We define θ2n(ε) = (2 + ε) log n, where ε is a constant
that satisfies ε < 0. We also define pn(ε) = p(θ2n(ε)) and
fn(ε) = f (θ2n(ε)).

When n is sufficiently large, by using (A· 12), we have

1 − P
{
max
1≤i≤n

Z2
i > θ

2
n(ε)

}
= P

{
max
1≤i≤n

Z2
i < θ

2
n(ε)

}

=

n∏
i=1

P

{
Z2

i < θ
2
n(ε)

}

=

(
1 − npn(ε)

n

)n

≤ e−npn(ε)/(1−pn(ε))

∼ e−2n fn(ε)/(1−2 fn(ε))

=

√
nε log n

Cε
, (A· 13)

where Cε is a positive constant and ∼ indicates the asymp-
totic equivalence.
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