
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014
981

LETTER

A Framework to Integrate Public Information into Runtime Safety
Analysis for Critical Systems

Guoqi LI†a), Member

SUMMARY The large and complicated safety-critical systems today
need to keep changing to accommodate ever-changing objectives and envi-
ronments. Accordingly, runtime analysis for safe reconfiguration or evalu-
ation is currently a hot topic in the field, whereas information acquisition
of external environment is crucial for runtime safety analysis. With the
rapid development of web services, mobile networks and ubiquitous com-
puting, abundant realtime information of environment is available on the
Internet. To integrate these public information into runtime safety analysis
of critical systems, this paper brings forward a framework, which could be
implemented with open source and cross platform modules and encourag-
ingly, applicable to various safety-critical systems.
key words: safety critical systems, runtime analysis, software framework,
safe reconfiguration

1. Introduction

Safety-critical systems are those systems whose failure
could result in loss of life, significant property damage, or
damage to the environment. Now, safety-critical systems
are becoming more and more common and powerful, for
instance, the autonomous cars, home medical devices and
civilian UAV (Unmanned Aerial Vehicles) are hopeful to en-
ter our daily life in recent future. These systems are large
and complicated and need to keep changing to accommo-
date ever-changing objectives and environments. The con-
cept of “Open Systems Dependability” [1] was put forward
to indicate the new insights and challenges on dependability
of ever-changing systems. Runtime reconfigurability, which
is of great importance for open systems dependability, could
allow the systems be adapted every possible scenario, even
if it was not foreseen at design time [2]. Accordingly, run-
time safety analysis is proposed to direct runtime reconfigu-
rations [3], [4].

Information acquisition of external environment is cru-
cial for runtime safety analysis of critical systems. Tradi-
tionally, this information is obtained from sensors and de-
tectors [3]. However, with the rapid development and pop-
ularization of web services, mobile internet and ubiquitous
computing, abundant realtime information of environment,
such as weather and road conditions, topography changes,
infrequent events etc., is accessible easily and freely from
the Internet. A former research has applied such informa-

Manuscript received September 17, 2013.
Manuscript revised November 8, 2013.
†The author is with Science and Technology on Reliability and

Environmental Engineering Laboratory, School of Reliability and
System Engineering, Beihang University (BUAA), Beijing China.

a) E-mail: gqli@buaa.edu.cn
DOI: 10.1587/transinf.E97.D.981

tion into realtime analysis of personal safety by providing
smartphone applications [5].

As a further matter, the public information obtained
from the Internet should also be valuable for runtime safety
analysis of critical systems. Compared with the private in-
formation of critical systems, such as data from sensors and
detectors, the public information has broader vision. Con-
sider a potential application scenario: a low-altitude un-
manned helicopter usually measures the wind speed and di-
rection with sensors, but the detection range is limited to
its current position, so the UAV could not predict the dan-
gerous chaotic airflows between two big buildings. How-
ever, if it could get the near topographic information from
Google Earth and intercity wind speed and direction from
corresponding web services, the dangerous chaotic airflows
would then be predicted and dodged by reconfiguration of
flight control or replanning of flight route.

To integrate the public information from the Internet
into runtime safety analysis of critical systems, a framework
and the implementation of its key modules are provided in
the following section.

2. Framework and Implementation of Key Modules

Figure 1 briefly illustrates the composition of the frame-
work. The rectangle in the center of the figure represent
three modules. “JavaScript objects” are responsible for in-
formation acquisition from the Internet and “Native objects”

Fig. 1 The brief diagram of the framework to integrate public informa-
tion into runtime safety analysis for critical systems.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



982
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

Fig. 2 The schematic diagram of integration SWI-Prolog with C++.

are able to access and manipulate local resources. These two
kinds of objects communicate mutually through the “web-
native bridge”. Additionally, an “Embedded database” is
needed for permanent and transient data storage. Finally,
the analysis results are output “For integration”.

As mentioned in the former section, realtime informa-
tion of environment could be obtained from the Internet. For
instance, road condition and topography data could be ob-
tained from Google Maps and Goolge Earth respectively,
both of which provide JavaScript API (Application Program
Interface) for accessing relevant data conveniently. In the
field of web programming, both at present and in the fore-
seeable future, JavaScript is in a dominant position, and
network services usually provide interface in the form of
Javascript API. Consequently, by supporting JavaScript, the
framework is definitely qualified with the ability of informa-
tion acquisition from the Internet.

The role of the “Production rule system”, shown in the
left side of the figure, is to process information obtained
from the Internet. The raw data are usually of large quan-
tities and should be filtered and recognized as specified,
namely, meaningful information for safety. The logic of the
process is coincident with the production rule system. We
resort to SWI-Prolog as a rule engine and implement the
production rule system with forward chaining, which is one
of the two main methods of reasoning supported by Prolog.
The substantial safety analysis could be written in forms of
rules and conducted by the production rule system.

Additionally, Fig. 2 shows the method of integrating
SWI-Prolog with C++ by an IPC (Inter Process Communi-
cation) based method. Prolog is a powerful logic program-
ming language and SWI-Prolog provides independent con-
soles, multi-thread mechanisms, build-in predicates and etc.
When calling a Prolog program from C++ through the inter-
face of SWI-Prolog, additional threads or processes will be
created and the results of the Prolog program will be output
to the console of SWI-Prolog, instead of returning to C++,
so the IPC library is necessary [6] to communicate with C++
mutually at realtime. In the figure, the components written
in C++ belong to the module of “Native objects”.

Last but not least, “web-native bridge”, shown in the
center of the Fig. 1, is another key module, and logically, the
crucial part for the framework. It connects the JavaScript
objects and native objects, so that both events occurred in

Fig. 3 The steps of connecting Qt object and JavaScritp object with
QtWebKit. Signals and slots are used for communication between objects.

the Internet and in the system itself could trigger reactions
in the framework.

QtWebkit is the best candidate for implementing the
web-native bridge. Of course QtWebKit is not the only
bridge technology out there. NPAPI (Netscape Plugin Ap-
plication Programming Interface), for example, is a long-
time standard or web-native bridging. Due to Qt’s meta-
object system, full applications built partially with web-
technologies are much easier to develop. NPAPI, however,
is more geared towards cross-browser plugins, due to it be-
ing an accepted standard [7].

Three steps are needed to connect JavaScript objects
and Qt objects with QtWebKit: first of all, expose Qt object
to QtWebKit and then connect the singles and slots of Qt ob-
jects and JavaScript objects respectively according to Fig. 3.
Here, signals and slots are used for communication between
objects, which is an alternative to the callback technique. A
signal is emitted when a particular event occurs and a slot
is a function that is called in response to a particular signal.
Briefly, slots are a kind of specific member function of an
object, which could be called by other objects through emit-
ting corresponding signals, even though the slots and singles
are implemented with different languages.

Until now, there is no any difficulties for ordinary engi-
neers to implement the framework. Additionally, the well-
commented source codes of the components illustrated in
Figs. 2 and 3 are available by email gqli@buaa.edu.cn or
keep thinking@hotmail.com.

3. Conclusions and Future Works

The main contribution of this paper is to provide a new idea
to integrate the public information from the Internet into the
runtime safety analysis of critical systems. A framework,
which could be implemented with open source and cross
platform modules, is presented to prove the feasibility of
the idea.

In the future, we plan to construct a concrete imple-
mentation of the framework for an open source low-altitude
UAV, and the evaluation of the application will be given in
details.

Any discussion about the topic is welcome by emails
mentioned above. This work is supported by the Fundamen-
tal Research Funds for the Central Universities (Program
No.YWF-13-B05-001).

References

[1] M. Tokoro, “White paper of deos project version 3.0a,” Tech. Rep.,



LETTER
983

Japan Science and Technology Agency, Dec. 2011.
[2] L. Sterpone, M. Porrmann, and J. Hagemeyer, “A novel fault tolerant

and runtime reconfigurable platform for satellite payload processing,”
IEEE Trans. Comput., vol.62, no.8, pp.1508–1525, Aug. 2013.

[3] K. Ostberg and M. Bengtsson, “Run time safety analysis for automo-
tive systems in an open and adaptive environment,” Proc. Workshop
ASCoMS (Architecting Safety in Collaborative Mobile Systems) of
the 32nd International Conference on Computer Safety, Reliability
and Security (SAFECOMP), 2013.

[4] C. Priesterjahn, C. Heinzemann, W. Schafer, and M. Tichy, “Runtime

safety analysis for safe reconfiguration,” Proc. 10th IEEE Interna-
tional Conference on Industrial Informatics (INDIN), 2012.

[5] J. Ballesteros, B. Carbunar, M. Rahman, N. Rishe, and S. Iyengar,
“Towards safe cities: A mobile and social networking approach,”
IEEE Trans. Parallel Distrib. Syst., vol.99, no.8, pp.1–14, Aug. 2013.

[6] J. Rosenwald, Transparent Inter-Process Communications (TIPC)
libraries, 6.5.2 ed. Available at http://www.swi-prolog.org/pldoc/
package/tipc.html

[7] The QtWebKit Bridge, qt5.0 ed., 2013. Available at: http://qt-project.
org/doc/qt-5.0/qtwebkit/qtwebkit-bridge.htm


